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1 Nonparametric gradient learning

In this section we describe a nonparametric gradient learning algorithm introduced in [2]. Throughout
this section, we assume instances xt are realizations of i.i.d. random variables Xt drawn according to
some fixed and unknown distribution µ which has a continuous density on its support X . Labels yt are
generated according to the noise model yt = f(xt) + ν(xt), where ν(x) is a subgaussian zero-mean
random variable for all x ∈ X . The algorithm computes a sequence of estimates f̂1, f̂2, . . . of the
regression function f through kernel regression. Let Xn ≡

{
x1, . . . ,xn

}
⊂ X be the data observed

so far and let y1, . . . , yn their corresponding labels. Let K : R+ → R+ be a nonincreasing kernel,
strictly positive on [0, 1), and such that K(1) = 0. Then the estimate at time n is defined by

f̂n(x) =

n∑
t=1

yt ωt(x) where ωt(x) =


K
(
‖x− xt‖

/
εn
)∑n

s=1K
(
‖x− xs‖

/
εn
) if B(x, εn) ∩ Xn 6= ∅,

1/n otherwise

where εn > 0 is the kernel scaling parameter. We then approximate the gradient of f̂ at any given
point through the finite difference method

∆i(x) =
1

2τn

(
f̂(x + τnei)− f̂(x− τnei)

)
for i = 1, . . . , d

where τn > 0 is a parameter. Let further

Ai(x) = I
{

min
b∈{−τn,τn}

µn
(
B(x + bei, ε/2)

)
≥ 2d

n
(ln 2n)

}
for i = 1, . . . , d

where µn is the empirical distribution of µ after observing Xn, and define the gradient estimate

∇̂f(xt) =
(

∆1(xt)A1(xt), . . . ,∆d(xt)Ad(xt)
)
.

The algorithm outputs at time n the gradient outer product estimate

Ĝn =
1

n

n∑
t=1

∇̂f(xt)∇̂f(xt)
>

Let G = E
[
∇f(X)∇f(X)>

]
be the expected gradient outer product, where X has law µ. The

next lemma states that, under Assumption 1, Ĝn is a consistent estimate of G.
Lemma (Consistency of the Expected Gradient Outerproduct Estimator [2, Theorem 1]). If Assump-
tion 1 holds, then there exists a nonnegative and nonincreasing sequence {γn}n≥1 such that for all n,
the estimated gradient outerproduct (7) computed with parameters εn > 0, and 0 < τn < τ0 satisfies∥∥Ĝn−G

∥∥
2
≤ γn with high probability with respect do the random draw of X1, . . . ,Xn. Moreover,

if τn = Θ
(
ε
1/4
n

)
, εn = Ω

((
lnn

) 2
dn−

1
d

)
, and εn = O

(
n−

1
2(d+1)

)
then γn → 0 as n→∞.
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The actual rate of convergence depends, in a complicated way, on parameters related to the distribution
µ and the regression function f . In our application of Lemma 4 we assume γn ≤ n−α for all n large
enough and for some α > 0. Note also that the convergence of Ĝn to G holds in probability with
respect to the random draw of X1, . . . ,Xn. Hence there is a confidence parameter δ which is not
shown here. However, the dependence of the convergence rate on 1

δ is only polylogarithmic and
therefore not problematic for our applications.

2 Proofs from Section 3

Lemma (Volumetric packing bound). Consider a pair of norms ‖ · ‖ , ‖ · ‖′ and let B,B′ ⊂ Rd be
the corresponding unit balls. Then

M(B, ε, ‖ · ‖′) ≤
vol
(
B + ε

2B
′)

vol
(
ε
2B
′
) .

Proof. Let {x1, . . . ,xM} be a maximal ε-packing of B according to ‖ · ‖′. Since we have a packing,
the ‖ · ‖′-balls of radius ε/2 and centers x1, . . . ,xM are disjoint, and their union is contained in
B + ε

2B
′. Thus,

Mvol
(ε

2
B′
)
≤ vol

(
B +

ε

2
B′
)

which concludes the proof.

Lemma (Ellipsoid packing bound). If B is the unit Euclidean ball then

M
(
B, ε, ‖ · ‖M

)
≤

(
8
√

2

ε

)s s∏
i=1

√
λi where s = max

{
i :
√
λi ≥ ε, i = 1, . . . , d

}
.

