A Supplementary experimental results

Due to limited space, we considered the surrogate loss without the zero-one loss in Figure 1. Here,
we include the zero-one loss and show the extended version of Figure 1 in Figure 4. In general, the
curves of risks w.r.t. £o; look quite similar to (but less smooth than) those w.r.t. £y;,. Therefore, the
curves of risks w.r.t. £, are more visually appealing as the illustrative experimental results.
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Figure 4: The extended version of Figure 1.
B Proofs

In this appendix, we prove all the theoretical results in Section 4.

B.1 Proof of Lemma 1

Let

Pp(Xp) = pp(@h) - pp(ah ), p(Xu) = p(a)) - -pla

o)
Ny

be the probability density functions of A}, and X,. Then let F},(X},) be the cumulative distribution

function of X}, F,(X,) be that of X,,, and

F('Xpa Xy) = Fp(Xp) < Fu(Xy)

be the joint cumulative distribution function of (X, Xy, ). Given the above definitions, the measure

of ®~(g) is defined by

Pr(97(9))
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/ dF(X,, Xy),
(Xp,Xa) €D~ (9)



where Pr denotes the probability. Since Ry, (g) is identical to ﬁpu(g) on D7 (g) and different from
Rpu(g) on ®~ (g), we have Pr(®(g)) = Pr{Rpu(g) # Rpu(g)}. Thatis, the measure of D~ (g)
is non-zero if and only if Ry, (g) differs from R, (g) with a non-zero probability.

Based on the facts that ﬁpu (g) is unbiased and Epu (9) — ﬁpu(g) =0onD7"(g), we have

E[Rpu(9)] — R(9) = E[Rpu(9) — Rpu(g)]

- / Bonlg) — Bou(g) dF (X, o)
(Xp,Xu)EDT(g)

+ / Rpu(g) — Bonlg) dF(Xy, X
(Xp,Xu)ED(g)

= / Rpu(g) _Epu(g) dF(Xanu)
(Xp,Xu)ED~(g)

As aresult, E[R,,(g)] — R(g) > 0 if and only if f(Xp,Xu)esf(g) dF(X,, Xy) > 0 due to the fact

Ryu(g) — ﬁpu(g) > 0 on D~ (g). That is, the bias of R, (g) is positive if and only if the measure
of ®~(g) is non-zero.

We prove (7) by the method of bounded differences, for that

E[R, (9) — Ry (9)] = Ry (9) — MRy (9) = Ry (9) =

We have assumed that 0 < £(¢t,+1) < Cy, and thus the change of }AE; (g) will be no more than

Ci/nyp if some 27 € X, is replaced, or the change of }Aij (g) will be no more than Cy/n,, if some
x} € X, is replaced. Subsequently, McDiarmid’s inequality [47] implies

Pr{R; (9) — (Ry (9) — mp Ry (9)) > o} < exp (— np(cmp/np)zi nu@/nu)z)

202 /C?
=exp|————7— |-
wp/np—i—l/nu

Taking into account that

we complete the proof. O

B.2 Proof of Theorem 2

It has been proven in Lemma 1 that

~ ~ ~

E[Rpu(g)] - R(g) = / Rpu(g) - Rpu(g) dF(Xpy Xu)7
(Xp,Xu)ED ™ (9)
and thus the exponential decay of the bias in (8) is obtained via
E[Rpu(g)] - R(g) < Sup(Xp,Xu)EZD—(g)(Rpu(g) - Rpu(g)) : / dF(Xpa Xu)
(Xp,Xu)ED (9)

= SUp(x, x)co- (o) (Mo Ry (9) — Ry (9)) - Pr(D(g))
< CpmpAy.

The deviation bound (9) is due to

|Rpu(9) — R(9)| < [Rpu(9) — E[Rpu(9)]| + [E[Rpulg)] — R(g)|
< |Rpu(g) — E[Rpu(9)]| + CompA,.
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The change of épu(g) will be no more than 2C;/n,, if some =} € X, is replaced, or it will be no
more than Cy/n,, if some z}' € X, is replaced, and McDiarmid’s inequality gives us

~ ~ 262
Pr{1f(0) ~ Rl > & < 200 (~ e S ).

or equivalently, with probability at least 1 — 4,

B > In(2/8)C? (4m2 1
|Rpu(9) — E[Rpu(9)]] < \/2@ ( n )

Ny Ny

21 1
<Cs ( = )
v
=Cs- Xnp,nu-
On the other hand, the deviation bound (10) is due to
|Rou(9) = R(9)| < [Rpul9) = Bou(9)] + | Bpulg) — R(9),

where |]§pu(g) - Epu(g)| > 0 with probability at most A,, and |I§pu(g) — R(g)| shares the same
concentration inequality with |Rpy(g) — E[Rpu(9)]]- O

