A Theorems from Literature

In this section we reproduce here some previous theorems and notation for reference.

A.1 Follow-the-Regularized-Leader

The Follow-the-Regularized-Leader (FTRL) framework for online optimization suggests choosing w1 accord-
ing to the rule:

Wiyl = Argmin g - w + e (w)
1%

where v, (w) is a function chosen by the algorithm called a regularizer. We use the following bound on the
regret of FTRL, which is proved in [7]:

Theorem 12. Let gi, . .., gr be an arbitrary sequence of subgradients. Define go = 0 for notational conve-
nience. Let 1o, 1, ..., Y11 be a sequence of regularizer functions, such that 1. is chosen without knowledge
of gt+1,...,97. Let wf, AP w; be an arbitrary sequences of regularizer functions (possibly chosen with
knowledge of the full subgradient sequence). Define w1, . .., wr to be the outputs of FTRL with regularizers \;:
wig1 = argmin P (w) + gr:¢ - w, and define wi fort =2,..., T+ 1 by w} | = argmintp; (w) + g1t - w
Then FTRL with regularizers 1+ obtains regret

T T
D ge- (we —u) <9 (u) = do(wy) + ) Ye-r(wiin) = o (W) + g - (we = wiiy)

t=1 t=1

T-1
+ Z Ui (whia) — Ye(wiiys)
t=1

In the next subsection we recall the notion of an adaptive regularizer [7]], which is a function ¢) whose properties
make it an easy building block for FTRL regularizers v)¢. The analysis of FREEREXMOMENTUM is based upon
the observation that its regularizers are constructed using an adaptive regularizer.

A.2 Adaptive Regularizers

Before defining adaptive regularizers, we briefly introduce a minor generalization of strong-convexity below:

Definition 13. Let W be a convex space and let ¢ : W2 — R by an arbitrary function. We say a convex
Sunction f : W — Riis o(-, -)-strongly convex with respect to a norm || - || if for all x,y € W and g € 9f (z)
we have

J) > @) g (y— ) + D@y

We will exclusively make use of the special case o(w, z) = min(o(w), o(z)), and we will write o-strongly
convex instead of o (-)-strongly convex in all cases. Next we give the definition of adaptive regularizers:

Definition 14. Any differentiable function v : W — R is called a (o, || - ||)-adaptive regularizer if it that
satisfies the following conditions:

1. %(0) = 0.

2. (z) is o-strongly-convex with respect to some norm || - || for some o : W — R such that ||z|| > ||y||
implies o(z) < o(y).

3. For any C, there exists a B such that ¥ (z)o(x) > C for all ||z|| > B.

Associated to every adaptive regularizer ¢, we define the function h(w) = (w)o(w), and define h ™' (z) =
MaXn(z) <z [|2]]

Finally, we provide a general construction that converts an adaptive regularizer into a sequence of regularizers
1¢ used in FTRL (and in particular in FREEREXMOMENTUM). In the following we make use of the dual norm
Il - ll«, which is defined by ||z||» = sup), =1 - ¥-
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Definition 15. Let || - || be a norm and || - || be the dual norm (||z||. = sup, = = - y). Let g1,...,gr be a
sequence of subgradients and set Ly = maxy <y ||g¢||+. Define the sequences % and ay recursively by:

1
— =0
o
1 1 2
Ty = max (4 2l Lilgvall. )
n; (77752—1 -
1
a1 = ——
P (Lam)?
a; = max [ a L
=max | ap_1, ————
t t—1, (Lt’r]t)2
Suppose V¥ is a (o, || - ||)-adaptive regularizer and k > 0. Let W1, . .., Wt be an arbitrary sequence of vectors.
Define
bu(w) = o y(an(w —m)
¢ e t
w1 = argmin s (w) + g1t - w
weWw

In order to use Theorem we’ll need do define some “shadow regularizers” v, , which we do below:

Definition 16. Given a norm || - || and a sequence of subgradients g1, . .., gr, define L; and Y]—lt as in Definition
and define Lo = L1. We define - recursively by:
Mt

1 1

ng Mo

1 1 .
sy = ma (o 2l min(lg . L) Lot el )

Further, given a k > 1 and a non-decreasing sequence of positive numbers a;, define ;" by:

w?(w) = 774_515711/)(%—1(10 — Et—l))

wi, = argmin O (w) + gt - w
w

The following is the key technical Lemma from [7]. That paper does not take into account the “shifting”
parameter w; and so technically the Lemma as proven there does not apply. However, by applying the change-
of-coordinates w — w — w¢—_1 we see that the “shifting” does not effect the conclusion.

