
Supplementary material: Doubly Accelerated
Stochastic Variance Reduced Dual Averaging Method

for Regularized Empirical Risk Minimization

Tomoya Murata
NTT DATA Mathematical Systems Inc. , Tokyo, Japan

murata@msi.co.jp

Taiji Suzuki
Department of Mathematical Informatics

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
PRESTO, Japan Science and Technology Agency, Japan

Center for Advanced Integrated Intelligence Research, RIKEN, Tokyo, Japan
taiji@mist.i.u-tokyo.ac.jp

In this supplementary material, we provide the proof of Theorem 5.1 (Section A), the optimality
of γ∗ (Section B), the algorithm of DASVRDAns with warm start (Section C) and its convergence
analysis (Section D), the lazy update algorithm of AccSVRDA (Section E) and the experimental
details (Section F). Finally, we briefly discuss DASVRG method, which is a variant of DASVRDA
method (Section G).

A Proof of Theorem 5.1

In this section, we give the comprehensive proof of Theorem 5.1. First we analyze One Stage
Accelerated SVRDA algorithm.

Lemma A.1. The sequence {θk}k≥1 defined in Algorithm 7 satisfies

θk − 1 = θk−2

for k ≥ 1, where θ−1
def
= 0.

Proof. Since θk = k+1
2 for k ≥ 0, we have that

θk − 1 =
k + 1

2
− 1 =

k − 1

2
= θk−2.

Lemma A.2. The sequence {θk}k≥1 defined in Algorithm 7 satisfies

θmθm−1 =

m∑
k=1

θk−1.

Proof. Observe that

θmθm−1 =
m(m+ 1)

4
=

m∑
k=1

k

2
=

m∑
k=1

θk−1.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Lemma A.3. For every x, y ∈ Rd,

F (y) + 〈∇F (y), x− y〉+R(x) ≤ P (x)− 1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(y)‖2.

Proof. Since fi is convex and Li-smooth, we have (see [7])

fi(y) + 〈∇fi(y), x− y〉 ≤ fi(x)− 1

2Li
‖∇fi(x)−∇fi(y)‖2.

By the definition of {qi}, summing this inequality from i = 1 to n and dividing it by n results in

F (y) + 〈∇F (y), x− y〉 ≤ F (x)− 1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(y)‖2.

Adding R(x) to the both sides of this inequality gives the desired result.
Lemma A.4.

ḡk =
1

θkθk−1

k∑
k′=1

θk′−1gk′ (k ≥ 1).

Proof. For k = 1, ḡ1 = g1 = 1
1· 12

∑1
k′=1

1
2 · gk′ by the definition of θ0.

Assume that the claim holds for some k ≥ 1. Then

ḡk+1 =

(
1− 1

θk+1

)
ḡk +

1

θk+1
gk+1

=

(
1− 2

k + 2

)
4

(k + 1)k

k∑
k′=1

θk′−1gk′ +
2

k + 2
gk+1

=
4

(k + 2)(k + 1)

k+1∑
k′=1

θk′−1gk′

=
1

θk+1θk

k+1∑
k′=1

θk′−1gk′ .

The first equality follows from the definition of ḡk+1. Second equality is due to the assumption of the
induction. This finishes the proof for Lemma A.4.

Next we prove the following main lemma for One Stage Accelerated SVRDA. The proof is inspired
by the one of AccSDA given in [9].
Lemma A.5. Let η < 1/L̄. For One Stage Accelerated SVRDA, we have that

E[P (xm)− P (x)]

≤ 2

η(m+ 1)m
‖z0 − x‖2 −

2

η(m+ 1)m
E‖zm − x‖2

+
2

(m+ 1)m

m∑
k=1

 (k + 1)kE‖gk −∇F (yk)‖2

4
(

1
η − L̄

) − k

2L̄

1

n

n∑
i=1

1

nqi
E‖∇fi(yk)−∇fi(x)‖2

 ,

for any x ∈ Rd, where the expectations are taken with respect to Ik(1 ≤ k ≤ m).
Proof. We define

`k(x) = F (yk) + 〈∇F (yk), x− yk〉+R(x),

ˆ̀
k(x) = F (yk) + 〈gk, x− yk〉+R(x).

Observe that `k, ˆ̀
k is convex and `k ≤ P by the convexity of F and R. Moreover, for k ≥ 1 we have

that
k∑

k′=1

θk′−1
ˆ̀
k′(z) =

k∑
k′=1

θk′−1F (yk) +

k∑
k′=1

〈θk′−1gk′ , z − yk′〉+

k∑
k′=1

θk′−1R(z)

= 〈θkθk−1ḡk, z〉+ θkθk−1R(z) +

k∑
k′=1

θk′−1F (yk)−
k∑

k′=1

θk′−1〈gk′ , yk′〉.

2

The second equality follows from Lemma A.4 and Lemma A.2. Thus we see that zk =

argmin
z∈Rd

{∑k
k′=1 θk′−1

ˆ̀
k′(z) + 1

2η‖z − z0‖2
}

. Observe that F is convex and L̄-smooth. Thus

we have that

F (xk) ≤ F (yk) + 〈∇F (yk), xk − yk〉+
L̄

2
‖xk − yk‖2. (1)

Hence we see that

P (xk) ≤ `k(xk) +
L̄

2
‖xk − yk‖2

= `k

((
1− 1

θk

)
xk−1 +

1

θk
zk

)
+
L̄

2

∥∥∥∥(1− 1

θk

)
xk−1 +

1

θk
zk − yk

∥∥∥∥2

≤
(

1− 1

θk

)
`k(xk−1) +

1

θk
`k(zk) +

L̄

2θ2
k

‖zk − zk−1‖2

≤
(

1− 1

θk

)
P (xk−1) +

1

θkθk−1

(
θk−1

ˆ̀
k(zk) +

L̄

2
‖zk − zk−1‖2

)
− 1

θk
〈gk −∇F (yk), zk − yk〉

=

(
1− 1

θk

)
P (xk−1) +

1

θkθk−1

(
θk−1

ˆ̀
k(zk) +

1

2η
‖zk − zk−1‖2

)
− 1

2θkθk−1

(
1

η
− L̄

)
‖zk − zk−1‖2 −

1

θk
〈gk −∇F (yk), zk − zk−1〉

− 1

θk
〈gk −∇F (yk), zk−1 − yk〉.

The first inequality follows from (1). The first equality is due to the definition of xk. The second
inequality is due to the convexity of `k and the definition of yk. The third inequality holds because
`k ≤ P and 1

θ2k
≤ 1

θkθk−1
.

Since 1
η > L̄, we have that

− 1

2θkθk−1

(
1

η
− L̄

)
‖zk − zk−1‖2 −

1

θk
〈gk −∇F (yk), zk − zk−1〉

≤ 1

θk

θk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

)
≤‖gk −∇F (yk)‖2

2
(

1
η − L̄

) .

The first inequality is due to Young’s inequality. The second inequality holds because θk−1 ≤ θk.

