
Triple Generative Adversarial Nets

Chongxuan Li, Kun Xu, Jun Zhu∗, Bo Zhang
Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab of Intell. Tech. & Sys.,

Center for Bio-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
{licx14, xu-k16}@mails.tsinghua.edu.cn, {dcszj, dcszb}@mail.tsinghua.edu.cn

Abstract

Generative Adversarial Nets (GANs) have shown promise in image generation
and semi-supervised learning (SSL). However, existing GANs in SSL have two
problems: (1) the generator and the discriminator (i.e. the classifier) may not
be optimal at the same time; and (2) the generator cannot control the semantics
of the generated samples. The problems essentially arise from the two-player
formulation, where a single discriminator shares incompatible roles of identifying
fake samples and predicting labels and it only estimates the data without considering
the labels. To address the problems, we present triple generative adversarial
net (Triple-GAN), which consists of three players—a generator, a discriminator
and a classifier. The generator and the classifier characterize the conditional
distributions between images and labels, and the discriminator solely focuses on
identifying fake image-label pairs. We design compatible utilities to ensure that
the distributions characterized by the classifier and the generator both converge to
the data distribution. Our results on various datasets demonstrate that Triple-GAN
as a unified model can simultaneously (1) achieve the state-of-the-art classification
results among deep generative models, and (2) disentangle the classes and styles
of the input and transfer smoothly in the data space via interpolation in the latent
space class-conditionally.

1 Introduction

Deep generative models (DGMs) can capture the underlying distributions of the data and synthesize
new samples. Recently, significant progress has been made on generating realistic images based on
Generative Adversarial Nets (GANs) [7, 3, 22]. GAN is formulated as a two-player game, where the
generator G takes a random noise z as input and produces a sample G(z) in the data space while the
discriminator D identifies whether a certain sample comes from the true data distribution p(x) or the
generator. Both G and D are parameterized as deep neural networks and the training procedure is to
solve a minimax problem:

min
G

max
D

U(D,G) = Ex∼p(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))],

where pz(z) is a simple distribution (e.g., uniform or normal) and U(·) denotes the utilities. Given a
generator and the defined distribution pg , the optimal discriminator is D(x) = p(x)/(pg(x) + p(x))
in the nonparametric setting, and the global equilibrium of this game is achieved if and only if
pg(x) = p(x) [7], which is desired in terms of image generation.

GANs and DGMs in general have also proven effective in semi-supervised learning (SSL) [11],
while retaining the generative capability. Under the same two-player game framework, Cat-GAN [26]
generalizes GANs with a categorical discriminative network and an objective function that minimizes
the conditional entropy of the predictions given the real data while maximizes the conditional entropy

∗J. Zhu is the corresponding author.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

𝑿𝒄, 𝒀𝒄
~𝒑𝒄(𝑿, 𝒀)

𝑿𝒍, 𝒀𝒍 ∼ 𝒑(𝑿, 𝒀)

𝑿𝒄 ∼ 𝒑(𝑿)

𝒁𝒈 ∼ 𝒑𝒛(𝒁)

𝑿𝒈, 𝒀𝒈
~𝒑𝒈(𝑿, 𝒀)

𝑿𝒍, 𝒀𝒍 ∼ 𝒑(𝑿, 𝒀)

GC

D

A/R A A/R

CE

CE
𝒀𝒈 ∼ 𝒑(𝒀)

Figure 1: An illustration of Triple-GAN (best view in color). The utilities of D, C and G are colored
in blue, green and yellow respectively, with “R” denoting rejection, “A” denoting acceptance and
“CE” denoting the cross entropy loss for supervised learning. “A”s and “R”s are the adversarial losses
and “CE”s are unbiased regularizations that ensure the consistency between pg , pc and p, which are
the distributions defined by the generator, classifier and true data generating process, respectively.

of the predictions given the generated samples. Odena [20] and Salimans et al. [25] augment the
categorical discriminator with one more class, corresponding to the fake data generated by the
generator. There are two main problems in existing GANs for SSL: (1) the generator and the
discriminator (i.e. the classifier) may not be optimal at the same time [25]; and (2) the generator
cannot control the semantics of the generated samples.

