
Supplement

A Auxiliary Results

A.1 A Lemma and a Theorem

We first show that the following lemma is true with classic graphical model inference techniques
[Koller and Friedman, 2009]:

Lemma 1. Let θ ∈ Θ be given, and let Cl and Cl′ be two elements of a partition of V , where l 6= l′.
If the nodes in Cl are not connected with the nodes in Cl′ , i.e., ∀i ∈ Cl and ∀j ∈ Cl′ , θij = 0, then

EθXiXj =
∑
x∈X

xixjPθ(x) = 0. (9)

Proof. Without loss of generality, suppose V is partitioned as {Cl, Cl′}. Since Cl and Cl′ are dis-
connected, Pθ(x) = PCl

(x)PCl′ (x), where PCl
(x) and PCl′ (x) represent the marginal distributions

among the variables indexed by Cl and Cl′ , respectively. Therefore, ∀i ∈ Cl and ∀j ∈ Cl′ ,

EθXiXj =
∑
x∈X

xixjPθ(x) =
∑
x∈X

xixjPCl
(x)PCl′ (x) =

∑
xi,xj∈
{−1,1}

xixjP(xi)P(xj),
(10)

By a symmetric argument, one can show that P(xi) = 1
2 , ∀i ∈ V . Therefore, in (10), EθXiXj =

0.

In (9), EθXiXj represents the element at the ith row and the jth column of the expectation of
the second moment of the random vector X about the origin under Pθ(x), EθXX>. The theorem
establishes the sparsity pattern correspondence between θ and EθXX> for any given θ ∈ Θ. In
Section 3, we will see its significant role played in the derivation of the screening rule.

If we can identify the blockwise structure of θ̂ in advance, we can solve each block independently
due to the following theorem.

Theorem 6. If θ̂ is blockwise as shown in (3), we can identify θ̂ by solving, ∀l ∈ {1, 2, · · · , L},
separately for:

θ̂l = argmin
θl
− 1

n

n∑
k=1

|Cl|−1∑
i=1

|Cl|∑
j>i

θlijx
(k)
i x

(k)
j +A(θl) +

λ

2
‖θl‖1,

where |Cl| represents the cardinality of Cl.

Proof. Theorem 6 can be proved by inspection.

A.2 Optimality Conditions

Another essential element for the derivation of the screening rule is the Karush-Kuhn-Tucker (KKT)
conditions for the `1-regularized Ising model. Let i ∈ V , and j > i be given, the KKT condition with
respect to θ̂ij is given by:

Eθ̂XiXj − EXXiXj + λtij = 0, (11)

where EXXiXj = 1
n

∑n
k=1 x

(k)
i x

(k)
j ’s are second empirical moments from the second empirical

moment matrix EXXX
>, and tij is the component of a subgradient that corresponds to θ̂ij , with

tij = 1 when θ̂ij > 0, tij = −1 when θ̂ij < 0, and tij ∈ [−1, 1] when θ̂ij = 0. Since the
minimization problem for the `1-regularized Ising model in (2) is a convex problem, the KKT
conditions can be satisfied if and only if (2) reaches its optimal solution θ̂.
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A.3 Proof of Theorem 1

Proof. The rationale behind our proof is similar to that in Witten et al. 2011:

• We first prove necessity. Since θ̂ is blockwise, by Lemma 1, Eθ̂XiXj = 0, for all l and l′ ∈
{1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl, j ∈ Cl′ . By the KKT condition in (11),
λtij = EXXiXj − Eθ̂XiXj = EXXiXj ⇒ |EXXiXj | ≤ λ, for all l and l′ ∈ {1, 2, · · · , L},
where l 6= l′, and for all i ∈ Cl, j ∈ Cl′ . Note that we have used the fact that θ̂ij = 0⇒ |tij | ≤ 1.

• We then prove sufficiency via construction techniques. Specifically, we construct a blockwise
θ̃ and show that θ̃ satisfies KKT conditions so that θ̃ is, in fact, optimal, i.e., θ̃ = θ̂. For this
purpose, we first set all the off-block-diagonal elements in θ̃ that satisfy (4) to zeros. In this way, θ̃
is blockwise with respect to the partition {C1, C2, · · · , CL} and hence Lemma 1 can be applied.
The consequence is that Eθ̃XiXj = 0, for all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all
i ∈ Cl, j ∈ Cl′ . Therefore, the KKT conditions for these off-block-diagonal zero elements of
θ̃ can be satisfied. Furthermore, now that θ̃ is blockwise, the block diagonal elements can also
be computed via exact optimization separately. In this way, the KKT conditions for the block
diagonal elements of θ̃ can also be satisfied. We have shown that all the elements in θ̃ satisfy KKT
conditions. Therefore, θ̃ constructed in this way is indeed optimal and hence θ̃ = θ̂.