Proof. The change of variable x′ = M1/2x implies ‖x‖2 = ‖x′‖M−1 and ‖x‖M = ‖x′‖2.
Therefore M

(
B, ε, ‖ · ‖M

)
= M

(
E, ε, ‖ · ‖2

)
where E ≡

{
x ∈ Rd : ‖x‖M−1 ≤ 1

}
is the

unit ball in the norm ‖ · ‖M−1 . Next, we write the coordinates (x1, . . . , xd) of any point
x ∈ Rd using the orthonormal basis u1, . . . ,ud. Consider the truncated ellipsoid Ẽ ≡
{x ∈ E : xi = 0, i = s+ 1, . . . , d}. By adapting an argument from [3], we prove that any ε-cover
of Ẽ according to ‖ · ‖2 is also a

(
ε
√

2
)
-cover of E according to the same norm. Indeed, let S̃ ⊂ Ẽ

be a ε-cover of Ẽ. Fix any x ∈ E and let

min
x̃∈S̃
‖x− x̃‖22 = min

x̃∈S̃

s∑
j=1

(
xj − x̃j

)2
+

d∑
j=s+1

x2j

≤ ε2 +

d∑
j=s+1

x2j (since S̃ is a ε-covering of Ẽ)

≤ ε2 + λs+1

d∑
j=s+1

x2j
λj

(since λs+1/λj ≥ 1 for j = s+ 1, . . . , d)

≤ 2 ε2

where the last inequality holds since λs+1 ≤ ε2 and since ‖x‖2M−1 =
∑d
i=1 x

2
i /λi ≤ 1 for any

x ∈ E, where xi = u>i x for all i = 1, . . . , d. Let B′ ⊂ Rd be the unit Euclidean ball, and let
B̃′ ≡ {x ∈ B′ : xi = 0, i = s+ 1, . . . , d} be its truncated version. Since λi ≥ ε2 for i = 1, . . . , s

we have that for all x ∈ εB̃′, x21 + · · ·+ x2s ≤ ε2 and so

‖x‖2M−1 =

s∑
i=1

x2i
λi
≤

s∑
i=1

ε2

λi
≤ 1 .
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Therefore εB̃′ ⊆ Ẽ which implies vol
(
Ẽ + ε

2 B̃
′) ≤ vol

(
2Ẽ
)
.

M
(
E, 2ε

√
2, ‖ · ‖2

)
≤ N

(
E, ε
√

2, ‖ · ‖2
)

≤ N
(
Ẽ, ε, ‖ · ‖2

)
≤M

(
Ẽ, ε, ‖ · ‖2

)
≤

vol
(
Ẽ + ε

2 B̃
′
)

vol
(
ε
2 B̃
′
) (by Lemma 1)

≤
vol
(
2Ẽ
)

vol
(
ε
2 B̃
′
) =

(
4

ε

)s vol
(
Ẽ
)

vol
(
B̃′
)

Now, using the standard formula for the volume of an ellipsoid,

vol
(
Ẽ
)

= vol
(
B̃′
) s∏
i=1

√
λi .

This concludes the proof.

The following lemma states that whenever f has bounded partial derivatives with respect to the
eigenbase of M , then f is Lipschitz with respect to ‖ · ‖M .
Lemma (Bounded derivatives imply Lipschitzness in M -metric). Let f : X → R be everywhere
differentiable. Then for any x,x′ ∈ X ,

∣∣f(x)− f(x′)
∣∣ ≤ ‖x− x′‖M

√√√√ d∑
i=1

‖∇uif‖
2
∞

λi
.

Proof. By the mean value theorem, there exists a z on the segment joining x and y such that
f(x)− f(y) = ∇f(z)> (x− y). Hence

f(x)− f(y) = ∇f(z)> (x− y)

=

d∑
i=1

∇f(z)>uiu
>
i (x− y)

≤
d∑
i=1

(
sup
z′∈X

∇f(z′)>ui

)
u>i (x− y)

=

d∑
i=1

‖∇uif‖∞√
λi

(√
λiu

>
i (x− y)

)

≤

√√√√ d∑
i=1

‖∇uif‖2∞
λi

√√√√ d∑
i=1

λi
(
u>i (x− y)

)2
(by the Cauchy-Schwarz inequality)

=
∥∥x− y

∥∥
M

√√√√ d∑
i=1

‖∇uif‖2∞
λi

.