Using this inequality, we get that

P (xk) ≤
(

1− 1

θk

)
P (xk−1) +

1

θkθk−1

(
θk−1

ˆ̀
k(zk) +

1

2η
‖zk − zk−1‖2

)
+
‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − 1

θk
〈gk −∇F (yk), zk−1 − yk〉.

Multiplying the both sides of the above inequality by θkθk−1 yields

θkθk−1P (xk) ≤ θk−1(θk − 1)P (xk−1) + θk−1
ˆ̀
k(zk) +

1

2η
‖zk − zk−1‖2

+
θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1〈gk −∇F (yk), zk−1 − yk〉. (2)

3

By the fact that
∑k−1
k′=1 θk′−1

ˆ̀
k′(z) + 1

2η‖z − z0‖2 is 1
η -strongly convex and zk−1 is the minimizer

of
∑k−1
k′=1 θk′−1

ˆ̀
k′(z) + 1

2η‖z − z0‖2 for k ≥ 2, we have that

k−1∑
k′=1

θk′−1
ˆ̀
k′(zk−1) +

1

2η
‖zk−1 − z0‖2 +

1

2η
‖zk − zk−1‖2 ≤

k−1∑
k′=1

θk′−1
ˆ̀
k′(zk) +

1

2η
‖zk − z0‖2

for k ≥ 1 (and, for k = 1, we define
∑0
k′=1 = 0).

Using this inequality, we obtain

θkθk−1P (xk)−
k∑

k′=1

θk′−1
ˆ̀
k′(zk)− 1

2η
‖zk − z0‖2

≤θk−1θk−2P (xk−1)−
k−1∑
k′=1

θk′−1
ˆ̀
k′(zk−1)− 1

2η
‖zk−1 − z0‖2 +

θkθk−1

2
(

1
η − L̄

)‖gk −∇F (yk)‖2

− θk−1〈gk −∇F (yk), zk−1 − yk〉.

Here, the inequality follows from Lemma A.1 (we defined θ−1
def
= 0).

Summing the above inequality from k = 1 to m results in

θmθm−1P (xm)−
m∑
k=1

θk−1
ˆ̀
k(zm)− 1

2η
‖zm − z0‖2

≤
m∑
k=1

θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) −
m∑
k=1

θk−1〈gk −∇F (yk), zk−1 − yk〉.

Using 1
η -strongly convexity of the function

∑m
k=1 θk−1

ˆ̀
k(z) + 1

2η‖z − z0‖2 and the optimality of
zm, we have that

m∑
k=1

θk−1
ˆ̀
k(zm) +

1

2η
‖zm − z0‖2 ≤

m∑
k=1

θk−1
ˆ̀
k(x) +

1

2η
‖z0 − x‖2 −

1

2η
‖zm − x‖2.

From this inequality, we see that

θmθm−1P (xm)

≤
m∑
k=1

θk−1
ˆ̀
k(x) +

1

2η
‖z0 − x‖2 −

1

2η
‖zm − x‖2

+

m∑
k=1

θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) −
m∑
k=1

θk−1〈gk −∇F (yk), zk−1 − yk〉

=

m∑
k=1

θk−1`k(x) +
1

2η
‖z0 − x‖2 −

1

2η
‖zm − x‖2

+

m∑
k=1

θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) −
m∑
k=1

θk−1〈gk −∇F (yk), zk−1 − x〉.

By Lemma A.3 with x = x and y = yk, we have that

`k(x) ≤ P (x)− 1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(yk)‖2.

4

Applying this inequality to the above inequality yields

θmθm−1P (xm)−
m∑
k=1

θk−1P (x)

≤ 1

2η
‖z0 − x‖2 −

1

2η
‖zm − x‖2

+

m∑
k=1

θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(yk)‖2


−

m∑
k=1

θk−1〈gk −∇F (yk), zk−1 − x〉.

Using Lemma A.2 and dividing the both sides of the above inequality by θmθm−1 result in

P (xm)− P (x)

≤ 1

2ηθmθm−1
‖z0 − x‖2 −

1

2ηθmθm−1
‖zm − x‖2

+
1

θmθm−1

m∑
k=1

θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(yk)‖2


− 1

θmθm−1

m∑
k=1

θk−1〈gk −∇F (yk), zk−1 − x〉.

Taking the expectations with respect to Ik(1 ≤ k ≤ m) on the both sides of this inequality yields

E[P (xm)− P (x)]

≤ 1

2ηθmθm−1
‖z0 − x‖2 −

1

2ηθmθm−1
E‖zm − x‖2

+
1

θmθm−1

m∑
k=1

θkθk−1E‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1

2L̄

1

n

n∑
i=1

1

nqi
E‖∇fi(x)−∇fi(yk)‖2

 .
Here we used the fact that E[gk −∇F (yk)] = 0 for k = 1, . . . ,m. This finishes the proof of Lemma
A.5.

Now we need the following lemma.

Lemma A.6. For every x ∈ Rd,

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(x∗)‖2 ≤ 2L̄(P (x)− P (x∗)).

Proof. From the argument of the proof of Lemma A.3, we have

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(x∗)‖2 ≤ 2L̄(F (x)− 〈∇F (x∗), x− x∗〉 − F (x∗)).

By the optimality of x∗, there exists ξ∗ ∈ ∂R(x∗) such that∇F (x∗) + ξ∗ = 0. Then we have

−〈∇F (x∗), x− x∗〉 = 〈ξ∗, x− x∗〉 ≤ R(x)−R(x∗),

and hence
1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(x∗)‖2 ≤ 2L̄(P (x)− P (x∗)).

5

Proposition A.7. Let γ > 1 and η ≤ 1/((1 + γ(m+ 1)/b)L̄). For One Pass Accelerated SVRDA, it
follows that

E[P (xm)− P (x̃)] ≤ 2

η(m+ 1)m
‖ỹ − x̃‖2 − 2

η(m+ 1)m
E‖zm − x̃‖2,

and

E[P (xm)− P (x∗)]

≤ 1

γ
(P (x̃)− P (x∗)) +

2

η(m+ 1)m
‖ỹ − x∗‖2 −

2

η(m+ 1)m
E‖zm − x∗‖2,

where the expectations are taken with respect to Ik(1 ≤ k ≤ m).
Proof. We bound the variance of the averaged stochastic gradient E‖gk −∇F (yk)‖2:

E‖gk −∇F (yk)‖2

= E
[
EIk‖gk −∇F (yk)‖2 | [k − 1]

]
=

1

b
E
[
Ei∼Q‖(∇fi(yk)−∇fi(x̃))/nqi +∇F (x̃)−∇F (yk)‖2 | [k − 1]

]
≤ 1

b
E
[
Ei∼Q‖(∇fi(yk)−∇fi(x̃))/nqi‖2 | [k − 1]

]
=

1

b
E

[
1

n

n∑
i=1

1

nqi
‖∇fi(yk)−∇fi(x̃)‖2

]
(3)

≤ 2

b
E

[
1

n

n∑
i=1

1

nqi
‖∇fi(yk)−∇fi(x∗)‖2

]

+
2

b
E

[
1

n

n∑
i=1

1

nqi
‖∇fi(x̃)−∇fi(x∗)‖2

]

≤ 2

b
E

[
1

n

n∑
i=1

1

nqi
‖∇fi(yk)−∇fi(x∗)‖2

]
+

4L̄

b
(P (x̃)− P (x∗)). (4)

The second equality follows from the independency of the random variables {i1, . . . , ib} and the
unbiasedness of (∇fi(yk) − ∇fi(x̃))/nqi + ∇F (x̃). The first inequality is due to the fact that
E‖X − E[X]‖2 ≤ E‖X‖2. The second inequality follows from Young’s inequality. The final
inequality is due to Lemma A.6.