For the first problem, as an instance, Salimans et al. [25] propose two alternative training objectives
that work well for either classification or image generation in SSL, but not both. The objective of
feature matching works well in classification but fails to generate indistinguishable samples (See
Sec.5.2 for examples), while the other objective of minibatch discrimination is good at realistic image
generation but cannot predict labels accurately. The phenomena are not analyzed deeply in [25] and
here we argue that they essentially arise from the two-player formulation, where a single discriminator
has to play two incompatible roles—identifying fake samples and predicting labels. Specifically,
assume that G is optimal, i.e p(x) = pg(x), and consider a sample x ∼ pg(x). On one hand, as a
discriminator, the optimal D should identify x as a fake sample with non-zero probability (See [7] for
the proof). On the other hand, as a classifier, the optimal D should always predict the correct class
of x confidently since x ∼ p(x). It conflicts as D has two incompatible convergence points, which
indicates that G and D may not be optimal at the same time. Moreover, the issue remains even given
imperfect G, as long as pg(x) and p(x) overlaps as in most of the real cases. Given a sample form
the overlapped area, the two roles of D still compete by treating the sample differently, leading to
a poor classifier2. Namely, the learning capacity of existing two-player models is restricted, which
should be addressed to advance current SSL results.

For the second problem, disentangling meaningful physical factors like the object category from the
latent representations with limited supervision is of general interest [30, 2]. However, to our best
knowledge, none of the existing GANs can learn the disentangled representations in SSL, though
some work [22, 5, 21] can learn such representations given full labels. Again, we believe that the
problem is caused by their two-player formulation. Specifically, the discriminators in [26, 25] take
a single data instead of a data-label pair as input and the label information is totally ignored when
justifying whether a sample is real or fake. Therefore, the generators will not receive any learning
signal regarding the label information from the discriminators and hence such models cannot control
the semantics of the generated samples, which is not satisfactory.

To address these problems, we present Triple-GAN, a flexible game-theoretical framework for both
classification and class-conditional image generation in SSL, where we have a partially labeled
dataset. We introduce two conditional networks–a classifier and a generator to generate pseudo labels
given real data and pseudo data given real labels, respectively. To jointly justify the quality of the
samples from the conditional networks, we define a single discriminator network which has the sole
role of distinguishing whether a data-label pair is from the real labeled dataset or not. The resulting
model is called Triple-GAN because not only are there three networks, but we consider three joint
distributions, i.e. the true data-label distribution and the distributions defined by the conditional
networks (See Figure 1 for the illustration of Triple-GAN). Directly motivated by the desirable
equilibrium that both the classifier and the conditional generator are optimal, we carefully design

2The results of minibatch discrimination approach in [25] well support our analysis.

2

compatible utilities including adversarial losses and unbiased regularizations (See Sec. 3), which lead
to an effective solution to the challenging SSL task, justified both in theory and practice.

In particular, theoretically, instead of competing as stated in the first problem, a good classifier will
result in a good generator and vice versa in Triple-GAN (See Sec. 3.2 for the proof). Furthermore, the
discriminator can access the label information of the unlabeled data from the classifier and then force
the generator to generate correct image-label pairs, which addresses the second problem. Empirically,
we evaluate our model on the widely adopted MNIST [14], SVHN [19] and CIFAR10 [12] datasets.
The results (See Sec. 5) demonstrate that Triple-GAN can simultaneously learn a good classifier and
a conditional generator, which agrees with our motivation and theoretical results.

Overall, our main contributions are two folded: (1) we analyze the problems in existing SSL
GANs [26, 25] and propose a novel game-theoretical Triple-GAN framework to address them with
carefully designed compatible objectives; and (2) we show that on the three datasets with incomplete
labels, Triple-GAN can advance the state-of-the-art classification results of DGMs substantially and,
at the same time, disentangle classes and styles and perform class-conditional interpolation.

2 Related Work

Recently, various approaches have been developed to learn directed DGMs, including Variational
Autoencoders (VAEs) [10, 24], Generative Moment Matching Networks (GMMNs) [16, 6] and
Generative Adversarial Nets (GANs) [7]. These criteria are systematically compared in [28].