By symmetry, we can upper bound f(y)− f(x) with the same quantity.

Now we are ready to prove the regret bound.
Theorem (Regret with Fixed Metric). Suppose Algorithm 1 is run with a positive definite matrix M
with eigenbasis u1, . . . ,ud and eigenvalues 1 = λ1 ≥ · · · ≥ λd > 0. Then, for any differentiable
f : X → Y we have that

RT (f)
Õ
=

√detκ(M) +

√√√√ d∑
i=1

‖∇uif‖
2
∞

λi

T
ρT

1+ρT
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where κ = κ(ρT , T ) ≤ ρT ≤ d.

Proof. Let St be the value of the variable S at the end of time t. Hence S0 = ∅. The functions
πt : X → {1, . . . , t} for t = 1, 2, . . . map each data point x to its closest (in norm ‖ · ‖M ) center in
St−1,

πt(x) =

{
arg min
s∈St−1

‖x− xs‖M if St−1 6≡ ∅

t otherwise.
The set Ts contain all data points xt that at time t belonged to the ball with center xs and radius εt,

Ts ≡ {t : ‖xt − xs‖M ≤ εt, t = s, . . . , T} .
Finally, y?s is the best fixed prediction for all examples (xt, yt) such that t ∈ Ts,

y?s = arg min
y∈Y

∑
t∈Ts

`t(y) =
1

|Ts|
∑
t∈Ts

yt . (1)

We proceed by decomposing the regret into a local (estimation) and a global (approximation) term,

RT (f) =

T∑
t=1

(
`t(ŷt)−`t

(
f(xt)

))
=

T∑
t=1

(
`t(ŷt)−`t

(
y?πt(xt)

))
+

T∑
t=1

(
`t
(
y?πt(xt)

)
−`t

(
f(xt)

))
.

The estimation term is bounded as
T∑
t=1

(
`t(ŷt)− `t

(
y?πt(xt)

))
=
∑
s∈ST

∑
t∈Ts

(
`t(ŷt)− `t(y?s )

)
≤ 8

∑
s∈ST

ln(e|Ns|) ≤ 8 ln(eT )|ST | .

The first inequality is a known bound on the regret under square loss [1, page 43]. We upper bound
the size of the final packing ST using Lemma 2,

|ST | ≤ M
(
B, εT , ‖ · ‖M

)
≤

(
8
√

2

εT

)κ κ∏
i=1

√
λi ≤

(
8
√

2
)κ√

detκ(M)T
κ

1+ρT

where κ = κ(ρT , T ). Therefore, since ρT ≥ κ(ρT , T ),
T∑
t=1

(
`t(ŷt)− `t

(
y?πt(xt)

))
≤ 8 ln(eT )

(
8
√

2
)ρT√

detκ(M)T
ρT

1+ρT . (2)

Next, we bound the approximation term. Using (1) we have
T∑
t=1

(
`t
(
y?πt(xt)

)
− `t

(
f(xt)

))
≤

T∑
t=1

(
`t
(
f(xπt(xt))

)
− `t

(
f(xt)

))
.

Note that `t is 2-Lipschitz because yt, ŷt ∈ [0, 1]. Hence, using Lemma 3,

`t
(
f(xπt(xt))

)
− `t

(
f(xt)

)
≤ 2
∣∣f(xπt(xt))− f(xt)

∣∣
≤ 2

∥∥xt − xπt(xt)
∥∥
M

√√√√ d∑
i=1

‖∇uif‖
2
∞

λi

≤ 2εt

√√√√ d∑
i=1

‖∇uif‖
2
∞

λi
.

Recalling εt = t−
1

1+ρt where ρt ≤ ρt+1, we write
T∑
t=1

t−
1

1+ρt ≤
T∑
t=1

t
− 1

1+ρT ≤
∫ T

0

τ
− 1

1+ρT dτ =

(
1 +

1

ρT

)
T

ρT
1+ρT ≤ 2T

ρT
1+ρT .

Thus we may write

T∑
t=1

(
`t
(
y?πt(xt)

)
− `t

(
f(xt)

))
≤ 4


√√√√ d∑

i=1

‖∇uif‖
2
∞

λi

T
ρT

1+ρT .

The proof is concluded by combining the above with (2).
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