Since 1
η ≥

(
1 + γ(m+1)

b

)
L̄ and γ > 1, using (3) yields

(k + 1)k

4
(

1
η − L̄

)E‖gk −∇F (yk)‖2 − k

2L̄
E

[
1

n

n∑
i=1

1

nqi
‖∇fi(yk)−∇fi(x̃)‖2

]
≤ 0.

By Lemma A.5 (with x = x̃) we have

E[P (xm)− P (x̃)] ≤ 2

η(m+ 1)m
‖ỹ − x̃‖2 − 2

η(m+ 1)m
E‖zm − x̃‖2.

Similarly, combining Lemma A.5 (with x = x∗) with (4) results in
E[P (xm)− P (x∗)]

≤ 1

γ
(P (x̃)− P (x∗)) +

2

η(m+ 1)m
‖ỹ − x∗‖2 −

2

η(m+ 1)m
E‖zm − x∗‖2.

These are the desired results.
Lemma A.8. The sequence {θ̃s}s≥1 defined in Algorithm 6 satisfies

θ̃s

(
θ̃s − 1 +

1

γ

)
≤ θ̃2

s−1

for any s ≥ 1.

6

Proof. Since θ̃s =
(

1− 1
γ

)
s+2

2 for s ≥ 0, we have

θ̃s

(
θ̃s − 1 +

1

γ

)
=

(
1− 1

γ

)
s+ 2

2

((
1− 1

γ

)
s+ 2

2
− 1 +

1

γ

)
=

(
1− 1

γ

)2
s(s+ 2)

4

≤ θ̃2
s−1.

This finishes the proof of Lemma A.8.

Now we are ready to proof Theorem 5.1.
Proof of Theorem 5.1. By Proposition A.7, we have

E[P (x̃s)− P (x̃s−1)] ≤ 2

η(m+ 1)m
E‖ỹs − x̃s−1‖2 −

2

η(m+ 1)m
E‖z̃s − x̃s−1‖2,

and

E[P (x̃s)− P (x∗)]

≤ 1

γ
E[P (x̃s−1)− P (x∗)] +

2

η(m+ 1)m
E‖ỹs − x∗‖2 −

2

η(m+ 1)m
E‖z̃s − x∗‖2,

where the expectations are taken with respect to the history of all random variables.

Hence we have

E[P (x̃s)− P (x̃s−1)] ≤ 4

η(m+ 1)m
E〈z̃s − ỹs, x̃s−1 − ỹs〉 −

2

η(m+ 1)m
E‖z̃s − ỹs‖2, (5)

and

E[P (x̃s)− P (x∗)]

≤ 1

γ
E[P (x̃s−1)− P (x∗)] +

4

η(m+ 1)m
E〈z̃s − ỹs, x∗ − ỹs〉 −

2

η(m+ 1)m
E‖z̃s − ỹs‖2. (6)

Since γ ≥ 3, we have θ̃s ≥ 1 for s ≥ 1. Multiplying (5) by θ̃s(θ̃s − 1) ≥ 0 and adding θ̃s× (6) yield

θ̃2
sE[P (x̃s)− P (x∗)]− θ̃s

(
θ̃s − 1 +

1

γ

)
E[P (x̃s−1)− P (x∗)]

≤ 4

η(m+ 1)m
E〈θ̃s(z̃s − ỹs), (θ̃s − 1)x̃s−1 − θ̃sỹs + x∗〉 −

2

η(m+ 1)m
E‖θ̃s(z̃s − ỹs)‖2.

By Lemma (A.8), we have

θ̃s

(
θ̃s − 1 +

1

γ

)
≤ θ̃2

s−1

for s ≥ 1.

Thus we get

θ̃2
sE[P (x̃s)− P (x∗)]− θ̃2

s−1E[P (x̃s−1)− P (x∗)]

≤ 4

η(m+ 1)m
E〈θ̃s(z̃s − ỹs), (θ̃s − 1)x̃s−1 − θ̃sỹs + x∗〉 −

2

η(m+ 1)m
E‖θ̃s(z̃s − ỹs)‖2.

=
2

η(m+ 1)m

(
E‖(θ̃s − 1)x̃s−1 − θ̃sỹs + x∗‖2 − E‖(θ̃s − 1)x̃s−1 − θ̃sz̃s + x∗‖2

)
Since ỹs = x̃s−1 + θ̃s−1−1

θ̃s
(x̃s−1 − x̃s−2) + θ̃s−1

θ̃s
(z̃s−1 − x̃s−1), we have

(θ̃s − 1)x̃s−1 − θ̃sỹs + x∗ = (θ̃s−1 − 1)x̃s−2 − θ̃s−1z̃s−1 + x∗.

7

Therefore summing the above inequality from s = 1 to S, we obtain

θ̃2
sE[P (x̃S)− P (x∗)]

≤ θ̃2
0(P (x̃0)− P (x∗)) +

2

η(m+ 1)m
‖(θ̃0 − 1)x̃−1 − θ̃0z̃0 + x∗‖2

=

(
1− 1

γ

)2

(P (x̃0)− P (x∗)) +
2

η(m+ 1)m
‖z̃0 − x∗‖2.

Dividing both sides by θ̃2
s finishes the proof of Theorem 5.1.

B Optimal choice of γ

In this section, we prove the optimality of γ∗. We can choose the optimal value of γ based on the
following lemma.

Lemma B.1. Define g(γ)
def
=

(1+
γ(m+1)

b)
(1− 1

γ)
2 for γ > 1. Then,

γ∗
def
= argmin

γ>1
g(γ) =

1

2

(
3 +

√
9 +

8b

m+ 1

)
.

Proof. First observe that

g′(γ) =

m+1
b

(
1− 1

γ

)2

− 2
(

1 + γ(m+1)
b

)(
1− 1

γ

)
1
γ2(

1− 1
γ

)2 .

Hence we have
g′(γ) = 0

⇐⇒ m+ 1

b

(
1− 1

γ

)2

− 2

(
1 +

γ(m+ 1)

b

)(
1− 1

γ

)
1

γ2
= 0

⇐⇒ m+ 1

b
(γ2 − γ)− 2

(
1 +

γ(m+ 1)

b

)
= 0

⇐⇒ γ2 − 3γ − 2b

m+ 1
= 0

⇐⇒ γ =
1

2

(
3 +

√
9 +

8b

m+ 1

)
= γ∗.