B.3 Proof of Theorem 3
For convenience, let A = Wpﬁg' (g) and B = 1:2; (9) — WPE; (g), so that
R(g) =E[A+B], Ryu(g)=A+B, Ryulg)=A+B,
where By = max{0, B}. Subsequently, let R = R(g) for short, and then by definition,
MSE(Rpu(9)) = E[(A + B~ R)’]
=E[(A+ B)?| — 2R -E[A + B] + R?,
MSE(Rpu(9)) = E[(A+ By — R(9))’]
=E[(A+ B;)*] —2R-E[A+ B;] + R%.
Hence,
MSE(Rpu(g)) — MSE(Rpu(g)) = E[(A+ B)? - E[(A + B4)?
— 2R (E[A+ B] —E[A + By)).
The first part E[(A + B)?] — E[(A + B )?] can be rewritten as
E[(A+ B)?] - E[(A+ By)?] = E2A(B - By) + B - B]

2A(B — B) + B* — B*dF (X, X,)
(Xp, Xn)EDT (g

+ / 2A(B —0) + B? — 0*dF(X,, X,)
(X Xu)€© (g)

:/ 2AB + B*dF(X,, X,).
(X X\l)€© (9)

The second part 2R - (E[A + B] — E[A + B4]) can be rewritten as
R-(E[A+ B] —E[A+ B4]) =2R-E[B — B{]

:23-/ B - BAF(X,, X,)
(Xp, %) €D (g)
+2R./ B - 0dF(X,, X,)
(Xp, %) €D (9)

:/ 2RBAF(X,, X,).
(Xp,X)ED (9)
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As a consequence,

MSE(Fpu(9)) ~ MSE(Ron(9)) = [ (24+ B 2R)BAF(X,, X,),
(Xp,Xu)ED ™ (9)

which is exactly the left-hand side of (11) since ]:Epu (9) = AonD (g).

In order to prove the rest, it suffices to show that A — R < B on D~ (g). By the assumption that ¢
satisfies (3),

A-R=A-E[A] -E[B]

Thus, with probability one,

A—R=m,R;(g) — mpRy (9) — E[B] + (Ry (9) — Ry (9)) + (Ry (9) — Ry (9))
= (Ry (9) — MRy (9) — (Ry (9) — mp Ry (9)) — E[B] + (Ry (9) — Ry (9))
= B - 2E[B] + (R; (9) — Ry (9))
< B,

where we used the assumptions that E[B] > « and R (g) — ﬁ; (9) < 2« almost surely on D~ (g).
To sum up, we have established that

/ (2A+ B —2R)BdF(X,, X,) > 3/ B2dF(X,, X,).
(X5, Xa)ED(9) (Xp,Xu) €D~ (9)

Due to the fact that B2 > 0 on ©~ (g) and the assumption that Pr(D~(g)) > 0, we know Eq. (11)
is valid. Finally, for any 0 < 8 < Cymp, it is clear that

{(Xp, &) | B < =f} € {(Ap, Xu) [ B <0} =D (9),
and B < —p if and only if f{pu(g) - Epu (g) > B. These two facts imply that

/ B*dF(X,, X,) > / B*dF(X,, X,)
(Xp,Xa)ED (9) (Xp,X0)|B<—p

> 32 / dF(X,, Xy)
(Xp,Xu)|B<—p
= B*Pr{B < -3}
= BQPr{épu(g) - Epu(g) > B}a
which proves (12) and the whole theorem. O]
B.4 Proof of Lemma 5

Preliminary An alternative definition of the Rademacher complexity will be used in the proof:

% Zzie_x oig(xi) ] .

For the sake of comparison, the one we have used in the statements of theoretical results is

1
Rnq(G) =ExEo, . 0, [supgeg p Z aig(x,-)} )

This alternative version comes from [35, 36] of which authors are the pioneers of error bounds based
on the Rademacher complexity. Without any composition, R}, ,(G) > R, 4(G) for arbitrary G and
R}, 4(G) = R, 4(G) if G is closed under negation. However, with a composition

ltoG={log|geg}

R, (G) = ExEo, o, [supgeg

T, EX
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where the loss ¢ is non-negative, the Rademacher complexity of the composite function class would
generally not satisfy R/, (£ 0 G) = R, 4(¢ 0 G) since £ o G is generally not closed under negation.

. .a . C . 8 .. .
Furthermore, a vital disagreement arises when considering the contraction principle or property: if

1 : R — Ris a Lipschitz continuous function with a Lipschitz constant L,, and satisfies 1/(0) = 0,
we have

mmq(w © g) < memq(g)a
R, (Yo G) < 2LyN;, (9),

according to Talagrand’s contraction lemma [48] and its extension [28, 49]. Here, for R,, 4(¢ o G)
we can use Lemma 4.2 in [28] or Lemma 26.9 in [49] where ¢(0) = 0 is safely dropped, while for
R}, 4(1 0 G) we have to use the original Theorem 4.12 in [48] where 1/(0) = 0 is required. In fact,
the name of the lemma is after that 1) is a contraction if ¢/(0) = 0 and L, = 1.