One primal goal of DGMs is to generate realistic samples, for which GANs have proven effective.
Specifically, LAP-GAN [3] leverages a series of GANs to upscale the generated samples to high
resolution images through the Laplacian pyramid framework [1]. DCGAN [22] adopts (fractionally)
strided convolution layers and batch normalization [8] in GANs and generates realistic natural images.

Recent work has introduced inference networks in GANs. For instance, InfoGAN [2] learns ex-
plainable latent codes from unlabeled data by regularizing the original GANs via variational mutual
information maximization. In ALI [5, 4], the inference network approximates the posterior distribu-
tion of latent variables given true data in unsupervised manner. Triple-GAN also has an inference
network (classifier) as in ALI but there exist two important differences in the global equilibria and
utilities between them: (1) Triple-GAN matches both the distributions defined by the generator
and classifier to true data distribution while ALI only ensures that the distributions defined by the
generator and inference network to be the same; (2) the discriminator will reject the samples from
the classifier in Triple-GAN while the discriminator will accept the samples from the inference
network in ALI, which leads to different update rules for the discriminator and inference network.
These differences naturally arise because Triple-GAN is proposed to solve the existing problems
in SSL GANs as stated in the introduction. Indeed, ALI [5] uses the same approach as [25] to deal
with partially labeled data and hence it still suffers from the problems. In addition, Triple-GAN
outperforms ALI significantly in the semi-supervised classification task (See comparison in Table. 1).

To handle partially labeled data, the conditional VAE [11] treats the missing labels as latent variables
and infer them for unlabeled data. ADGM [17] introduces auxiliary variables to build a more
expressive variational distribution and improve the predictive performance. The Ladder Network [23]
employs lateral connections between a variation of denoising autoencoders and obtains excellent SSL
results. Cat-GAN [26] generalizes GANs with a categorical discriminator and an objective function.
Salimans et al. [25] propose empirical techniques to stabilize the training of GANs and improve the
performance on SSL and image generation under incompatible learning criteria. Triple-GAN differs
significantly from these methods, as stated in the introduction.

3 Method

We consider learning DGMs in the semi-supervised setting,3 where we have a partially labeled dataset
with x denoting the input data and y denoting the output label. The goal is to predict the labels y
for unlabeled data as well as to generate new samples x conditioned on y. This is different from the
unsupervised setting for pure generation, where the only goal is to sample data x from a generator
to fool a discriminator; thus a two-player game is sufficient to describe the process as in GANs.

3Supervised learning is an extreme case, where the training set is fully labeled.

3

In our setting, as the label information y is incomplete (thus uncertain), our density model should
characterize the uncertainty of both x and y, therefore a joint distribution p(x, y) of input-label pairs.

A straightforward application of the two-player GAN is infeasible because of the missing values on
y. Unlike the previous work [26, 25], which is restricted to the two-player framework and can lead
to incompatible objectives, we build our game-theoretic objective based on the insight that the joint
distribution can be factorized in two ways, namely, p(x, y) = p(x)p(y|x) and p(x, y) = p(y)p(x|y),
and that the conditional distributions p(y|x) and p(x|y) are of interest for classification and class-
conditional generation, respectively. To jointly estimate these conditional distributions, which are
characterized by a classifier network and a class-conditional generator network, we define a single
discriminator network which has the sole role of distinguishing whether a sample is from the true data
distribution or the models. Hence, we naturally extend GANs to Triple-GAN, a three-player game to
characterize the process of classification and class-conditional generation in SSL, as detailed below.

3.1 A Game with Three Players

Triple-GAN consists of three components: (1) a classifier C that (approximately) characterizes the
conditional distribution pc(y|x) ≈ p(y|x); (2) a class-conditional generator G that (approximately)
characterizes the conditional distribution in the other direction pg(x|y) ≈ p(x|y); and (3) a discrim-
inator D that distinguishes whether a pair of data (x, y) comes from the true distribution p(x, y).
All the components are parameterized as neural networks. Our desired equilibrium is that the joint
distributions defined by the classifier and the generator both converge to the true data distribution. To
this end, we design a game with compatible utilities for the three players as follows.