Here the second and last equivalencies hold from γ > 1. Moreover observe that g′(γ) > 0 for γ > γ∗
and g′(γ) < 0 for 1 < γ < γ∗. This means that γ∗ is the minimizer of g on the region γ > 1.

C DASVRDAns with warm start

In this section, we provide the algorithm of DASVRDAns with warm start and its convergence analysis.
First we describe the details of the algorithm. Algorithms 1 is a combination of DASVRDAns with
warm start scheme. At the warm start phase, we repeatedly run One Stage AccSVRDA and increment
mu exponentially until mu ∝ m, where m is the number of the inner iterations of DASVRDAns.
After that, we run vanilla DASVRDAns. This algorithm gives a faster rate than vanilla DASVRDAns.
Remark. For DASVRDAsc, the warm start scheme for DASVRDAns is not needed because the
theoretical rate is identical to the one without warm start.
Theorem C.1. Suppose that Assumptions 1, 2 and 3 hold. Let x̃0 ∈ Rd, γ = γ∗, m ∈ N, m0 =

min
{⌈√

(1 + γ(m+ 1)/b)L̄ ‖x̃0−x∗‖2
P (x̃0)−P (x∗)

⌉
,m
}
∈ N, b ∈ [n], U = dlog√γ(m/m0)e and S ∈ N.

Then DASVRDAns with warm start(x̃0, γ∗, {Li}ni=1, m0,m, b, U, S) satisfies

E [P (x̃S)− P (x∗)] ≤ O
(

1

S2

(
1

m2
+

1

mb

)
L̄‖x̃0 − x∗‖2

)
.

8

Algorithm 1: DASVRDAns with warm start (x̃0, γ, {Li}ni=1,m0,m, b, U, S)

z̃0 = x̃0, L̄ = 1
n

∑n
i=1 Li, Q = {qi} =

{
Li
nL̄

}
.

for u = 1 to U do
mu = d

√
γ(mu−1 + 1)mu−1e

end for
m′U = d

√
(mU + 1)mU/(1− 1/γ)e.

η = 1(
1+

γ(m′
U

+1)

b

)
L̄

for u = 1 to U do
(x̃u, z̃u) = One Stage AccSVRDA(z̃u−1, x̃u−1, η,mu, b, Q).

end for
return DASVRDAns(x̃U , z̃U , γ, {Li}ni=1,m

′
U , b, S).

For the proof of Theorem C.1, see Section D). From Theorem C.1, we obtain the following corollary:

Corollary C.2. Suppose that Assumptions 1, 2, and 3 hold. Let x̃0 ∈ Rd, γ = γ∗ , m ∝ n/b,

m0 = min
{⌈√

(1 + γ(m+ 1)/b)L̄ ‖x̃0−x∗‖2
P (x̃0)−P (x∗)

⌉
,m
}
∈ N, b ∈ [n] and U = dlog√γ(m/m0)e. If

we appropriately choose S = O(1+(1/m+1/
√
mb)

√
L̄‖x̃0 − x∗‖2/ε), then a total computational

cost of DASVRDAns with warm start(x̃0, γ∗, {Li}ni=1,m0,m, b, U, S) for E [P (x̃S)− P (x∗)] ≤ ε is

O

(
d

(
nlog

(
P (x̃0)− P (x∗)

ε

)
+
(
b+
√
n
)√ L̄‖x̃0 − x∗‖2

ε

))
.

For the proof of Corollary C.2, see Section D.
Remark. Corollary 5.2 implies that if the mini-batch size b is O(

√
n), DASVRDAns with warm

start(x̃0, γ∗, {Li}ni=1,m0, n/b, b, U, S) still achieves the total computational cost ofO(d(nlog(1/ε)+√
nL̄/ε)), which is better than O(d(nlog(1/ε) +

√
nbL̄/ε)) of Katyusha.

Remark. Corollary 5.2 also implies that DASVRDAns with warm start only needs size O(
√
n)

mini-batches for achieving the optimal iteration complexity of O(
√
L/ε), when L/ε ≥ nlog2(1/ε).

In contrast, Katyusha needs size O(n) mini-batches for achieving the optimal iteration complexity.
Note that even when L/ε ≤ nlog2(1/ε), our method only needs size Õ(n

√
ε/L) mini-batches1, that

is typically smaller than O(n) of Katyusha.

D Proof of Theorem C.1

In this section, we give proofs of Theorem C.1 and Corollary C.2.
Proof of Theorem C.1. Since η = 1/((1 + γ(m′U + 1)/b)L̄) ≤ 1/((1 + γ(mu + 1)/b)L̄), from
Proposition A.7, we have

E[P (x̃u)− P (x∗)] +
2

η(mu + 1)mu
E‖z̃u − x∗‖2

≤ 1

γ
(P (x̃u−1)− P (x∗)) +

2

η(mu + 1)mu
‖z̃u−1 − x∗‖2

=
1

γ

(
P (x̃u−1)− P (x∗) +

2γ

η(mu + 1)mu
‖z̃u−1 − x∗‖2

)
.

Since mu = d
√
γ(mu−1 + 1)mu−1e, we have

2γ

η(mu + 1)mu
≤ 2

η(mu−1 + 1)mu−1
.

1Note that we regard one computation of a full gradient as n/b iterations in size b mini-batch settings.

9

Using this inequality, we obtain that

E[P (x̃U)− P (x∗)] +
2

η(mU + 1)mU
E‖z̃U − x∗‖2

≤ 1

γ

(
P (x̃U−1)− P (x∗) +

2

η(mU−1 + 1)mU−1
E‖z̃U−1 − x∗‖2

)
≤ · · ·

≤ 1

γU

(
P (x̃0)− P (x∗) +

2

η(m0 + 1)m0
‖z̃0 − x∗‖2

)
≤ 1

γU

(
P (x̃0)− P (x∗) +

2

η(m0 + 1)m0
‖x̃0 − x∗‖2

)
= O

(
1

γU
(P (x̃0)− P (x∗))

)
.

The last equality is due to the definitions of m0 and η, and the fact m′U = O(mU) = O(
√
γUm0) =

O(m) (see the arguments in the proof of Corollary 5.2. Since(
1− 1

γ

)2

(m′U + 1)m′U ≥ (mU + 1)mU ,

we get

E[P (x̃U)− P (x∗)] +
2(

1− 1
γ

)2

η(m′U + 1)m′U

E‖z̃U − x∗‖2

≤ O
(

1

γU
(P (x̃0)− P (x∗))

)
.

Using the definitions of U and m0 and combining this inequality with Theorem 5.1, we obtain that
desired result.
Proof of Corollary C.2. Observe that the total computational cost at the warm start phase becomes

O

(
dnU + db

U∑
u=1

mu

)
.