Proof Firstly, we deal with the bias of Epu (9):

SWPgeg | Bpu(9) = R(9)| < supgeg [Rpu(9) — ElRpu(9)]] + supyeq [E[Rpu(9)] — R(9)]
< supgeg [Rpu(9) = E[Rpu(9)]] + CompA, (16)
where we followed the assumption that infycg R, (g) > o > 0 and Theorem 2.

Secondly, we apply McDiarmid’s inequality to the uniform deviation sup g \Epu (9) — ]E[Epu ]l
to get that with probability at least 1 — 6,

suPgeg | Bpu(9) — ElRpu(9)]] — Elsupgeg [Bpu(9) — E[Rpu(9)]l] < C5 - Xapn,-  (17)

Notice that this concentration inequality is single-sided even though the uniform deviation itself is
double-sided, which is different from the non-uniform deviation in Theorem 2.

Thirdly, we make symmetrization [50]. Suppose that (X}, X)) is a ghost sample, then

E[SUPgeg |Rpu(9> - E[Rpu(g)m = E(XP,XU)[Sngeg ‘Rpu(g) - E(XIQ,Xl’,)[Rpu(g)m
< E(x, 2,0, 25,20 [SUPgeg [ Rou (93 Xpy Xa) = Bpu(g; X, X)),

where we applied Jensen’s inequality twice since the absolute value and the supremum are convex.
By decomposing the difference | Rpu(g; Ay, Xu) — Rpu(g; A, Xyy)], we can know that

| Rou(9; X, Xa) = Bpulg: Ay, A7)
= \W;ﬁﬁ (g ) — Wpﬁg(% Xp)
+max{0, By (g; Xu) — mp Ry (9 Xp)} — max{0, Ry (g; X)) — mp Ry (g5 X))}
< mp| Ry (93 %) — Bt (9: )| + 7 Ry (95 4) — Ry, (93 X0)| + | Ry (93 %) — Ry (g5 40)]
where we employed | max{0, z} — max{0, z’}| < |z — 2’|. This decomposition results in
E[supyeg [Rou(9) — E[Rpu(9)][] < mpBa, a; [supgeq [RE (9 Xp) — By (9: 2))]
+ 1B, [subgeg By (93 %) — By (9 47)]
+Ex, vy [sup,eq Ry (g3 Xa) — By (g: X)) (18)

Fourthly, we relax those expectations in (18) to Rademacher complexities. The original £ may miss
the origin, i.e., £(0,y) # 0, with which we need to cope. Let

g(t y) = é(t7 y) - €<07 y)
be a shifted loss so that 17(07 y) = 0. Note that for all ¢,#' € Rand y = +1,

E(t7 y) - E(tl, y) = Z(tv y) - g(t/’ y)
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Hence,

~ ~

R (g: %) = BY (9 X0) = (1/np) o e, Ug (@), +1) = (1/mp) Xy Ug (), +1)
= (1/np) 32721 (Ug(wi), +1) — (g(x7), +1))
= (1/np) 3272 (U9 (i), +1) — Lg(x7), +1)).
This is already a standard form where we can attach Rademacher variables to every 1 (g(zi), +1) —
£(g(x}),+1), and it is a routine work to show that

Ex, x; [supgeg | B (95 ) — Ryt (93 X)) < 2R, (-, +1) 0 G).
The other two expectations can be handled analogously. As a result, (18) can be reduced to

E[sup,eq [Bpu(9) — ElRpu(9)]l] < 2mpR;, , (- +1) 0 G)

+2mRl, (U, —1) 0 G) + 2R, ({(-,—1)0G). (19)

p,Pp

Finally, we transform the Rademacher complexities of composite function classes in (19) to those

of the original function class. It is obvious that ¢ shares the same Lipschitz constant L, with ¢, and
consequently

Ry (L +1) 0G) < 2LR, , (G) = 2LeRs, p, (G)

"p,Pp
R, o, (L, =1) 0 G) <2LMR;, , (G) = 2LiR, , () (20)
R, p (L0, —1) 0 G) 2LeR;, | (G) = 2LeRn, p(9),
where we used Talagrand’s contraction lemma and the assumption that G is closed under negation.
Combining (16), (17), (19) and (20) finishes the proof of the uniform deviation bound (15). O]

B.5 Proof of Theorem 4

Based on Lemma 5, the estimation error bound (13) is proven through

R(gpu) - R(g*> = (Rpu(gpu) - Rpu(g*)) + (R(.apu) - Epu(gpu)) + (Rpu(g*) - R(g*))
< 0+ 2sup g [Rpu(9) — R(9)]
< 16LempRn, p, (G) + 8LeRn, p(G) + 2C5 - Xny,n, + 2CimA,

where Rpu(Jpu) < Rpu(g*) by the definition of gpy. O
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