A.4 Proof of Theorem 2

Proof. When θ̂ = 0, all the nodes are disconnected from each other, which is equivalent to considering
the fully disconnected partition {{1} , {2} , · · · , {p}}. Using this partition, by Theorem 1, it is
necessary and sufficient for λmax = maxi,j∈V,i 6=j |EXXiXj | to guarantee that θ̂ = 0. Furthermore,
since Xi, Xj ∈ {−1, 1}, ∀i, j ∈ V , we have maxi,j∈V,i 6=j |EXXiXj | ≤ 1⇒ λmax ≤ 1.

A.5 Proof of Corollary 1

Proof. Applying Theorem 1 to any partition with an element {i} yields the result.

A.6 A Toy Example

We consider a dataset with three variables and five samples. i.e. p = 3, and n = 5. Specifically,

X =


−1 1 −1
−1 −1 −1
−1 −1 −1
−1 −1 1
1 −1 1

 , EXXX
> =

[
1 0.2 0.6

0.2 1 −0.2
0.6 −0.2 1

]
.

Therefore, according to the screening rule (Theroem 1 or Corollary 1), if we set λ = 0.2, X2 should
be disconnected from X1 and X3 in θ̂. Solving the exact problem with λ = 0.2 confirms this
proposition:

θ̂ =

[
0 0 0.4237578
0 0 0

0.4237578 0 0

]
.

Furthermore, with λ = 0.2,

θ̂NW =

[
0 0.1013663 0.4479399
0 0 0

0.4479399 −0.1013663 0

]
,

θ̂NW
min =

[
0 0 0.4479399
0 0 0

0.4479399 0 0

]
,

θ̂PL =

[
0 0.06702585 0.43879982

0.06702585 0 −0.06702585
0.43879982 −0.06702585 0

]
.
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This suggests that X1, X2, and X3 are connected in θ̂NW and θ̂PL, and the screening rule makes
mistakes in this example. However, in θ̂NW

min, X2 is fully disconnected from X1 and X3, which is
guaranteed by Theorem 5.

A.7 Proof of Theorem 3

Proof. Let j ∈ {1, 2, · · · , p− 1} be given, by the KKT conditions of (5), for the θ̂NW
\i,j component,

1

n

n∑
k=1

2x
(k)
\i,j

y(k)
i −

1

1 + exp
(
−η̂(k)
\i

)
 = λtj , (12)

where tj is the jth component of the subgradient. Since λ = λNW
max ⇔ θ̂NW = 0⇒ η̂

(k)
\i = 0, ∀i ∈ V ,

∀k, we have that

y
(k)
i −

1

1 + exp
(
−η̂(k)
\i

) = y
(k)
i −

1

2
=

1

2
x

(k)
i . (13)

Substitute (13) into (12) yields |EXXiXj | ≤ λNW
max = λmax, where we have used the fact that |tj | ≤ 1

and Theorem 2.

A.8 Proof of Theorem 4

Proof. We follow an argument that is similar to the proof of Theorem 3. Specifically, without loss of
generality, we consider the case where i < j. When λ = λPL

max, by the KKT conditions of (6) with
respect to θ̂PL

ij :∣∣∣∣∣ 1n
n∑
k=1

[
2x

(k)
j

(
y

(k)
i −

1

2

)
+ 2x

(k)
i

(
y

(k)
j −

1

2

)]∣∣∣∣∣ =

∣∣∣∣∣ 2n
n∑
k=1

x
(k)
i x

(k)
j

∣∣∣∣∣ ≤ λPL
max ⇒ |EXXiXj | ≤

λPL
max

2
.

Using Theorem 2 we have that λPL
max = 2λmax.