Since mu ≤
√
γmu−1 +

√
γ + 1 ≤ √γmu−1 + 2

√
γ ≤ √γ2mu−2 + 2

√
γ + 2

√
γ2 ≤ · · · ≤

√
γum0 + 2

∑u
u′=1

√
γu
′

= O(
√
γum0), we have

O

(
dnU + db

U∑
u=1

mu

)
= O

(
dnU + db

√
γ
U
m0

)
.

Suppose that m ≥ m0

√
(P (x̃0)− P (x∗))/ε. Then, this condition implies U = dlog√γ(m/m0)e ≥

logγ((P (x̃0) − P (x∗))/ε). Hence we only need to run u = O(logγ((P (x̃0) − P (x∗))/ε)) ≤
U iterations at the warm start phase and running DASVRDAns is not needed. Then the total
computational cost becomes

O

(
d

(
nlog

P (x̃0)− P (x∗)

ε
+ bm0

√
P (x̃0)− P (x∗)

ε

))
≤ O

(
d

(
nlog

P (x̃0)− P (x∗)

ε

))
,

here we used mb = O(n). Next, suppose that m ≤ m0

√
(P (x̃0)− P (x∗))/ε. In this case, the total

computational cost at the warm start phase with full U iterations becomes

O

(
d

(
nlog

m

m0
+mb

))
≤ O

(
d

(
nlog

P (x̃0)− P (x∗)

ε

))
.

Finally, using Theorem C.1 yields the desired total computational cost.

10

E Lazy Update Algorithm of DASVRDA Method

In this section, we discuss how to efficiently compute the updates of the DASVRDA algorithm for
sparse data. Specifically, we derive lazy update rules of One Stage Accelerated SVRDA for the
following empirical risk minimization problem:

1

n

n∑
i=1

ψi(a
>
i x) + λ1‖x‖1 +

λ2

2
‖x‖22, λ1, λ2 ≥ 0

For the sake of simplicity, we define the one dimensional soft-thresholding operator as follows:

soft(z, λ)
def
= sign (z) max{|z| − λ, 0},

for z ∈ R. Moreover, in this section, we denote [z1, z2] as {z ∈ Z | z1 ≤ z ≤ z2} for integers
z1, z2 ∈ Z.

Originally, lazy update was proposed in online settings [3]. Generally, it is difficult for accelerated
stochastic variance reduction methods to construct lazy update rules because (i) generally, variance
reduced gradients are not sparse even if stochastic gradients are sparse; (ii) if we adopt the momentum
scheme, the updated solution becomes a convex combination of previous solutions; and (iii) for non-
strongly convex objectives, the momentum rate must not be constant. [4] have tackled the problem
of (i) on non-accelerated settings and derived lazy update rules of the “mini-batch semi-stochastic
gradient descent” (mS2GD) method. [1] has only mentioned that lazy updates can be applied to
Katyusha but did not give explicit lazy update rules of Katyusha. Particularly, for non-strongly convex
objectives, it seems to be difficult to derive lazy update rules owing to the difficulty of (iii). The
reason we adopt the stochastic dual averaging scheme [9] rather than stochastic gradient descent for
our method is to be able to overcome the difficulties faced in (i), (ii), and (iii). The lazy update rules
of our method support both non-strongly and strongly convex objectives.

The explicit algorithm of the lazy updates for One Stage Accelerated SVRDA is given by Algorithm 2.
Let us analyze the iteration cost of the algorithm. Suppose that each feature vector ai is sparse and the
expected number of the nonzero elements is O(d′). First note that |Ak| = O(bd′) expectedly if d′ �
d. For updating xk−1, by Proposition E.1, we need to compute

∑
k′∈K±j

θk′−2/(1 + ηθk′−1θk′−2λ2)

and
∑
k′∈K±j

θk′−1θ
2
k′−2/(1 + ηθk′−1θk′−2λ2) for each j ∈ Ak. For this, we first make lists

{Sk}mk=1 = {
∑k
k′=1 θk′−2/(1 + ηθk′−1θk′−2λ2)}mk=1 and {S′k}mk=1 = {

∑k
k′=1 θk′−1θ

2
k′−2/(1 +

ηθk′−1θk′−2λ2)}mk=1 before running the algorithm. This needs only O(m). Note that these lists
are not depend on coordinate j. Since K±j are sets of continuous integers in [kj + 2, k] or unions
of two sets of continuous integers in [kj + 2, k], we can efficiently compute the above sums. For
example, if K+

j = [kj + 2, s−] ∪ [s+, k] for some integers s± ∈ [kj + 2, k], we can compute∑
k′∈K+

j
θk′−2/(1 + ηθk′−1θk′−2λ2) as Ss− −Skj+1 +Sk−Ss+−1 and this costs only O(1). Thus,

for computing xk−1 and yk, we need only O(bd′) computational cost. For computing gk, we need
to compute the inner product a>i yk for each i ∈ Ik and this costs O(bd′) expectedly. The expected
cost of the rest of the updates is apparently O(bd′). Hence, the total expected iteration cost of our
algorithm in serial settings becomes O(bd′) rather than O(bd). Furthermore, we can extend our
algorithm to parallel computing settings. Indeed, if we have b processors, processor b′ runs on the
set Ab′k

def
= {j ∈ [d] | aib′ ,j 6= 0}. Then the total iteration cost per processor becomes ideally O(d′).

Generally the overlap among the sets Ab′k may cause latency, however for sufficiently sparse data,
this latency is negligible. The following proposition guarantees that Algorithm 2 is equivalent to
Algorithm 7 when R(x) = λ1‖x‖1 + (λ2/2)‖x‖22.

Proposition E.1. Suppose that R(x) = λ1‖x‖1 + λ2

2 ‖x‖
2
2 with λ1, λ2 ≥ 0. Let j ∈ [d], kj ∈ [m] ∪

{0} and k ≥ kj + 1. Assume that∇jfi(yk′) = ∇jfi(x̃) = 0 for any i ∈ [b] and k′ ∈ [kj + 1, k− 1].

11

Algorithm 2: Lazy Updates for One Stage AccSVRDA (ỹ, x̃, η,m, b,Q)

x0 = z0 = ỹ.
gsum

0,j = 0 (j ∈ [d]).
θ0 = 1

2 .
kj = 0 (j ∈ [d]).
∇̃ = ∇F (x̃).
for k = 1 to m do

Sample independently i1, . . . , ib ∈ [1, n] according to Q, set Ik = {i1, . . . , ib}.
Ak = {j ∈ [d] | ∃b′ ∈ [b] : aib′ ,j 6= 0}.
θk = k+1

2 .
for j ∈ Ak do

Update xk−1,j , yk,j as in Proposition E.1.
end for
for j ∈ Ak do
gk,j = 1

b

∑
i∈It

1
nqi

(
ψ′i(a

>
i yk)ai,j − ψ′i(a>i x̃)ai,j

)
+ ∇̃j .

gsum
k,j = gsum

kj ,j
+ θk−1gk,j +

(
θkθk−1 − θkjθkj−1

)
∇̃j .

zk,j = 1
1+ηθkθk−1λ2

soft(z0,j − ηgsum
k,j , ηθkθk−1λ1).

xk,j =
(

1− 1
θk

)
xk−1,j + 1

θk
zk,j .

kj = k.
end for

end for
return (xm, zm).

