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1 Nonparametric gradient learning

In this section we describe a nonparametric gradient learning algorithm introduced in [2]. Throughout
this section, we assume instances x; are realizations of i.i.d. random variables X ; drawn according to
some fixed and unknown distribution p which has a continuous density on its support X'. Labels y, are
generated according to the noise model y; = f(x;) + v(x;), where v(x) is a subgaussian zero-mean

random variable for all € X. The algorithm computes a sequence of estimates fi, f2,... of the
regression function f through kernel regression. Let X, = {wl, cee a:n} C X be the data observed
so far and let yy, . . ., y, their corresponding labels. Let K : R, — R, be a nonincreasing kernel,
strictly positive on [0, 1), and such that K (1) = 0. Then the estimate at time n is defined by

~ n K (|l — x| /en)
fnlz) = Zyt wi(x) where wi(z) =4 3" | K (|z— x| /en)
t=1

1/n otherwise

if B(x,e,) N &, # 0,

where €, > 0 is the kernel scaling parameter. We then approximate the gradient of fat any given
point through the finite difference method

1 /-~ N
Ai(m):?(f(a:+rnei)— (:U—Tnei)) fori=1,...,d

where 7,, > 0 is a parameter. Let further

Ai(x) = ]I{b {min }un(l’)’(m—l—bei,s/Q)) > 2d(1n2n)} fori=1,...,d
€E{—Tn,Tn n

where 1, is the empirical distribution of . after observing X),, and define the gradient estimate

Vi@) = (Ai(@)Ai@)...... Aa(@) Au(w)) -

The algorithm outputs at time n the gradient outer product estimate
~ 1 < ~ ~
Go= 7 L V@)V (@)

Let G = E [V f(X)Vf(X)"] be the expected gradient outer product, where X has law p. The
next lemma states that, under Assumption 1, G, is a consistent estimate of G.

Lemma (Consistency of the Expected Gradient Outerproduct Estimator [2, Theorem 1]). If Assump-
tion 1 holds, then there exists a nonnegative and nonincreasing sequence {y }n>1 such that for all n,
the estimated gradient outerproduct (7) computed with parameters €, > 0, and 0 < 7, < 7 satisfies

||én — GH2 < 7, with high probability with respect do the random draw of X 1, . .., X . Moreover,
2
if t, = @(5}/4), En = Q((lnn) dn_é), and g,, = O(n_ 2(d1+1>) then v, — 0 as n — oo.
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The actual rate of convergence depends, in a complicated way, on parameters related to the distribution
1 and the regression function f. In our application of Lemma 4 we assume v, < n~® for all n large
enough and for some o > 0. Note also that the convergence of G, to G holds in probability with
respect to the random draw of X1, ..., X,,. Hence there is a confidence parameter § which is not
shown here. However, the dependence of the convergence rate on % is only polylogarithmic and
therefore not problematic for our applications.

2 Proofs from Section 3

Lemma (Volumetric packing bound). Consider a pair of norms || - || , || - ||" and let B, B' C R? be
the corresponding unit balls. Then

M(B,e,|-|) < M

) /
vol (§B )
Proof. Let {x1,..., @)} be a maximal e-packing of B according to | - ||’. Since we have a packing,
the || - ||"-balls of radius £/2 and centers @, ..., 2, are disjoint, and their union is contained in

B+ 5B'. Thus,
Mol (%B’) < vol (B + EB’)
which concludes the proof. O

Lemma (Ellipsoid packing bound). If B is the unit Euclidean ball then

M(B,g,|.M)g<8\f> Hﬁ where s:max{i:\/):-ZQi:l,...,d}.
=1

Proof. The change of variable ' = M'/?z implies ||z||, = ||&/||p;-: and |||/, = |2/,
Therefore M (B, ¢, |- |lp;) = M(E,&,|-||l,) where E = {@ € R : ||| ,,-+ <1} is the
unit ball in the norm ||-|,,-1. Next, we write the coordinates (zi,...,z4) of any point
x € R? using the orthonormal basis wi,...,us. Consider the truncated ellipsoid E =
{x € E:2;,=0,i=s+1,...,d}. By adapting an argument from [3], we prove that any e-cover
of E according to || - ||, is also a (£v/2)-cover of E according to the same norm. Indeed, let SCcE
be a e-cover of E. Fix any € E and let

s d
mir~1||m—%||§:migZ(xj—Ej)z—i— Z :c?
zesS zes j=1 j=s+1
d ~ ~
<e?+ Z x? (since S is a e-covering of E)
j=s+1
d xz
§€2+)\3+1 Z L (since)\s+1/)\jZlforj:erl,...,d)
j=s+1 "7