A.9 Proof of Theorem 5

Proof. We first prove necessity. θ̂NW
\i = 0 ⇒ η̂

(k)
\i = 0,∀k ⇒ (13) can be satisfied ⇒ (12) can

be satisfied using (13) ⇒ λNW ≥ maxj∈V \{i}|EXXiXj |. Note that θ̂NW
\i = 0 implies that Xi

is fully disconnected in θ̂NW
min. We then prove sufficiency. To this end, ∀j ∈ V \ {i}, we set

θ̃NW
ij = 0. That is to say, θ̃NW

\i = 0. Following the same rationale behind the proof of necessity,

and using the assumption that λNW ≥ maxj∈V \{i}|EXXiXj |, the KKT conditions for θ̃NW
\i = 0

can be satisfied. The KKT conditions for θ̃NW
\j ’s, where j ∈ V \ {i} can be trivially satisfied by

solving the corresponding penalized logistic regression problems. Therefore, θ̃NW is indeed optimal.
i.e. θ̃NW = θ̂NW. Furthermore, by the definition of θ̂NW

min,
(
θ̂NW

min

)
ij

=
(
θ̂NW

min

)
ji

= 0 because θ̃NW
\i = 0.

Therefore, Xi is fully disconnected from the remaining nodes in θ̂NW
min.

B Experiments

B.1 Model Selection Experiment

Our model selection procedure is a variant of that in Liu et al. 2010. To introduce enough variation,
we neglect edges that do not show up in the solutions at least once under any λ ∈ Λ when computing
the total instability defined in Liu et al. 2010. We choose β = 0.1 defined in the paper. We refer
interested readers to the paper for the details of StARS.
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B.2 Exact Optimization

To demonstrate the efficiency gain provided by the screening rule in exact optimization, we consider a
dataset of 1600 samples generated from a network with 16 power law degree distributed subnetworks
of 16 nodes. We select λ∗NW using the model selection procedure in Section 5.2 and compute the
exact solution under λ∗NW using the proximal gradient method with constant step length [Pena and
Tibshirani, 2016]. Under λ∗NW, the network can be successfully divided into 16 blocks according to
the screening rule. Without further assumption on the structure of the subnetworks, we then compute
the solution to each block separately in parallel using the NW solution as initialization. The problem
can be solved in about 90 seconds. Since there are 256 nodes in the network, exact optimization in
this fashion would be unimaginable had the screening rule not been applied to this problem.

C Generalization

Formally, the generalized screening rule for Ising models with unary potentials is given by Theorem 7.
Theorem 7. Let a partition of V, {C1, C2, · · · , CL}, be given. Let the dataset X ={
x(1), x(2), · · · , x(n)

}
be given. Define EXXiXj = 1

n

∑n
k=1 x

(k)
i x

(k)
j , and EXXi = 1

n

∑n
k=1 x

(k)
i .

A necessary and sufficient condition for θ̂ to be blockwise with respect to the given partition is that

|EXXiXj − EXXiEXXj | ≤ λ,

for all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl, j ∈ Cl′ .

C.1 A Lemma

To show that Theorem 7 is true, we first show that the following lemma is true:
Lemma 2. Let θ be given, and let Cl and Cl′ be two elements of a partition of V , where l 6= l′. If
the nodes in Cl are not connected with the nodes in Cl′ , i.e., ∀i ∈ Cl and ∀j ∈ Cl′ , θij = 0, then

EθXiXj = EθXiEθXj . (14)

Proof. Without loss of generality, suppose V is partitioned as {Cl, Cl′}. Since Cl and Cl′ are dis-
connected, Pθ(x) = PCl

(x)PCl′ (x), where PCl
(x) and PCl′ (x) represent the marginal distributions

among the variables indexed by Cl and Cl′ , respectively. Therefore, ∀i ∈ Cl and ∀j ∈ Cl′ ,

EθXiXj =
∑
x∈X

xixjPθ(x) =
∑
x∈X

xixjPCl
(x)PCl′ (x)

=
∑
xi,xj∈
{−1,1}

xixjP(xi)P(xj) =

 ∑
xi∈{−1,1}

xiP(xi)

 ∑
xj∈{−1,1}

xjP(xj)


=EθXiEθXj .