We make the mild assumption that the samples from both p(x) and p(y) can be easily obtained.4
In the game, after a sample x is drawn from p(x), C produces a pseudo label y given x following
the conditional distribution pc(y|x). Hence, the pseudo input-label pair is a sample from the joint
distribution pc(x, y) = p(x)pc(y|x). Similarly, a pseudo input-label pair can be sampled from
G by first drawing y ∼ p(y) and then drawing x|y ∼ pg(x|y); hence from the joint distribution
pg(x, y) = p(y)pg(x|y). For pg(x|y), we assume that x is transformed by the latent style variables z
given the label y, namely, x = G(y, z), z ∼ pz(z), where pz(z) is a simple distribution (e.g., uniform
or standard normal). Then, the pseudo input-label pairs (x, y) generated by both C and G are sent to
the single discriminator D for judgement. D can also access the input-label pairs from the true data
distribution as positive samples. We refer the utilities in the process as adversarial losses, which can
be formulated as a minimax game:

min
C,G

max
D

U(C,G,D) =E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pc(x,y)[log(1−D(x, y))]

+(1− α)E(x,y)∼pg(x,y)[log(1−D(G(y, z), y))], (1)

where α ∈ (0, 1) is a constant that controls the relative importance of generation and classification
and we focus on the balance case by fixing it as 1/2 throughout the paper.

The game defined in Eqn. (1) achieves its equilibrium if and only if p(x, y) = (1 − α)pg(x, y) +
αpc(x, y) (See details in Sec. 3.2). The equilibrium indicates that if one of C and G tends to the
data distribution, the other will also go towards the data distribution, which addresses the competing
problem. However, unfortunately, it cannot guarantee that p(x, y) = pg(x, y) = pc(x, y) is the unique
global optimum, which is not desirable. To address this problem, we introduce the standard supervised
loss (i.e., cross-entropy loss) to C, RL = E(x,y)∼p(x,y)[− log pc(y|x)], which is equivalent to the
KL-divergence between pc(x, y) and p(x, y). Consequently, we define the game as:

min
C,G

max
D

Ũ(C,G,D) =E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pc(x,y)[log(1−D(x, y))]

+(1− α)E(x,y)∼pg(x,y)[log(1−D(G(y, z), y))] +RL. (2)

It will be proven that the game with utilities Ũ has the unique global optimum for C and G.

3.2 Theoretical Analysis and Pseudo Discriminative Loss

4In semi-supervised learning, p(x) is the empirical distribution of inputs and p(y) is assumed same to the
distribution of labels on labeled data, which is uniform in our experiment.

4

Algorithm 1 Minibatch stochastic gradient descent training of Triple-GAN in SSL.
for number of training iterations do
• Sample a batch of pairs (xg, yg) ∼ pg(x, y) of size mg, a batch of pairs (xc, yc) ∼ pc(x, y)
of size mc and a batch of labeled data (xd, yd) ∼ p(x, y) of size md.
• Update D by ascending along its stochastic gradient:

∇θd

 1

md
(
∑

(xd,yd)

logD(xd, yd))+
α

mc

∑
(xc,yc)

log(1−D(xc, yc))+
1− α
mg

∑
(xg,yg)

log(1−D(xg, yg))

 .
• Compute the unbiased estimators R̃L and R̃P ofRL andRP respectively.
• Update C by descending along its stochastic gradient:

∇θc

 α

mc

∑
(xc,yc)

pc(yc|xc) log(1−D(xc, yc)) + R̃L + αPR̃P

 .
• Update G by descending along its stochastic gradient:

∇θg

1− α
mg

∑
(xg,yg)

log(1−D(xg, yg))

 .
end for

We now provide a formal theoretical analysis of Triple-GAN under nonparametric assumptions and
introduce the pseudo discriminative loss, which is an unbiased regularization motivated by the global
equilibrium. For clarity of the main text, we defer the proof details to Appendix A.

