
Appendix: Supplementary Material

A Maxmargin Solving

Maxmargin solving [21] is similar to Resolving, except that it seeks to improve P2’s strategy in the
subgame strategy as much as possible. While Resolving seeks a strategy for P2 in S that would
simply dissuade P1 from entering S, Maxmargin solving additionally seeks to punish P1 as much
as possible if P1 nevertheless chooses to enter S. A subgame margin is defined for each infoset
in Sr, which represents the difference in value between entering the subgame versus choosing the
alternative payoff. Specifically, for each infoset I1 ∈ Stop, the subgame margin is

MσS (I1) = CBV σ2(I1)− CBV σ
S
2 (I1) (2)

In Maxmargin solving, a Nash equilibrium σS for the augmented subgame described in Resolving
subgame solving is computed such that the minimum margin over all I1 ∈ Stop is maximized. Aside
from maximizing the minimum margin, the augmented subgames used in Resolving and Maxmargin
solving are identical.

Given our base strategy in Coin Toss, Maxmargin solving would result in P2 choosing Heads with
probability 5

8 , Tails with probability 3
8 , and Forfeit with probability 0.

The augmented subgame can be solved in a way that maximizes the minimum margin by using a
standard LP solver. In order to use iterative algorithms such as the Excessive Gap Technique [23, 11,
18] or Counterfactual Regret Minimization (CFR) [32], one can use the gadget game described by
Moravcik et al. [21]. Details on the gadget game are provided in the Appendix. Our experiments
used CFR.

Maxmargin solving is safe. Furthermore, it guarantees that if every Player 1 best response reaches
the subgame with positive probability through some infoset(s) that have positive margin, then
exploitability is strictly lower than that of the blueprint strategy. While the theoretical guarantees are
stronger, Maxmargin may lead to worse practical performance relative to Resolving when combined
with the techniques discussed in Appendix C, due to Maxmargin’s greater tendency to overfit to
assumptions in the model.

B Description of Gadget Game

Solving the augmented subgame described in Maxmargin solving and Reach-Maxmargin solving
will not, by itself, necessarily maximize the minimum margin. While LP solvers can easily handle
this objective, the process is more difficult for iterative algorithms such as Counterfactual Regret
Minimization (CFR) and the Excessive Gap Technique (EGT). For these iterative algorithms, the
augmented subgame can be modified into a gadget game that, when solved, will provide a Nash
equilibrium to the augmented subgame and will also maximize the minimum margin [21]. This
gadget game is unnecessary when using distributional alternative payoffs, which is introduced in
section C.1.

The gadget game differs from the augmented subgame in two ways. First, all P1 payoffs that are
reached from the initial infoset of I1 ∈ Sr are shifted by the alternative payoff of I1, and there is
longer an alternative payoff. Second, rather than the game starting with a chance node that determines
P1’s starting infoset, P1 decides for herself which infoset to begin the game in. Specifically, the game
begins with a P1 node where each action in the node corresponds to an infoset I1 in Sr. After P1

chooses to enter an infoset I1, chance chooses the precise node h ∈ I1 in proportion to πσ−1(h).

By shifting all payoffs in the game by the size of the alternative payoff, the gadget game forces P1

to focus on improving the performance of each infoset over some baseline, which is the goal of
Maxmargin and Reach-Maxmargin solving. Moreover, by allowing P1 to choose the infoset in which
to enter the game, the gadget game forces P2 to focus on maximizing the minimum margin.

Figure 5 illustrates the gadget game used in Maxmargin and Reach-Maxmargin.
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Figure 5: An example of a gadget game in Maxmargin refinement. P1 picks the initial infoset she
wishes to enter Sr in. Chance then picks the particular node of the infoset, and play then proceeds
identically to the augmented subgame, except all P1 payoffs are shifted by the size of the alternative
payoff and the alternative payoff is then removed from the augmented subgame.

C Modeling Error in a Subgame

In this section we consider the case where we have a good estimate of what the values of subgames
would look like in a Nash equilibrium. Unlike previous sections, exploitability might be higher than
the blueprint when using this method; the solution quality ultimately depends on the accuracy of the
estimates used. In practice this approach leads to significantly lower exploitability.