In Algorithm 7, the following results hold:

xk−1,j =


x0,j (k = 1)
θkj θkj−1

θk−1θk−2
xkj ,j + 1

θk−1θk−2

∑
k′∈K+

j

θk′−2

1+ηθk′−1θk′−2λ2
(z0,j −M+

k′,j) (k ≥ 2)

+ 1
θk−1θk−2

∑
k′∈K−j

θk′−2

1+ηθk′−1θk′−2λ2
(z0,j −M−k′,j)

,

yk,j =


x0,j (k = 1)(

1− 1
θk

)
xk−1,j + 1

θk
1

1+ηθk−1θk−2λ2
× (k ≥ 2)

soft
(
z0,j − ηgsum

kj ,j
− η(θk−1θk−2 − θkjθkj−1)∇̃j , ηθk−1θk−2λ1

) ,

and

zk,j =
1

1 + ηθkθk−1λ2
soft(z0,j − ηgsum

k,j , ηθkθk−1λ1),

where
M±k′,j

def
= ηθk′−1θk′−2(∇̃j ± λ1) + ηgsum

kj ,j − ηθkjθkj−1∇̃j ,

and K±j ⊂ [kj + 2, k] are defined as follows:

Let c1
def
=

η∇̃j
4 , c2

def
= ηλ1

4 and c3
def
= ηgsum

kj ,j
− ηθkjθkj−1∇̃j to simplify the notation. Note that

c2 ≥ 0. Moreover, we define

D±
def
= (c1 ± c2)2 + 4(c1 ± c2)(z0,j − c3),

s+
±

def
=

c1 + c2 ±
√
D+

c1 + c2
,

s−±
def
=

c1 − c2 ±
√
D−

c1 − c2
,

where if s±± are not well defined, we simply assign 0 (or any number) to s±±.

12

1) If c1 > c2, then

K+
j

def
=

{
∅ (D+ ≤ 0)

[kj + 2, k] ∩ [ds+
−e, bs+

+c] (D+ > 0)
,

K−j
def
=

{
[kj + 2, k] (D− ≤ 0)

[kj + 2, bs−−c] ∪ [ds−+e, k] (D− > 0)
.

2) If c1 = c2, then

K+
j

def
=


∅ (c2 = 0 ∧ z0,j ≤ c3)

[kj + 2, k] (c2 = 0 ∧ z0,j > c3)

∅ (c2 > 0 ∧D+ ≤ 0)

[kj + 2, k] ∩ [ds+
−e, bs+

+c] (c2 > 0 ∧D+ > 0)

,

K−j
def
=

{
[kj + 2, k] (z0,j < c3)

∅ (z0,j ≥ c3)
.

3) If |c1| < c2, then

K+
j

def
=

{
∅ (D+ ≤ 0)

[kj + 2, k] ∩ [ds+
−e, bs+

+c] (D+ > 0)
,

K−j
def
=

{
∅ (D− ≤ 0)

[kj + 2, k] ∩ [ds−−e, bs−+c] (D− > 0)
.

4) If c1 = −c2, then

K+
j

def
=

{
∅ (z0,j ≤ c3)

[kj + 2, k] (z0,j > c3)

K−j
def
=


[kj + 2, k] (c2 = 0 ∧ z0,j < c3)

∅ (c2 = 0 ∧ z0,j ≥ c3)

∅ (c2 > 0 ∧D− ≤ 0)

[kj + 2, k] ∩ [ds−−e, bs−+c] (c2 > 0 ∧D− > 0)

.

5) If c1 < −c2, then

K+
j

def
=

{
[kj + 2, k] (D+ ≤ 0)

[kj + 2, bs+
−c] ∪ [ds+

+e, k] (D+ > 0)
,

K−j
def
=

{
∅ (D− ≤ 0)

[kj + 2, k] ∩ [ds−−e, bs−+c] (D− > 0)
.

Proof. First we consider the case k = 1. Observe that

y1,j =

(
1− 1

θ1

)
x0,j +

1

θ1
z0,j = z0,j = x0,j ,

and

z1,j =
1

1 + ηθ1θ0λ2
soft

(
z0,j − ηθ1θ0

1

θ1
g1,j , ηθ1θ0λ1

)
=

1

1 + ηθ1θ0λ2
soft (z0,j − ηθ0g1,j , ηθ1θ0λ1)

=
1

1 + ηθ1θ0λ2
soft

(
z0,j − ηgsum

1,j , ηθ1θ0λ1

)
.

Next we consider the case k ≥ 2. We show that

xk−1,j =
θkjθkj−1

θk−1θk−2
xkj ,j +

1

θk−1θk−2

k∑
k′=kj+2

θk′−2zk′−1. (7)

13

For k = kj + 1, (7) holds. Assume that (7) holds for some k′ ≥ kj + 1. Then

xk′,j =

(
1− 1

θk′

)
xk′−1,j +

1

θk′
zk′,j

=

(
1− 1

θk′

)
θkjθkj−1

θk′−1θk′−2
xkj ,j +

(
1− 1

θk′

)
1

θk′−1θk′−2

k′∑
k′′=kj+2

θk′′−2zk′′−1 +
1

θk′
zk′,j

=
θkjθkj−1

θk′θk′−1
xkj ,j +

1

θk′θk′−1

k′∑
k′′=kj+2

θk′′−2zk′′−1 +
1

θk′
zk′,j

=
θkjθkj−1

θk′θk′−1
xkj ,j +

1

θk′θk′−1

k′+1∑
k′′=kj+2

θk′′−2zk′′−1.

The first equality is due to the definition of xk′ . The second equality follows from the assumption of
induction. The third equality holds by Lemma A.1. This shows that (7) holds.

Next we show that

zk′−1,j =
1

1 + ηθk′−1θk′−2λ2
soft

(
z0,j − ηgsum

kj ,j − η(θk′−1θk′−2 − θkjθkj−1)∇̃j , ηθk′−1θk′−2λ1

)
,

(8)
for k′ ∈ [kj + 2, k].

By the definition of zk′−1, we have that

zk′−1,j = proxηθk′−1θk′−2R
(z0 − ηθk′−1θk′−2ḡk′−1)j

=
1

1 + ηθk′−1θk′−2λ2
soft(z0,j − ηθk′−1θk′−2ḡk′−1,j , ηθk′−1θk′−2λ1)

From Lemma A.4, we see that

θk′−1θk′−2ḡk′−1,j =

k′−1∑
k′′=1

θk′′−1gk′′,j

=

kj∑
k′′=1

θk′′−1gk′′,j +

 k′−1∑
k′′=kj+1

θk′′−1

 ∇̃j
= gsum

kj ,j + (θk′−1θk′−2 − θkjθkj−1)∇̃j .