First, we can show that the optimal D balances between the true data distribution and the mixture
distribution defined by C and G, as summarized in Lemma 3.1.

Lemma 3.1 For any fixed C and G, the optimal D of the game defined by the utility function
U(C,G,D) is:

D∗C,G(x, y) =
p(x, y)

p(x, y) + pα(x, y)
, (3)

where pα(x, y) := (1− α)pg(x, y) + αpc(x, y) is a mixture distribution for α ∈ (0, 1).

GivenD∗C,G, we can omitD and reformulate the minimax game with value functionU as: V (C,G) =

maxD U(C,G,D), whose optimal point is summarized as in Lemma 3.2.

Lemma 3.2 The global minimum of V (C,G) is achieved if and only if p(x, y) = pα(x, y).

We can further show that C and G can at least capture the marginal distributions of data, especially
for pg(x), even there may exist multiple global equilibria, as summarized in Corollary 3.2.1.

Corollary 3.2.1 Given p(x, y) = pα(x, y), the marginal distributions are the same for p, pc and pg ,
i.e. p(x) = pg(x) = pc(x) and p(y) = pg(y) = pc(y).

Given the above result that p(x, y) = pα(x, y), C and G do not compete as in the two-player based
formulation and it is easy to verify that p(x, y) = pc(x, y) = pg(x, y) is a global equilibrium
point. However, it may not be unique and we should minimize an additional objective to ensure the
uniqueness. In fact, this is true for the utility function Ũ(C,G,D) in problem (2), as stated below.

Theorem 3.3 The equilibrium of Ũ(C,G,D) is achieved if and only if p(x, y) = pg(x, y) =
pc(x, y).

The conclusion essentially motivates our design of Triple-GAN, as we can ensure that both C and G
will converge to the true data distribution if the model has been trained to achieve the optimum.

We can further show another nice property of Ũ , which allows us to regularize our model for stable
and better convergence in practice without bias, as summarized below.

5

Corollary 3.3.1 Adding any divergence (e.g. the KL divergence) between any two of the joint
distributions or the conditional distributions or the marginal distributions, to Ũ as the additional
regularization to be minimized, will not change the global equilibrium of Ũ .

Because label information is extremely insufficient in SSL, we propose pseudo discriminative loss
RP = Epg [− log pc(y|x)], which optimizes C on the samples generated by G in the supervised
manner. Intuitively, a good G can provide meaningful labeled data beyond the training set as
extra side information for C, which will boost the predictive performance (See Sec. 5.1 for the
empirical evidence). Indeed, minimizing pseudo discriminative loss with respect to C is equivalent to
minimizing DKL(pg(x, y)||pc(x, y)) (See Appendix A for proof) and hence the global equilibrium
remains following Corollary 3.3.1. Also note that directly minimizing DKL(pg(x, y)||pc(x, y)) is
infeasible since its computation involves the unknown likelihood ratio pg(x, y)/pc(x, y). The pseudo
discriminative loss is weighted by a hyperparameter αP . See Algorithm 1 for the whole training
procedure, where θc, θd and θg are trainable parameters in C, D and G respectively.

4 Practical Techniques

In this section we introduce several practical techniques used in the implementation of Triple-GAN,
which may lead to a biased solution theoretically but work well for challenging SSL tasks empirically.

One crucial problem of SSL is the small size of the labeled data. In Triple-GAN, D may memorize
the empirical distribution of the labeled data, and reject other types of samples from the true data
distribution. Consequently, G may collapse to these modes. To this end, we generate pseudo labels
through C for some unlabeled data and use these pairs as positive samples of D. The cost is on
introducing some bias to the target distribution of D, which is a mixture of pc and p instead of the
pure p. However, this is acceptable as C converges quickly and pc and p are close (See results in
Sec.5).