When solving multiple P2 subgames, there is a minimally-exploitable strategy σ∗2 that could, in theory,
be computed by changing only the strategies in the subgames. (σ∗2 may not be a Nash equilibrium
because P2’s strategy outside the subgames is fixed, but it is the closest that can be achieved by
changing the strategy only in the subgames). However, σ∗2 can only be guaranteed to be produced
by solving all the subgames together, because the optimal strategy in one subgame depends on the
optimal strategy in other subgames.

Still, suppose that we know CBV σ
∗
2 (I1) for every infoset I1 ∈ Stop for every subgame S. Let Ir,1

be the infoset in Sr that leads to I1. By setting the P1 alternative payoff for Ir,1 to v(Ir,1, a
′
T ) =

CBV σ
∗
2 (I1), safe subgame solving guarantees a strategy will be produced with exploitability no

worse than σ∗2 . Thus, achieving a strategy equivalent to σ∗2 does not require knowledge of σ∗2 ; rather,
it only requires knowledge of CBV σ

∗
2 (I1) for infosets I1 in the top of the subgames.

While we do not know CBV σ
∗
2 (I1) exactly without knowing σ∗2 itself, we may nevertheless be able

to produce (or learn) good estimates of CBV σ
∗
2 (I1). For example, in Section 7 we compute the

solution to the game of No-Limit Flop Hold’em (NLFH), and find that in perfect play P2 can expect
to win about 37 mbb/h5 (that is, if P1 plays perfectly against the computed P2 strategy, then P1 earns
−37; if P2 plays perfectly against the computed P1 strategy, then P2 earns 37). An abstraction of the
game which is only 0.02% of the size of the full game produces a P1 strategy that can be beaten by
112 mbb/h, and a P2 strategy that can be beaten by 21 mbb/h. Still, the abstract strategy estimates
that at equilibrium, P2 can expect to win 35 mbb/h. So even though the abstraction produces a very
poor estimate of the strategy σ∗, it produces a good estimate of the value of σ∗. In our experiments,
we estimate CBV σ

∗
2 (I1) by calculating a P1 counterfactual best response within the abstract game

to P2’s blueprint. We refer to this strategy as ˜CBR(σ2) and its value in an infoset I1 as ˜CBV
σ2

(I1).

5In poker, the performance of one strategy against another depends on how much money is being wagered.
For this reason, expected value and exploitability are measured in milli big blinds per hand (mbb/h). A big blind
is the amount of money one of the players is required to put into the pot at the beginning of each hand.
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We then use ˜CBV
σ2

(I1) as the alternative payoff of I1 in an augmented subgame. In other words,
rather than calculate a P1 counterfactual best response in the full game to P2’s blueprint strategy
(which would be CBR(σ2)), we instead calculate P1’s counterfactual best response where P1 is
constrained by the abstraction.

If the blueprint was produced by conducting T iterations of CFR in an abstract game, then one could
instead simply use the final iteration’s strategy σT1 , as this converges to a counterfactual best response
within the abstract game. This is what we use in our experiments in this paper.

Using estimates of the values of σ∗ tends to be do better than the theoretically safe options described
in Section 4.6

C.1 Distributional Alternative Payoffs

One problem with existing safe subgame-solving techniques is that they may “overfit” to the alterna-
tive payoffs, even when we use estimates. Consider for instance a subgame with two different P1

infosets I1 and I ′1 at the top. Assume P1’s value for I1 is estimated to be 1, and for I ′1 is 10. Now
suppose during subgame solving, P2 has a choice between two different strategies. The first sets P1’s
value in the subgame for I1 to 0.99 and for I ′1 to 9.99. The second slightly increases P1’s value for
the subgame for I1 to 1.01 but dramatically lowers the value for I ′1 to 0. The safe subgame-solving
methods described so far would choose the first strategy, because the second strategy leaves one of
the margins negative. However, intuitively, the second strategy is likely the better option, because it
is more robust to errors in the model. For example, perhaps we are not confident that 10 is the exact
value, but instead believe its true value is normally distributed with 10 as the mean and a standard
deviation of 1. In this case, we would prefer the strategy that lowers the value for I ′1 to 0.