Lemma 17. Suppose ¢ is a (o, || - ||)-adaptive regularizer and g, . . ., gr is an arbitrary sequence of sub-
gradients (possibly chosen adaptively). We use the regularizers of Definition [I3] Recall that we define
h(w) = Y(w)o(w) and h™' (x) = argmaxy, <, ||wl|. Define

Opin = inf ko (w)
lwl|<h=1(10/k2)
and
h! (5 Lt )
D = 2 max _ ki)
t at—1
Then

wt—l(wtttl) - w:_(w:_ﬂ) + gt (we — wt++1)
{ llg [« min(D, max; (||ws — w4 ]]))  when ||gi|| > 2Li—1

P 2
3llgel|?n;t
Qt—1%min

otherwise

We copy over four final Lemmas from [7]] that we include here for reference:
Proposition 18. Suppose 1 : W — Ris a (o,|| - ||)-adaptive regularizer. Then @ is an increasing function
ofaforalla > 0 forallw e W.
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Lemma 19. Let oy be defined by

o 1
0= (Lim)?
ar = max | ae—1,
t ( t—1 Lt’)’]t )
Then
2(llgll e o 2(lgl2)
Ly - L2
Lemma 20. 1.
2
o el < =
] llgell<2L;—y i
2. Suppose o is defined by
o — 1
O (Lam)?

1
G (0‘“’ W)

then
+
2
Z ||gt||* nt S 15Lmax
at—1
t lgell«<2Ly—1
Lemma 21. Let a1, ...,an be a sequence of non-negative numbers such that a;+1 > 2a;. Then

M
Z a; < 2apm
i=1

B Proof of Main Theorem

B.1 Proposition

First, we prove the simple Proposition 3} restated below for reference:
Proposition 5. If a, b, ¢ and d are non-negative constants such that
< avbr +c+d
Then
z < 4a*b + 2a+/c + 2d

Proof. Suppose x > 2d. Then we have

Now we use the quadratic formula to obtain
2 1}2 2
< 4a b+ v 16a%b? 4 16a2c
- 2 2
< 4a’b + 2a+/c

Since we assumed z > 2d to obtain this bound, we conclude that z is at most the maximum of 4a®b + 2a+/c
and 2d, which is bounded by their sum. O

B.2 Proof of Theorem/[]

Our strategy is based on the observation that FREEREXMOMENTUM is FTRL with regularizers ¢ (w) =
(a¢||w — @) for p(x) = (x + 1) log(x + 1) — = and k = /5, as can be easily verified by inspection

Sty lgtllwe
5+1lgll1:e
substitute & = v/5 and § = 1 at the end to derive the bound for FREEREXMOMENTUM. We think this strategy

clarifies the roles of the constants in the regret bound.

k
atmnt

of the updates. We will derive results for the case of arbitrary k and w; = for arbitrary §, and then

The following Theorem is nearly identical to the result in [7]], but is very slightly generalized to our purposes:
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Theorem 22. Suppose v is a (o, || - ||)-adaptive regularizer and g1, ..., gr is some arbitrary sequence of
subgradients.

Set

Opin = inf ko (w)
lwl<h=1(10/k2)

Ly _1( 5L ) + >
D = max max h S we —w
t ((Ilglli)mfl BL, ) vl

o —alflr
Then FTRL with regularizers )¢ achieves regret
k 451 =
Rr(u) S 5o tb(Qr(u = 7)) + — 25 4 2LmancD + 97 (w) = r(w) + D 0 (wi'a) = r(wiia)
min t=1

Proof. Using Theorem[I2]and Lemma[T7] our regret is bounded by

T
Rr(u) < ¢r(u) + Z¢t—1(wj_+1) - ¢t+(w2—+1) + gi(we — w;:-1)
T-1

+ 97 (uw) — Yr(u) + Z Ui (wfia) — Ye(wiys)

T
< Yr(u) + sz—l(w?ﬂ) — O (wi) + ge(we — wiiy)

t=1

+ i (u) — Yr(u) + ) o (wihe) — ve(w]io)

t=1

. 3l .
<yr(w)+ > + 9|«
Qt—10min
llgtll«<2L¢—1 lgell«>2L¢ 1
T—1

+ o7 () —dr(w) + Y ol (wha) — vi(wiy)

where D’ is defined by

(55 )

/
D’ = 2max
t at—1

Now we use Lemma[I9]to conclude that

2
D' < D =max th_l ! (5 Ly )
t (“g“*)l:t—l kLt—l

so that we have

2, +
Rr(u) <¢r(u)+ Y Bllgelme” > gD

At —10min
llgellx<2L¢—1 llgellx>2L¢—1

T
+ 7 (u) — Pr(u) + > o (wihs) — Pu(wio)