Since properly leveraging the unlabeled data is key to success in SSL, it is necessary to regularize
C heuristically as in many existing methods [23, 26, 13, 15] to make more accurate predictions.
We consider two alternative losses on the unlabeled data. The confidence loss [26] minimizes
the conditional entropy of pc(y|x) and the cross entropy between p(y) and pc(y), weighted by
a hyperparameter αB, as RU = Hpc(y|x) + αBEp

[
− log pc(y)

]
, which encourages C to make

predictions confidently and be balanced on the unlabeled data. The consistency loss [13] penalizes
the network if it predicts the same unlabeled data inconsistently given different noise ε, e.g., dropout
masks, asRU = Ex∼p(x)||pc(y|x, ε)− pc(y|x, ε′)||2, where || · ||2 is the square of the l2-norm. We
use the confidence loss by default except on the CIFAR10 dataset (See details in Sec. 5).

Another consideration is to compute the gradients of Ex∼p(x),y∼pc(y|x)[log(1 − D(x, y))] with
respect to the parameters θc in C, which involves summation over the discrete random variable
y, i.e. the class label. On one hand, integrating out the class label is time consuming. On the
other hand, directly sampling one label to approximate the expectation via the Monte Carlo method
makes the feedback of the discriminator not differentiable with respect to θc. As the REINFORCE
algorithm [29] can deal with such cases with discrete variables, we use a variant of it for the end-
to-end training of our classifier. The gradients in the original REINFORCE algorithm should be
Ex∼p(x)Ey∼pc(y|x)[∇θc log pc(y|x) log(1−D(x, y))]. In our experiment, we find the best strategy
is to use most probable y instead of sampling one to approximate the expectation over y. The bias is
small as the prediction of C is rather confident typically.

5 Experiments

We now present results on the widely adopted MNIST [14], SVHN [19], and CIFAR10 [12] datasets.
MNIST consists of 50,000 training samples, 10,000 validation samples and 10,000 testing samples of
handwritten digits of size 28 × 28. SVHN consists of 73,257 training samples and 26,032 testing
samples and each is a colored image of size 32× 32, containing a sequence of digits with various
backgrounds. CIFAR10 consists of colored images distributed across 10 general classes—airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. There are 50,000 training samples and
10,000 testing samples of size 32 × 32 in CIFAR10. We split 5,000 training data of SVHN and

6

Table 1: Error rates (%) on partially labeled MNIST, SHVN and CIFAR10 datasets, averaged by 10
runs. The results with † are trained with more than 500,000 extra unlabeled data on SVHN.

Algorithm MNIST n = 100 SVHN n = 1000 CIFAR10 n = 4000

M1+M2 [11] 3.33 (±0.14) 36.02 (±0.10)
VAT [18] 2.33 24.63
Ladder [23] 1.06 (±0.37) 20.40 (±0.47)
Conv-Ladder [23] 0.89 (±0.50)
ADGM [17] 0.96 (±0.02) 22.86 †

SDGM [17] 1.32 (±0.07) 16.61(±0.24)†

MMCVA [15] 1.24 (±0.54) 4.95 (±0.18) †

CatGAN [26] 1.39 (±0.28) 19.58 (±0.58)
Improved-GAN [25] 0.93 (±0.07) 8.11 (±1.3) 18.63 (±2.32)
ALI [5] 7.3 18.3
Triple-GAN (ours) 0.91 (±0.58) 5.77(±0.17) 16.99 (±0.36)

Table 2: Error rates (%) on MNIST with different number of labels, averaged by 10 runs.

Algorithm n = 20 n = 50 n = 200

Improved-GAN [25] 16.77 (±4.52) 2.21 (±1.36) 0.90 (±0.04)
Triple-GAN (ours) 4.81 (±4.95) 1.56 (±0.72) 0.67 (±0.16)

CIFAR10 for validation if needed. On CIFAR10, we follow [13] to perform ZCA for the input of C
but still generate and estimate the raw images using G and D.

We implement our method based on Theano [27] and here we briefly summarize our experimental
settings.5 Though we have an additional network, the generator and classifier of Triple-GAN have
comparable architectures to those of the baselines [26, 25] (See details in Appendix F). The pseudo
discriminative loss is not applied until the number of epochs reach a threshold that the generator could
generate meaningful data. We only search the threshold in {200, 300}, αP in {0.1, 0.03} and the
global learning rate in {0.0003, 0.001} based on the validation performance on each dataset. All of
the other hyperparameters including relative weights and parameters in Adam [9] are fixed according
to [25, 15] across all of the experiments. Further, in our experiments, we find that the training
techniques for the original two-player GANs [3, 25] are sufficient to stabilize the optimization of
Triple-GAN.