To address this problem, we introduce a way to incorporate the modeling uncertainty into the game
itself. Specifically, we introduce a new augmented subgame that makes subgame solving more
robust to errors in the model. This augmented subgame changes the augmented subgame used in
subgame Resolving (shown in Figure 3b) so that the alternative payoffs are random variables, and P1

is informed at the start of the augmented subgame of the values drawn from the random variables (but
P2 is not). The augmented subgame is otherwise identical. A visualization of this change is shown in
Figure 6. As the distributions of the random variables narrow, the augmented subgame converges
to the Resolve augmented subgame (but still maximizes the minimum margin when all margins are
positive). As the distributions widen, P2 seeks to maximize the sum over all margins, regardless of
which are positive or negative.

Figure 6: A visualization of the change in the augmented subgame from Figure 3b when using
distributional alternative payoffs.

This modification makes the augmented subgame infinite in size because the random variables
may be real-valued and P1 could have a unique strategy for each outcome of the random variable.

6It is also possible to combine the safety of past approaches with some of the better performance of using
estimates by adding the original Resolve conditions as additional constraints.
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Fortunately, the special structure of the game allows us to arrive at a P2 Nash equilibrium strategy for
this infinite-sized augmented subgame by solving a much simpler gadget game.

The gadget game is identical to the augmented subgame used in Resolve subgame solving (shown in
Figure 3b), except at each initial P1 infoset Ir,1 ∈ Sr, P1 chooses action a′S (that is, chooses to enter
the subgame rather than take the alternative payoff) with probability P

(
XI1 ≤ v(Ir,1, a

′
S)
)
, where

v(Ir,1, a
′
S) is the expected value of action a′S . (When solving via CFR, it is the expected value on

each iteration, as described in CFR-BR [17]). This leads to Theorem 2, which proves that solving
this simplified gadget game produces a P2 strategy that is a Nash equilibrium in the infinite-sized
augmented subgame illustrated in Figure 6.

Theorem 2. Let S′ be a Resolve augmented subgame and S′r its root. Let S be a Distributional
augmented subgame similar to S′, except at each infoset Ir,1 ∈ Sr, P1 observes the outcome
of a random variable XI1 and the alternative payoff is equal to that outcome. If CFR is used
to solve S′ except that the action leading to S′ is taken from each Ir,1 ∈ S′r with probability
P
(
XI1 ≤ vt(Ir,1, a′S)

)
, where vt(Ir,1, a′S) is the value on iteration t of action a′S , then the resulting

P2 strategy σS
′

2 in S′ is a P2 Nash equilibrium strategy in S.

Another option which also solves the game but has better empirical performance relies on the softmax
(also known as Hedge) algorithm [19]. This gadget game is more complicated, and is described in
detail in Appendix D. We use the softmax gadget game in our experiments.

The correct distribution to use for the random variables ultimately depends on the actual unknown
errors in the model. In our experiments for this technique, we set XI1 ∼ N

(
µI1 , s

2
I1

)
, where µI is

the blueprint value (plus any gifts). sI1 is set as the difference between the blueprint value of I1, and
the true (that is, unabstracted) counterfactual best response value of I1. Our experiments show that
this heuristic works well, and future research could yield even better options.

D Hedge for Distributional Subgame Solving

In this paper we use CFR [32] with Hedge in Sr, which allows us to leverage a useful property of
the Hedge algorithm [19] to update all the infosets resulting from outcomes of XI1 simultaneously.7
When using Hedge, action a′S in infoset Ir,1 in the augmented subgame is chosen on iteration t with

probability eηtv̂(Ir,1,a
′
S)

eηtv̂(Ir,1,a
′
S

)+eηtv̂(Ir,1,a
′
T

)
. Where v̂(Ir,1, a

′
T ) is the observed expected value of action a′T ,

v̂(Ir,1, a
′
S) is the observed expected value of action a′S , and ηt is a tuning parameter. Since, action a′S

leads to identical play by both players for all outcomes of X , v̂(Ir,1, a
′
S) is identical for all outcomes

of X . Moreover, v̂(Ir,1, a
′
T ) is simply the outcome of XI1 . So the probability that a′S is taken across

all infosets on iteration t is ∫ ∞
−∞

eηtv̂(Ir,1,a
′
S)

eηtv̂(Ir,1,a′S) + eηtx
fXI1 (x)dx (3)

where fXI1 (x) is the pdf of XI1 . In other words, if CFR is used to solve the augmented subgame,
then the game being solved is identical to Figure 3b except that action a′S is always chosen in infoset
I1 on iteration t with probability given by (3). In our experiments, we set the Hedge tuning parameter

η as suggested in [3]: ηt =

√
ln(|A(I1)|)

3
√
V AR(I1)t

√
t
, where V AR(I1)t is the observed variance in the payoffs

the infoset has received across all iterations up to t. In the subgame that follows Sr, we use CFR+ as
the solving algorithm.