§252

where the last inequality holds since A\;41 < €2 and since ||w||?w,1 = 2?21 x?/X\; < 1 for any
x € F, where 7; = u x foralli = 1,...,d. Let B" C R? be the unit Euclidean ball, and let
B = {xreB :x;=0,i=s+1,...,d} beits truncated version. Since \; > e?fori =1,...,s
we have that for all x € EE’, ;z:f + -+ xrf < 2 and so

S

2 = xj<si<1
lela =D 5 <d =1
7 7,:1L

i=1



Therefore e B’ C E which implies vol(E + £B’) < vol (2E).
(E’nga I-1ly) < N(E>€\f27 1-1ly)
<N(Ez 1)
< M(Ez - 2)
vol (E + %E’)
vol (%E’)
< VO](??) _ (4)3 VOI(;?)
vol (%B’) Vol(B’)
Now, using the standard formula for the volume of an ellipsoid

Vol( = vol H o

This concludes the proof. O

IN

(by Lemma 1)

3

The following lemma states that whenever f has bounded partial derivatives with respect to the
eigenbase of M, then f is Lipschitz with respect to || - || 5 -

Lemma (Bounded derivatives imply Lipschitzness in M -metric). Let f : X — R be everywhere
differentiable. Then for any x,x’ € X,

d

IV, FII2,
D vt

i=1

[f(@) = f(@)] < |l — 2|l

Proof. By the mean value theorem, there exists a z on the segment joining « and y such that
f(x)— f(y) =Vf(2)" (x — y). Hence
fl@) = fly) =V)" (z-y)

d
= _Z Vi(z) uiu] (2 - y)

<Z<sup Vi) Tu )u?(azy)

z'eXx

5 Vedls (Val - v)
i=1 g

IN

S IVa 2 |5 2
Z % Z Ai (u] (x —y))” (by the Cauchy-Schwarz inequality)

o0

By symmetry, we can upper bound f(y) — f(x) with the same quantity. O

Now we are ready to prove the regret bound.

Theorem (Regret with Fixed Metric). Suppose Algorithm 1 is run with a positive definite matrix M
with eigenbasis w1, . .., uq and eigenvalues 1 = Ay > --- > \g > 0. Then, for any differentiable
f: X = Y we have that

1o

LV £ or
Rr(f) det, (M) + Z% TTFr




where k = k(pp,T) < pr < d.

Proof. Let S; be the value of the variable S at the end of time t. Hence Sy = &. The functions
m X = {1,...,t} fort = 1,2,... map each data point  to its closest (in norm || - || ,,) center in
St*l»

SESt_1

argmin ||z — x|y, ifSi—1 @
(z) =
t otherwise.
The set T contain all data points x; that at time ¢ belonged to the ball with center s and radius &,
To={t: ||zt —xs|lpy < e, t=s,...,T} .
Finally, v} is the best fixed prediction for all examples (q:t, y¢) such that ¢ € T,

—argman& |T| Zyt (D

teT, teTs
We proceed by decomposing the regret into a local (estimation) and a global (approximation) term,
T T
Rr(f) =" (4@ -t (f@)) = (4@ -4 w)) +Z (6w o0) 0 (f(@2)) -
t=1 t=1

The estimation term is bounded as

ET: (ft@t) (Y, @) ) Z Z (gt Yt) )) <38 Z In(e|Ns|) < 8In(eT)|St| .

t=1 seSt teTs SEST

The first inequality is a known bound on the regret under square loss [1, page 43]. We upper bound
the size of the final packing St using Lemma 2,

8v2\ 1 . .
1St < M(B,er, || -1lp) < <5\T[> [TV < (8v2)"/det, (M)T 7
=1

where k = k(pr, T). Therefore, since pr > k(pr,T),
T
> (et@t) -0 (y;t(m)) < 8In(eT) (8v/2)"™ v/detn (M) T ™57 . 2)
t=1
Next, we bound the approximation term. Using (1) we have

ET: (Et (y;t(zt)) — 4y (f(wt))) < ET: (et (f(®ry(a) — b (f(%))) :

t=1 t=1
Note that ¢; is 2-Lipschitz because ¢, 3; € [0, 1]. Hence, using Lemma 3,

et (f(xm(mt))) - Et (f(wt)) < 2’f(wﬂ't(wt)) - f(wt)|

<2 HiL't - wﬁt(wt)HM

< 2

d

3 Ve, f112
, A
=1

__1 .
Recalling e, =t~ T« where p; < psy1, We write
T T T
1 1 1 1 _PT _Pr
E t e < E t Her g/ T er dr = <1+> T er < 2T Fer |
t=1 t=1 0 pT

Thus we may write

XT: (ﬁt(y;@t)) - ét(f(wt))) <4

t=1

d 2
3 I\Vuiflloo T

The proof is concluded by combining the above with (2). O
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