5.1 Classification
For fair comparison, all the results of the baselines are from the corresponding papers and we average
Triple-GAN over 10 runs with different random initialization and splits of the training data and report
the mean error rates with the standard deviations following [25].

Firstly, we compare our method with a large body of approaches in the widely used settings on MNIST,
SVHN and CIFAR10 datasets given 100, 1,000 and 4,000 labels6, respectively. Table 1 summarizes
the quantitative results. On all of the three datasets, Triple-GAN achieves the state-of-the-art results
consistently and it substantially outperforms the strongest competitors (e.g., Improved-GAN) on more
challenging SVHN and CIFAR10 datasets, which demonstrate the benefit of compatible learning
objectives proposed in Triple-GAN. Note that for a fair comparison with previous GANs, we do not
leverage the extra unlabeled data on SVHN, while some baselines [17, 15] do.

Secondly, we evaluate our method with 20, 50 and 200 labeled samples on MNIST for a systematical
comparison with our main baseline Improved-GAN [25], as shown in Table 2. Triple-GAN consis-
tently outperforms Improved-GAN with a substantial margin, which again demonstrates the benefit
of Triple-GAN. Besides, we can see that Triple-GAN achieves more significant improvement as the
number of labeled data decreases, suggesting the effectiveness of the pseudo discriminative loss.

Finally, we investigate the reasons for the outstanding performance of Triple-GAN. We train a single
C without G and D on SVHN as the baseline and get more than 10% error rate, which shows that G
is important for SSL even though C can leverage unlabeled data directly. On CIFAR10, the baseline

5Our source code is available at https://github.com/zhenxuan00/triple-gan
6We use these amounts of labels as default settings throughout the paper if not specified.

7

(a) Feature Matching (b) Triple-GAN (c) Automobile (d) Horse

Figure 2: (a-b) Comparison between samples from Improved-GAN trained with feature matching
and Triple-GAN on SVHN. (c-d) Samples of Triple-GAN in specific classes on CIFAR10.

(a) SVHN data (b) SVHN samples (c) CIFAR10 data (d) CIFAR10 samples

Figure 3: (a) and (c) are randomly selected labeled data. (b) and (d) are samples from Triple-GAN,
where each row shares the same label and each column shares the same latent variables.

(a) SVHN (b) CIFAR10
Figure 4: Class-conditional latent space interpolation. We first sample two random vectors in the
latent space and interpolate linearly from one to another. Then, we map these vectors to the data
level given a fixed label for each class. Totally, 20 images are shown for each class. We select two
endpoints with clear semantics on CIFAR10 for better illustration.

(a simple version of Π model [13]) achieves 17.7% error rate. The smaller improvement is reasonable
as CIFAR10 is more complex and hence G is not as good as in SVHN. In addition, we evaluate
Triple-GAN without the pseudo discriminative loss on SVHN and it achieves about 7.8% error rate,
which shows the advantages of compatible objectives (better than the 8.11% error rate of Improved-
GAN) and the importance of the pseudo discriminative loss (worse than the complete Triple-GAN by
2%). Furthermore, Triple-GAN has a comparable convergence speed with Improved-GAN [25], as
shown in Appendix E.

5.2 Generation
We demonstrate that Triple-GAN can learn good G and C simultaneously by generating samples in
various ways with the exact models used in Sec. 5.1. For fair comparison, the generative model and
the number of labels are the same to the previous method [25].

In Fig. 2 (a-b), we first compare the quality of images generated by Triple-GAN on SVHN and the
Improved-GAN with feature matching [25],7 which works well for semi-supervised classification.
We can see that Triple-GAN outperforms the baseline by generating fewer meaningless samples and

7Though the Improved-GAN trained with minibatch discrimination [25] can generate good samples, it fails
to predict labels accurately.

8