E Full Experimental Results

In tables 3, 4, and 5 we show the full results of our subgame solving experiments on various numbers
of buckets.

7Another option is to apply CFR-BR [17] only at the initial P1 nodes when deciding between a′
T and a′

S .
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Small Flop Hold’em Flop Buckets: 200 2,000 30,000
Blueprint Strategy 886.9 373.7 91.28
Unsafe 146.8 39.58 5.514
Resolve 601.6 177.9 54.07
Maxmargin 300.5 139.9 43.43
Reach-Maxmargin 298.8 139.0 41.47
Reach-Maxmargin (not split) 248.7 98.07 25.88
Estimated 116.6 62.61 24.23
Estimated + Distributional 104.4 62.45 34.30
Reach-Estimated + Distributional 102.1 57.98 22.58
Reach-Estimated + Distributional (not split) 95.60 49.24 17.33

Table 3: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in small Flop Texas hold’em.

Large Flop Hold’em Flop Buckets: 200 2,000 30,000
Blueprint Strategy 283.7 165.2 41.41
Unsafe 65.59 38.22 396.8
Resolve 179.6 101.7 23.11
Maxmargin 134.7 77.89 19.50
Reach-Maxmargin 134.0 72.22 18.80
Reach-Maxmargin (not split) 130.3 66.79 16.41
Estimated 52.62 41.93 30.09
Estimated + Distributional 49.56 38.98 10.54
Reach-Estimated + Distributional 49.33 38.52 9.840
Reach-Estimated + Distributional (not split) 49.13 37.22 8.777

Table 4: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in large Flop Texas hold’em.

Turn Hold’em Turn Buckets: 200 2,000 20,000
Blueprint Strategy 684.6 465.1 345.5
Unsafe 130.4 85.95 79.34
Resolve 454.9 321.5 251.8
Maxmargin 427.6 299.6 234.4
Reach-Maxmargin 424.4 298.3 233.5
Reach-Maxmargin (not split) 333.4 229.4 175.5
Estimated 120.6 89.43 76.44
Estimated + Distributional 119.4 87.83 74.35
Reach-Estimated + Distributional 116.8 85.80 72.59
Reach-Estimated + Distributional (not split) 113.3 83.24 70.68

Table 5: Exploitability (evaluated in the game with no information abstraction) of subgame-solving
in Turn Texas hold’em.

F Scaling of Gifts

To retain the theoretical guarantees of Reach subgame solving, one must ensure that the gifts assigned
to reachable subgames do not (in aggregate) exceed the original gift. That is, if g(I1) is a gift at
infoset I1, we must ensure that CBV σ

∗
2 (I1) ≤ CBV σ2(I1) + g(I1). In this paper we accomplish

this by increasing the margin of an infoset I ′1, where I1 v I ′1, by at most g(I1). However, empirical
performance may improve if the increase to margins due to gifts is scaled up by some factor. In
most games we experimented on, exploitability decreased the further the gifts were scaled. However,
Figure 7 shows one case in which we observe the exploitability increasing when the gifts are scaled
up too far. The graph shows exploitability when the gifts are scaled by various factors. At 0, the
algorithm is identical to Maxmargin. at 1, the algorithm is the theoretically correct form of Reach-
Maxmargin. Optimal performance in this game occurs when the gifts are scaled by a factor of about
1, 000. Scaling the gifts by 100, 000 leads to performance that is worse than Maxmargin subgame
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solving. This empirically demonstrates that while scaling up gifts may lead to better performance in
some cases (because an entire gift is unlikely to be used in every subgame that receives one), it may
also lead to far worse performance in some cases.

Figure 7: Exploitability in Flop Texas Hold’em of Reach-Maxmargin as we scale up the size of gifts.

G Rules for Poker Variants

Our experiments are conducted on heads-up no-limit Texas hold’em (HUNL), as well as smaller-scale
variants we call no-limit flop hold’em (NLFH) and no-limit turn hold’em (NLTH). We begin by
describing the rules of HUNL.