Now using Lemma[20] we can simplify this to

k 45 Limax
—¢(aru) + + > llelD

aT Omin
ey lgelle>2Ls_1

Rr (u) <

T
+f (w) = r(u) + DO (w]is) = Ye(wfis)
t=1
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Next, observe that each value of [|g ||« inthe sum 3=, .\~ [lg¢l+ D is at least twice the previous value,
so that by Lemma 2] we conclude

k 45 Lmax
RT(U) S T ’l/]((lT’LL) + - + 2LmaxD

GTT]T Omin
T—1

+ 97 (u) — Yr(u) + Z Ui (witya) — Ye(wils)

Finally, we observe that (by Lemma, ar < 2% = Qr, which gives the first inequality in the Theorem
statement. O
‘We need the next theorem to convert 45(5# t0 405 L max:

Lemma 23. Suppose (w) = ((Jlw|| + 1) log(||w|| + 1) — ||w]||). Then ) is a (HH%’ Il - I|)-adaptive regular-
izer. Using the terminology of Theoremfor k=5, % < 405Lmax.

Proof. The fact that 1) is an adaptive regularizer is proved in [7]] Proposition 9. For the second statement, we
have

45 Lnax 45 Lnax
min i <h1(10/02) ko ()
C wp SLes(ul )
lwll<h=1(10/k2) k
_ 45Lmax(h ' (10/K%) + 1)
k

Now it remains to compute an expression for 2~ *. First we compute a bound on h:

w
nw) = (1oglu + 1) - L)
> gl + 1) ~ 1
so that

B (x/k?) < exp(z/k®+1) —1

—1 2
Now we numerically evaluate 45L’T"‘“‘ = BLmax(h~(10/kD)H1) yeino k= v/5 to conclude the desired
y O min k g

bound. O

So now we go to work to bound ¥ (u) — Pr(u) + 31, U (wiln) — Ye(w]iy).

Lemma 24. For any increasing sequence of numbers {x+},

r—x T
ST gy <l)
=1 Tt 1
Proof. By concavity of log, we have
log(x:) — log(zs—1) > %
t

from which the result easily follows by telescoping a sum. O
Lemma 25. Suppose {z:} and {o} are non-negative real numbers such that \/Tio; > \/Ti—10¢—1 for all t.

Then
d (¢ — p—1)0¢ xT
E ~— 7 < Jrrorlog| —
=R g<=’”1)

Proof. We have \/zi0: < \/xroT so that

TrToT

= Um

Ot
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Therefore

We make a suggestive definition:

Definition 26. Given some 6 > 0,
ze =6+ ([lgll)1:

o Ulgllw)us
Tt
_ \/ Blwell2 + Sty llgel oo — e
Tt

Observe that the values of wy given in the psuedo-code for FREEREXMOMENTUM match the values above for
0 = 1. We will carry through all our calculations for general §, and then substitute 6 = 1 at the very end to
obtain our regret bound.

Consider a random vector that takes on value w; # 0 for ¢ < 7" with probability proportional to ||g¢ || and value

0 with probability proportional to § + >°° ,—0 |19t||+- Then the expectation of this vector is wr and o5 is its
variance. Thus for any vector X, by a standard bias-variance decomposition we have

T
5X* 4+ llgell<lIX —wr|?* = 2r(oF + IX —wr]|*)
t=1
Lemma 27. Using the definitions in Definition[26] for all T':

gz |ls|lwr — w7 |*

QUT\/.TT

oT\/TT — OT—1\/TT_1 >

Proof.
T
orv/aT = | ST + 3 Ngells o — w72
t=1
Ry s gz |« llwr — w7

> \[ 81z + 3 llgellullwe — w72 + ——— z —
= 28172 + L, lgell [l — w72

_ o1 + 3 gl lws — 2 + Jorlelwr — o7
pt 207r/TT

And also we have

T—-1
Sl[@zl* + Y llgell«llwe — wrl|* = wr—1 (071 + |[wr —wr—1]|*)
t=1
2
> Tr-107_1
and so we can conclude the desired inequality. O

Lemma 28. Again using the terms from Deﬁnition@ we have

T
gl l]we — oy
LA k| I S L / ]

Z /xt S orVaIT 2+ 0g 5+L1

t=1
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Proof. From Lem.ma we see that when ||w; —w¢|| > o, we have W < 204/Tt —20¢—1+/Tt—1
so that we can write:

T T

llge |l [|we — ]| l[ge|l <o
E = < 207+/xT + E —
=1 VT = VTt

Now we observe (e.g. by Lemma that o/t > 0¢—1,/T1—1 for all t and that ||g¢||. = &+ — z¢—1 so that
applying Lemma 23] we have

T

3 llg¢ I« [lwe — we | (xT)
< 20' VI +U VI lO —_—

— \/E ~ T T T T g z1

as desired. O

Proposition 29. Let a1, ..., ar be non-negative numbers. Then

i at < 3 _ 2
— (a14)%? T a a1
Proof. We proceed by induction. For the base case, we have

zl: I
=1 (alzt)3/2 a

1

T a?
Suppose that >, _, W S IE A

By concavity of — % we have

( 3 _ 2 ) _ ( 3 _ 2 ) > ar+1
Va1 \/01:T+1 Va1 Vvoir ) — (alzT+1)3/2
By the induction assumption we have

T+1

Z at < 3 - 2 + arT+1
— (alzt)3/2 ~ Jar  yanr (al:T+1)3/2
<3 2
~ Var  yJarTia
as desired. O

Lemma 30. Define w; as in Deﬁnition Define My = sup,, ,ew |IV¥(at(w — w"))||. Then using the
terminology of Definition[I3] we have

T—1
Y (u) — o (u) + Z U (W) — Ye(wis) < 01V2Lhmax®r (2 + log <%)> max M,
t=1

L 2L
R il St max |[we=1 — wel| m?XMt

Vo + L
Proof. From Proposition we see that ﬁw(at_la:) < a%lﬂ(atl‘) for all . Therefore we have:
1

W () =) = o (i ~ ) — L (aa(wis —T0)

< L p(ar(wiys — W) - ——(ar(wiis — W)

e Neat
< 'I’]tlat |V (ar(wi o — @i=1))||wae || — We—1]|
= HWZLH max ||V (ae (wis = wi=1))ll
<

||7~U7t — Wt—1 H V2L maxXt mtax ||v¢(a’t(w:r+2 - wt—l))H*
< we = W=t || V2 Lmaxx max M,
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Where in the last step we observe n—lf < /2Lmax(||g][«)1:¢ < V/2Lmaxxt, which can be easily deduced by
induction, or from Proposition 19 of [7].

The exact same argument can be used to show

7 (u) = Pr(w) < |@F — Wr—1||V2Lmaxor max M;

Next we characterize Wy — W—1:

(0 + (lgll)re—1)we= + [|ge]l<we

Wi—1 — Wt = Wt—1 —

5+ (lgll)r:e
lgells . —
= — o~ (W1 —wy)
5+ (llgll )=
We can take this calculation one step further:
o lgells
Vi (u) — r(u) + Wim1 — Wy = —— o (Wi=1 — W)
rl =t 5+ (lall e
llgell« lgell«
= ———"— (W —w) + ———~— (W—1 — Wy)
5+ (lgll)a:e 6+ (llgll«):e
lgells llgell .
= o (W — we) + e (Wit — we)
5+ (llgll+)r:e (0 + (llgll)1:¢)?
Thus we have
T—1 T
Z w?(wj+2) - wt(w;2) S Z Hm - wtle \% 2Lmaxmt mtaX Mt
t=1 —

Zv Lmax||g¢ ||« ][ — we|

V2Lmax]|ge |2l @i—1 — wi|

max M;
t

Z

3/2 max M;

< orV2mmtr (z g (LT)) imax My
1

Lmax 2LII]E}X [
+ 3ﬁ max [wi—1 — we| mtaxMt
Where we’ve used Proposition[29]to conclude that
Z llg H2 3 Lmax
t=1 mf/2 T Vot Ly
and also used Lemma [28]in the last inequality. O
Now if we restrict ourselves to a bounded domain of diameter B and use the regularizer ¢ (w) = (||w| +

1) log(Jjw|| + 1) — |Jw]||, we obtain
mtaxMt < log(Bar)

so that we have

T—1 T
__ __ 0+
> i (wiha) = dn(wia) < 2L <5|wT|2 3 ol - wT|2> (24108 (SEIE ) ) tog(ran)
t=1 t=1
+37Lmax 2LmaXBlog(BaT)
Vo + Ly

Combining this with Theoremand Lemmaand using § = 1 and k = /5 we have proved a regret bound
on FTRL with regularizers ¢y = %w(wt — wy) with ¥ = (JJw|| + 1) log(||w|] + 1) — ||w]||. Recall that
FREEREXMOMENTUM is precisely FTRL with these regularizers, so we have proved Theoremm