The first and third equality are due to Lemma A.2. The second equality holds because gk′′−1,j = ∇̃j
for k′′ ∈ [kj + 1, k − 1] by the assumption. This shows that (8) holds. Observe that

zk′−1,j =
1

1 + ηθk′−1θk′−2λ2
soft

(
z0,j − ηgsum

kj ,j − η(θk′−1θk′−2 − θkjθkj−1)∇̃j , ηθk′−1θk′−2λ1

)
=

1

1 + ηθk′−1θk′−2λ2
sign

(
z0,j − ηgsum

kj ,j − η(θk′−1θk′−2 − θkjθkj−1)∇̃j
)

×max
{∣∣∣z0,j − ηgsum

kj ,j − η(θk′−1θk′−2 − θkjθkj−1)∇̃j
∣∣∣− ηθk′−1θk′−2λ1, 0

}
=


1

1+ηθk′−1θk′−2λ2
(z0,j −M+

k′,j) (z0,j > M+
k′,j)

0 (M−k′,j ≤ z0,j ≤M+
k′,j)

1
1+ηθk′−1θk′−2λ2

(z0,j −M−k′,j) (z0,j < M−k′,j)

,

where M±k′,j = ηθk′−1θk′−2(∇̃j±λ1)+ηgsum
kj ,j
−ηθkjθkj−1∇̃j . We define the real valued functions

M± as follows:
M±j (x)

def
= (c1 ± c2)x2 − (c1 ± c2)x+ c3,

14

where c1 =
η∇̃j

4 , c2 = ηλ1

4 and c3 = ηgsum
kj ,j
− ηθkjθkj−1∇̃j Then we see that M±j (k′) = M±k′,j .

Let

D±
def
= (c1 ± c2)2 + 4(c1 ± c2)(z0,j − c3),

s+
±

def
=

c1 + c2 ±
√
D+

c1 + c2
,

s−±
def
=

c1 − c2 ±
√
D−

c1 − c2
,

where if s±± are not well defined, we simply assign 0 (or any number) to s±±. We can easily show that
the following results:
1) If c1 > c2, then

z0,j > M+
j (x) ⇐⇒

{
x ∈ ∅ (D+ ≤ 0)

s+
− < x < s+

+ (D+ > 0)
,

z0,j < M−j (x) ⇐⇒
{
x ∈ R (D− ≤ 0)

x < s−− ∨ x > s−+ (D− > 0)
.

2) If c1 = c2, thenãĂĂ

z0,j > M+
j (x) ⇐⇒


x ∈ ∅ (c2 = 0 ∧ z0,j ≤ c3)

x ∈ R (c2 = 0 ∧ z0,j > c3)

x ∈ ∅ (c2 > 0 ∧D+ ≤ 0)

s+
− < x < s+

+ (c2 > 0 ∧D+ > 0)

,

z0,j < M−j (x) ⇐⇒
{
x ∈ R (z0,j < c3)

x ∈ ∅ (z0,j ≥ c3)
.

3) If |c1| < c2, then

z0,j > M+
j (x) ⇐⇒

{
x ∈ ∅ (D+ ≤ 0)

s+
− < x < s+

+ (D+ > 0)
,

z0,j < M−j (x) ⇐⇒
{
x ∈ ∅ (D− ≤ 0)

s−− < x < s−+ (D− > 0)
.

4) If c1 = −c2, then

z0,j > M+
j (x) ⇐⇒

{
x ∈ ∅ (z0,j ≤ c3)

x ∈ R (z0,j > c3)

z0,j < M−j (x) ⇐⇒


x ∈ R (c2 = 0 ∧ z0,j < c3)

x ∈ ∅ (c2 = 0 ∧ z0,j ≥ c3)

x ∈ ∅ (c2 > 0 ∧D− ≤ 0)

s−− < x < s−+ (c2 > 0 ∧D− > 0)

.

5) If c1 < −c2, then

z0,j > M+
j (x) ⇐⇒

{
x ∈ R (D+ ≤ 0)

x < s+
− ∨ x > s+

+ (D+ > 0)
,

z0,j < M−j (x) ⇐⇒
{
x ∈ ∅ (D− ≤ 0)

s−− < x < s−+ (D− > 0)
.

The lazy update rules of xk−1,j is derived by combining (7) with these results and noting that
k′ ∈ [kj + 2, k]. Finally, combining the definition yk,j = (1− 1/θk)xk−1,j + (1/θk)zk−1,j with (8)
gives the lazy update of yk,j . The update rule of zk,j is obvious from the proof of (8).

15

F Experimental Details

In this section, we give the experimental details.

The details of the implemented algorithms and their parameter tunings were as follows:

For non-strongly convex cases ((λ1, λ2) = (10−4, 0)),

• SVRG++ [2] with default initial epoch length m = n/(4b) 2. We tuned only the learning
rate.

• AccProxSVRG [8]. We tuned the epoch length, the constant momentum rate and the
learning rate, and additional dummy `2 regularizer weight for handling a non-strongly
convex objective.

• UC [5] + SVRG [10] with default epoch length m = 2n/b 3. We tuned κ in [5] and the
learning rate. We fixed η = 1 in the algorithm of UC (note that η is not learning rate).

• UC + AccProxSVRG. We tuned κ in [5], the epoch length, the constant momentum rate and
the learning rate. We fixed η = 1 in the algorithm of UC (note that η is not learning rate).

• APCG [6]. We tuned the convexity parameter of the dual objective and the learning rate,
and additional dummy `2 regularizer weight for handling a non-strongly convex objective.

• Katyushans [1] with default epoch length m = 2n/b and Katyusha momentum τ2 = 1/2
following the suggestion of [1]. We tuned only the learning rate. We did not adopt AdaptReg
scheme because Katyusha with AdaptReg was always a bit slower than vanilla Katyusha in
our experiments.

• DASVRDAns with epoch length m = n/b and γ = γ∗. We tuned only the learning rate.

• Adaptive Restart DASVRDA with epoch length m = n/b and γ = γ∗. We tuned only the
learning rate. We used the gradient scheme for the adaptive restarting, that is we restart
DASVRDAns if (ỹs − x̃s)>(ỹs+1 − x̃s) > 0.

For strongly convex cases ((λ1, λ2) = (10−4, 10−6), (0, 10−6)),

• SVRG [10] with default epoch length m = 2n/b. We tuned only the learning rate.

• AccProxSVRG [8]. We tuned the epoch length, the constant momentum rate and the learning
rate.

• UC [5] + SVRG [10] with default epoch length m = 2n/b 4. We tuned κ, q in [5] and the
learning rate.

• UC + AccProxSVRG. We tuned κ, q in [5], the epoch length, the constant momentum rate
and the learning rate.

• APCG [6]. We tuned the convexity parameter of the dual objective and the learning rate.