In the form of HUNL discussed in this paper, each player starts a hand with $20,000. One player is
designated P1, while the other is P2. This assignment alternates between hands. HUNL consists of
four rounds of betting. On a round of betting, each player can choose to either fold, call, or raise. If
a player folds, that player immediately surrenders the pot to the opponent and the game ends. If a
player calls, that players places a number of chips in the pot equal to the opponent’s contribution. If a
player raises, that player adds more chips to the pot than the opponent’s contribution. A round of
betting ends after a player calls. Players can continue to go back and forth with raises in a round until
one of them runs out of chips.

If either player chooses to raise first in a round, they must raise a minimum of $100. If a player raises
after another player has raised, that raise must be greater than or equal to the last raise. The maximum
amount for a bet or raise is the remainder of that player’s chip stack, which in our model is $20,000
at the beginning of a game.

At the start of HUNL, both players receive two private cards from a standard 52-card deck. P1 must
place a big blind of $100 in the pot, while P2 must place a small blind of $50 in the pot. There is then
a round of betting (the preflop), starting with P2. When the round ends, three community cards are
dealt face up between the players. There is then another round of betting (the flop), starting with P1

this time. After the round of betting completes, another community card is dealt face up, and another
round of betting commences starting with P1 (the turn). Finally, one more community card is dealt
face up, and a final betting round occurs (the river), again starting with P1. If neither player folds
before the final betting round completes, the player with the best five-card poker hand, constructed
from their two private cards and the five face-up community cards, wins the pot. In the case of a tie,
the pot is split evenly.

NLTH is similar to no-limit Texas hold’em except there are only three rounds of betting (the preflop,
flop, and turn) in which there are two options for bet sizes. There are also only four community
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cards. NLFH is similar except there are only two rounds of betting (the preflop and flop), and three
community cards.

We experiment with two versions of NLFH, one small and one large, which include only a few
of the available actions in each infoset. The small game requires 1.1 GB to store the unabstracted
strategy as double-precision floats. The large game requires 4 GB. NLTH requires 35 GB to store the
unabstracted strategy.

H Proof of Theorem 1

Proof. Assume MσS

r (I1) ≥ 0 for every infoset I1 and assume π
BR(σ′2)
1 (I∗1 ) > 0 for some

I∗1 ∈ Stop and let ε = Mr(I
∗
1 ). Define πσ−1(I1) =

∑
h∈I1 π

σ
−1(h) and define πσ−1(I1, I

′
1) =∑

h∈I1,h′∈I′1
πσ−1(h, h′).

We show that for every P1 infoset I1 v I∗1 where P (I1) = P1,

CBV σ
′
2(I1) ≤ CBV σ

−S
2 (I1)+∑

I′′1 ·a′′vI1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )− CBV σ

−S
2 (I ′′1 , a

′′)c
)
−

∑
h∈I1,h∗∈I∗1

πσ2
−1(h, h∗)ε (4)

By the definition of MσS

r (I∗1 ) this holds for I∗1 itself. Moreover, the condition holds for every other
I1 ∈ Stop, because by assumption every margin is nonnegative and πσ2

−1(I1, I
∗
1 ) = 0 for any I1 ∈ Stop

where I1 6= I∗1 . The condition also clearly holds for any I1 with no descendants in S because then
πσ2
−1(I1, I

∗
1 ) = 0 and σ′2(h) = σ−S2 (h) in all P2 nodes following I1. This satisfies the base step. We

now move on to the inductive step.

Let Succ(I1, a) be the set of earliest-reachable P1 infosets following I1 such that P (I ′1) = P1 for
I ′ ∈ Succ(I1, a). Formally, I ′1 ∈ Succ(I1, a) if P (I ′1) = P1 and I1 · a v I ′1 and for any other
I ′′1 ∈ Succ(I1, a), I ′′1 6@ I ′1. Then

CBV σ
′
2(I1, a) = CBV σ

−S
2 (I1, a)+ ∑

I′1∈Succ(I1,a)

π
σ′2
−1(I1, I

′
1)(CBV σ

′
2(I ′1)− CBV σ

−S
2 (I ′1)) (5)