17



_ 2”9\\1 T

Theorem 1. Let (w) = (JJw|| + 1) log(||lw]| + 1) — ||w||. Set Ly = maxy < ||gw ]|, e
Deﬁne — and a; as in the pseudo-code for FREEREXMOMENTUM (Algorlthml) Then the regret of FREEREX-
MOMENTUM is bounded by:

* \/g * R max \/ m'uc
S g (w—w) < - +405Lmax + 2LmaxB + 3= 2———""Blog(Bar +1
gt (wy —w*) < Qi (Qr(w* —wr)) . og(Bar )

T
__ . +
| 2L <||wT||2 + 5 el lwn — wT||2> (2 +log< Lol T)) log(Bar + 1)

2. L+ [lgu]

B.3 Proof of Corollaries 2] and

First we prove Corollary [2] restated below:

Corollary 2. Under the assumptions and notation of Theorem m the regret of FREEREXMOMENTUM is
bounded by:

T

T
D g (we —w”) < 2V5, | Linax (Iw*l2 + > llgellllwr — Wt||2> log(2BT + 1)(2 + log(T))
t=1

t=1
Lmax \% 2Lm

+ 405Lmax + 2LmaxB + 3 X Blog(2BT +1
V14 Ly ( )

Proof. We need the observations
P(w) < Jlwlllog(flwll +1)
1
— < V2Lmax(1 + |lgll:7)

nr
ar S 2T

Using these identities with Theorem [T] gives us

T
> g+ (wi = w) < VBy2wt = W[ Lnax(1 + [lgllir) log(2BT + 1)

t=1

T

+\| 2L (|wT|2 + 5 lgellfwe — wT|2> (2 + log (T)) log(2BT + 1)
t=1

Lmax Vv 2LIH&X

+ 405Lmax + 2LmaxB +3
VI+Li

Blog(2BT + 1)

Now use \/a + v/b < v/2a + 2b to reach the conclusion:

T T
D g (we—w”) < 2V5, | Linax (Iw* — w721+ llgllr) + @71 + Y llgellllwe — wTIQ)

t=1 t=1
x log(2BT + 1)(2 + log(T))

max \/ max

+ 405Lmax + 2LmaxB +3—————
\/ 1

Blog(2BT + 1)

T

< 2v5, | Limax (I'w*ll2 + > llgellw — wtll2> log(2T'B +1)(2 + log(T))
t=1

max\/ max

+ 405Lmax + 2LmaxB + 3———
\/7

Blog(2BT + 1)

Now we Corollary EL again restated below:
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Corollary 3. The regret of coordinate-wise FREEREXMOMENTUM is bounded by:

T T
> ge- (wi —w*) <2v5,| dLmax (Cllw*ll2 + > llgelllwr — wt|2> log(2T'b + 1)(2 + 1og(T))

t=1 t=1
max V m

+405d Linax + 2Lmaxdb + 3d 2220 06 (96T + 1
VI+Ly ( )

Proof. The Corollary follows by application of Cauchy-Schwarz inequality to Corollary 2] Recall that

T

T d
u)ﬁth-(wt—u Zthzwti—uz)
=1

i=1 t=1

So that the regret can be computed by summing the regret bound of Corollary|2|across dimensions:

d T

u) <2V5 ) | Limax <(w¢*)2 + D lgel(w; — wm‘)2> log (20T + 1)(2 + 1og(T))
i=1 t=1

Lmax\/ 2Ly

+ d405Lmax + 2dLmaxb + 3d ZXblog(2bT + 1
VA &( )

d T

< 2V/5, | dLimax <d||w*|2 D lgal(wr - wm-)2> log(2bT + 1)(2 + log(T))

i=1 t=1

7Lmax : 2Lm‘""‘blog(2bT +1)
V14 L4

D (wp —wei)* | log(2bT + 1)(2 + log(T))

+ d405 Lmax + 2dLmaxb + 3d

T
<2V5 | dLmas | w2+ > [lg:ll

t=1 =1
+ d405 Linax + 2d Lmaxb + 3delog(2bT +1)
max max m
T d
< 2v5, | dLumax <d||w*|2 + 3 Mgl S s — wt,»n?) log(2bT + 1)(2 + log(T))
t=1 i=1
max V max
+ d405 L max + 2dLmaxb + 3d———=—0log (20T + 1
VI+ Lo ( )
where the first inequality follows from convexity of 1/, the second from Cauchy-Schwarz, and the third because
(|3 = /i 2 < ll=]3. O