• Katyusha [1] with default epoch length m = 2n/b and Katyusha momentum τ2 = 1/2
following the suggestion of [1]. We tuned τ1 in [1] and the learning rate.

• DASVRDAsc with epoch length m = n/b and γ = γ∗. We tuned the fixed restart interval S
and the learning rate.

• Adaptive Restart DASVRDA with epoch length m = n/b and γ = γ∗. We tuned only
the learning rate. We use the gradient scheme for the adaptive restarting, that is we restart
DASVRDAns if (ỹs − x̃s)>(ỹs+1 − x̃s) > 0.

For tuning the parameters, we chose the values that led to the minimum objective value. We selected
the learning rates from the set {10p, 2 × 10p, 5 × 10p | p ∈ {0,±1,±2}} for each algorithm. We
selected the epoch lengths from the set {n × 10−k, 2n × 10−k, 5n × 10−k | k ∈ {0, 1, 2, 3}} and

2In [2], the authors have suggested a default initial epoch length m = n/4. Since we used mini-batches
with size b in our experiments, it was natural to use m = n/(4b). We made sure that using this epoch length
improved the performances in all settings.

3In [10], the authors has suggested a default initial epoch length m = 2n. Since we used mini-batches with
size b in our experiments, it was natural to use m = 2n/b. We made sure that using this epoch length improved
the performances in all settings.

16

the momentum rates from the set {1 − 10−k | k ∈ {1, 2, 3, 4}} for AccProxSVRG. We chose the
additional dummy `2 regularizer weights from the set {10−k, 0 | k ∈ {4, 5, 6, 8, 12}} for AccSVRG
and APCG. We selected κ, q from the set {10−k | k ∈ {1, 2, 3, 4, 5, 6}} for UC. We chose the
convexity parameter from the set {10−k | k ∈ {3, 4, 5, 6, 7}} for APCG. We selected τ1 from the set
{10−k, 2× 10−k, 5× 10−k | k ∈ {1, 2, 3}} for Katyusha. We selected the restart interval from the
set {10k, 2× 10k, 5× 10k | k ∈ {0, 1, 2}} for DASVRDAsc.

We fixed the initial points 0 ∈ Rd for all algorithms.

For a fair comparison, we used uniform sampling for all algorithms, because AccProxSVRG does
not support non-uniform sampling.

G DASVRG method

In this section, we briefly discuss a SVRG version of DASVRDA method (we call this algorithm
DASVRG) and show that DASVRG has the same rates as DASVRDA.

In Section 4, we apply the double acceleration scheme to SVRDA method. We can also apply the one
to SVRG. The only difference from DASVRDA is the update of zt in AccSVRDA (Algorithm 7).
We take the following update for DASVRG:

zk = argmin
z∈Rd

{
〈gk, z〉+R(z) +

1

2ηθk−1
‖z − zk−1‖2

}
= proxηθk−1R

(zk−1 − ηθk−1gk) . (9)

For the convergence analysis of DASVRG, we only need to show that Lemma A.5 is still valid for
this algorithm.
Proof of Lemma A.5 for DASVRG. From (2) in the proof of Lemma A.5 for DASVRDA, we also have

θkθk−1P (xk) ≤ θk−1(θk − 1)P (xk−1) + θk−1
ˆ̀
k(zk) +

1

2η
‖zk − zk−1‖2

+
θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1〈gk −∇F (yk), zk−1 − yk〉,

because the derivation of this inequality does not depend on the update rule of zt. Observe that
zk = argmin

z∈Rd
{θk−1

ˆ̀
k(z) + 1/(2η)‖z − zk−1‖2} from (9). Since θk−1

ˆ̀
k(z) + 1/(2η)‖z − zk−1‖2

is η-strongly convex, we have

θk−1
ˆ̀
k(zk) +

1

2η
‖zk − zk−1‖2 +

1

2η
‖zk − x‖2 ≤ θk−1

ˆ̀
k(x) +

1

2η
‖zk−1 − x‖2.

Moreover, using the definitions of ˆ̀and `, and Lemma A.3, we have

ˆ̀
k(x) = `k(x) + 〈gk −∇F (yk), x− yk〉

≤P (x)− 1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(yk)‖2 + 〈gk −∇F (yk), x− yk〉.

Hence, we get

θkθk−1(P (xk)− P (x)) ≤ θk−1(θk − 1)(P (xk−1)− P (x)) + +
1

2η
(‖zk−1 − x‖2 − ‖zk − x‖2)

+
θkθk−1‖gk −∇F (yk)‖2

2
(

1
η − L̄

) − θk−1

2L̄

1

n

n∑
i=1

1

nqi
‖∇fi(x)−∇fi(yk)‖2

− θk−1〈gk −∇F (yk), zk−1 − x〉.

Note that θk−1(θk− 1) ≤ θk−1θk−2 for k ≥ 2 and θ1 = 1. Finally, summing up the above inequality
from k = 1 to m, dividing the both sides by θmθm−1 and taking expectations with respect to Ik
(1 ≤ k ≤ m) give the desired result.

17

References
[1] Allen-Zhu, Zeyuan. Katyusha: The First Direct Acceleration of Stochastic Gradient Methods.

In 48th Annual ACM Symposium on the Theory of Computing, pp. 19–23, 2017.

[2] Allen-Zhu, Zeyuan and Yuan, Yang. Improved SVRG for Non-Strongly-Convex or Sum-of-
Non-Convex Objectives. In Proceedings of the 33rd International Conference on Machine
Learning, pp. 1080–1089, 2016.

[3] Duchi, John, Hazan, Elad, and Singer, Yoram. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[4] Konečnỳ, Jakub, Liu, Jie, Richtárik, Peter, and Takáč, Martin. Mini-batch semi-stochastic
gradient descent in the proximal setting. IEEE Journal of Selected Topics in Signal Processing,
10(2):242–255, 2016.

[5] Lin, Hongzhou, Mairal, Julien, and Harchaoui, Zaid. A universal catalyst for first-order
optimization. In Advances in Neural Information Processing Systems 28, pp. 3384–3392, 2015.

[6] Lin, Qihang, Lu, Zhaosong, and Xiao, Lin. An accelerated proximal coordinate gradient method.
In Advances in Neural Information Processing Systems 27, pp. 3059–3067, 2014.

[7] Nesterov, Yurii. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[8] Nitanda, Atsushi. Stochastic proximal gradient descent with acceleration techniques. In
Advances in Neural Information Processing Systems 27, pp. 1574–1582, 2014.

[9] Xiao, Lin. Dual averaging method for regularized stochastic learning and online optimization.
In Advances in Neural Information Processing Systems 22, pp. 2116–2124, 2009.

[10] Xiao, Lin and Zhang, Tong. A proximal stochastic gradient method with progressive variance
reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

18

	Proof of Theorem 5.1
	Optimal choice of
	DASVRDAns with warm start
	Proof of Theorem C.1
	Lazy Update Algorithm of DASVRDA Method
	Experimental Details
	DASVRG method