Assume that every I ′1 ∈ Succ(I1, a) satisfies (4). Then

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1, a)− πσ2

−1(I1, I
∗
1 )ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
( ∑
I′′1 ·a′′vI′1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )− CBV σ

−S
2 (I ′′1 , a

′′)c
))

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)−

(
CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a)

)
− πσ2
−1(I1, I

∗
1 )ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
( ∑
I′′1 ·a′′vI′1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )− CBV σ

−S
2 (I ′′1 , a

′′)c
))

Since bCBV σ
−S
2 (I1)− CBV σ

−S
2 (I1, a)c ≤ CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a1) so we get

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)− b(CBV σ

−S
2 (I1)− CBV σ

−S
2 (I1, a)c − πσ2

−1(I1, I
∗
1 )ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
( ∑
I′′1 ·a′′vI′1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )− CBV σ

−S
2 (I ′′1 , a

′′)c
))

CBV σ
′
2(I1, a) ≤ CBV σ

−S
2 (I1)− πσ2

−1(I1, I
∗
1 )ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
( ∑
I′′1 ·a′′vI1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )− CBV σ

−S
2 (I ′′1 , a

′′)c
))
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CBV σ
′
2(I1, a1) ≤ CBV σ

−S
2 (I1)−πσ2

−1(I1, I
∗
1 )ε+

∑
I′′1 ·a′′vI1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )−CBV σ

−S
2 (I ′′1 , a

′′
1)c
)

Since πBR(σ′2)
1 (I∗1 ) > 0, and action a leads to I∗1 , so by definition of a best response,CBV σ

′
2(I1, a) =

CBV σ
′
2(I1). Thus,

CBV σ
′
2(I1) ≤ CBV σ

−S
2 (I1)−πσ2

−1(I1, I
∗
1 )ε+

∑
I′′1 ·a′′vI1|P (I′′1 )=P1

(
bCBV σ

−S
2 (I ′′1 )−CBV σ

−S
2 (I ′′1 , a

′′)c
)

which satisfies the inductive step.

Applying this reasoning to the root of the entire game, we arrive at exp(σ′2) ≤ exp(σ−S2 ) −
πσ2
−1(I∗1 )ε.

I Proof of Theorem 2

Proof. We prove inductively that using CFR in S′ while choosing the action leading to S′ from each
I1 ∈ S′r with probability P

(
XI1 ≤ vt(I1, a

′
S)
)

results in play that is identical to CFR in S and
CFR-BR [17] in Sr, which converges to a Nash equilibrium.

For each P2 infoset I ′2 in S′ where P (I ′2) = P2, there is exactly one corresponding infoset I2 in
S that is reached via the same actions, ignoring random variables. Each P1 infoset I ′1 in S′ where
P (I ′1) = P1 corresponds to a set of infosets in S that are reached via the same actions, where the
elements in the set differ only by the outcome of the random variables. We prove that on each
iteration, the instantaneous regret for these corresponding infosets is identical (and therefore the
average strategy played in the P2 infosets over all iterations is identical).

At the start of the first iteration of CFR, all regrets are zero. Therefore, the base case is trivially true.
Now assume that on iteration t, regrets are identical for all corresponding infosets. Then the strategies
played on iteration t in S are identical as well.

First, consider an infoset I ′1 in S′ and a corresponding infoset I1 in S. Since the remaining structure
of the game is identical beyond I ′1 and I1, and because P2’s strategies are identical in all P2 infosets
encountered, so the immediate regret for I ′1 and I1 is identical as well.

Next, consider a P1 infoset I1,x in Sr in which the random variable XI1 has an observed value of
x. Let the corresponding P1 infoset in S′r be I ′1. Since CFR-BR is played in this infoset, and since
action a′T leads to a payoff of x, so P1 will choose action a′S with probability 1 if x ≥ a′T and with
probability 0 otherwise. Thus, for all infosets in Sr corresponding to I ′1, action a′S is chosen with
probability P

(
XI1 ≤ v(I1, a

′
S)
)
.

Finally, consider a P2 infoset I2 in S and its corresponding infoset I ′2 in S′. Since in both cases action
a′T is taken in Sr with probability P

(
XI1 ≤ v(I1, a

′
S)
)
, and because P1 plays identically between

corresponding infosets in S and S′, and because the structure of the game is otherwise identical, so
the immediate regret for I ′1 and I1 is identical as well.
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