C.2 Optimality Conditions

Consider the KKT conditions for (7). The KKT condition for θ̂ii is:

EXXi = Eθ̂Xi. (15)

The KKT condition for θ̂ij , where i 6= j, is:

Eθ̂XiXj − EXXiXj + λtij = 0. (16)

C.3 Proof of Theorem 7

Proof. We first prove necessity. Since θ̂ is blockwise, by Lemma 2, Eθ̂XiXj = Eθ̂XiEθ̂Xj , for
all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl, j ∈ Cl′ . By the KKT condition in
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(15) and (16), λtij = EXXiXj −Eθ̂XiXj = EXXiXj −Eθ̂XiEθ̂Xj = EXXiXj −EXXiEXXj ⇒
|EXXiXj − EXXiEXXj | ≤ λ, for all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl,
j ∈ Cl′ . Note that we have used the fact that θ̂ij = 0⇒ |tij | ≤ 1.

We then prove sufficiency via construction techniques. Specifically, we construct a blockwise θ̃ and
show that θ̃ satisfies KKT conditions so that θ̃ is, in fact, optimal, i.e., θ̃ = θ̂. For this purpose, we
first set all the off-block-diagonal elements in θ̃ that satisfy (4) to zeros. In this way, θ̃ is blockwise
with respect to the partition {C1, C2, · · · , CL} and hence Lemma 2 can be applied. The consequence
is that Eθ̃XiXj = Eθ̃XiEθ̃Xj , for all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl,
j ∈ Cl′ . Therefore, the KKT conditions for these off-block-diagonal zero elements of θ̃ can be
satisfied. Furthermore, now that θ̃ is blockwise, the block diagonal elements can also be computed
via exact optimization separately. In this way, the KKT conditions for the block diagonal elements of
θ̃ can also be satisfied. We have shown that all the elements in θ̃ satisfy KKT conditions. Therefore,
θ̃ constructed in this way is indeed optimal and hence θ̃ = θ̂.

C.4 Interpretations

A most noteworthy consequence of Theorem 7 is that the blockwise structure of an Ising model with
unary potentials can be identified in the exact same way as the blockwise structure of a Gaussian
graphical model. This can be seen by comparing Theorem 7 with the results in Witten et al. [2011],
and Mazumder and Hastie [2012]. Such a correspondence between Ising models and Gaussian
graphical models have striking implications.

Since Gaussian graphical models enjoy the precious property that the sparsity pattern of its precision
matrix corresponds to the sparsity pattern of its structure, it might not be surprising that a screening
rule for sample covariance matrix can offer an effective approach to identify the blockwise structure
of a Gaussian graphical model. On the contrary, in the regime of Ising models, in general there is
no element-to-element exact sparsity pattern equivalence. Nonetheless, granted by Theorem 7, the
block structure of an Ising model with unary potentials can still be identified by the same procedure
as in the Gaussian case, which establishes an easily verifiable correspondence between the sample
covariance matrix and the underlying structure for Ising models. This verifiable correspondence
also distinguishes our work from Loh et al. [2012, 2013], where the correspondence between an
unverifiable generalized precision matrix and the structure of a discrete graphical model is established.
Our work is also different from Loh et al. [2012, 2013] in terms of the objective functions. While we
consider the optimization perspective of the MLE problem in this work, the log-determinant problem
is considered in Loh et al. [2012, 2013] with an emphasis on statistical consistency.

Furthermore, to the best of our knowledge, the screening rule in Witten et al. [2011] and Mazumder
and Hastie [2012] is the strongest safe blockwise screening for Gaussian graphical models in
the literature. Given the general intractability of discrete graphical model learning via maximum
likelihood, the same safe screening achieved for Ising models provides an especially valuable and
desperately needed guarantee that is as strong as the best known result for its polynomial-time
Gaussian counterpart.

C.5 Experiments

To demonstrate the utility of the screening rule for Ising models with unary potentials, we generate a
network that consists of 40 power law degree distributed subnetworks of 20 nodes. The weights on
the edges are generated in the same way as in Section 5. The weights on all nodes are set to be 0.1
for simplicity. As many as 1600 samples are used for learning. Figure 4 reports the runtime as well
as the AUC of pathwise optimization using NW with and without screening for Ising models with
unary potentials. The phenomenon we observed in this case is consistent with the phenomenon for
Ising models with only pairwise potentials. The screening can accelerate learning tremendously and
in this experiment even delivers lossless screening. This can be seen from Figure 4b, where the AUC
v.s. λ curves of NW with and without screening completely overlap with each other.
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Figure 4: Runtime and support recovery performance for Ising models with unary potentials. Note
that in in Figure 4b, the two curves overlap.
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