
A Fast low-rank approximation of AAT

We give an algorithm which matches the lower bound of Theorem 3.
Theorem 10. There is an algorithm, which given A 2 Rn⇥d computes N 2 Rn⇥k in O(nnz(A)k)+
n · poly(k/✏) time such that probability 99/100:

kAAT �NNT k2F  (1 + ✏)kAAT � (AAT
)kk2F .

Proof. It is known (see Lemma 11 of [CW17]) that there exists a distribution over random matrices
R,S 2 Rn⇥O(k/✏) which can be applied to A in O(nnz(A)) + n · poly(k/✏) time such that with
probability 199/200, setting

Y ⇤
= argmin

Y 2O(k/✏)⇥O(k/✏) with rank k

kAATRY STAAT �AAT k2F

we have:

kAATRY ⇤STAAT �AAT k2F  (1 + ✏)kAAT � (AAT
)kk2F .

We can solve for an approximately optimal ˜Y by further sketching our problem on the left and
right (similar to the technique used in Lemma 15 of [CW17]). Specifically, if we let TL, TR 2
Rn⇥poly(k/✏) be drawn from the Count Sketch distribution, we can solve:

˜Y = argmin

Y 2O(k/✏)⇥O(k/✏) with rank k

kTT
L AATRY STAATTR � TT

L AATTRk2F

and are guaranteed that with probability 99/100,

kAATR ˜Y STAAT �AAT k2F  (1 + 2✏)kAAT � (AAT
)kk2F . (11)

Computing ˜Y requires forming TT
L A, ATR, STA, and ATTR and then multiplying the appropriate

matrices together. This takes O(nnz(A)) + n poly(k/✏) time. Once TT
L AATR, STAATTR and

TT
L AATTR have been formed we can solve for ˜Y in poly(k/✏) time using the formula of [FT07].

Finally, since ˜Y is rank-k we can factor ˜Y = V V T for V 2 RO(k/✏)⇥k using the SVD. We can then
compute N

1

= AATRV 2 Rn⇥k and N
3

= AATSV 2 Rn⇥k which satisfy kAAT �N
1

NT
2

k2F 
(1 + 2✏)kAAT � (AAT

)kk2F with probability 99/100 by (11).

N
1

and N
2

both require O(nnz(A)k) + n · poly(k/✏) time to compute. The theorem follows from
adjusting constants on ✏ and noting that we can symmetrize N

1

NT
2

to form NNT if desired in
n · poly(k/✏) time.

B Hardness of outputting a low-rank subspace

Theorem 3 shows a lower bound on outputting a relative-error low-rank approximation to MMT .
Here we show that this hardness extends to the possibly easier problem of just outputting a low-rank
span that contains a relative-error low-rank approximation. This result extends analogously to the
other kernel lower bounds discussed in Section 2.
Theorem 11 (Hardness of low-rank span for MMT ). Assume there is an algorithm A which
given any M 2 Rn⇥d returns orthonormal Z 2 Rn⇥k such that kMMT � ZZTMMT k2F 
�

1

kMMT � (MMT
)kk2F in T (M,k) time for some approximation factor �

1

.

For any A 2 Rn⇥d and C 2 Rd⇥k each with integer entries in [��

2

,�
2

], let B = [AT , wC]

T

where w = 3

p
�

1

�

2

2

nd. It is possible to compute the product AC in time T (B, 2k) + ˜O((n +

d)k!�1

).

Proof. ZZTMMT is the projection of M onto the column span of Z. This projection can be
performed approximately using standard leverage score sampling techniques (see e.g., [CW13]).
Let S 2 Rs⇥n be a sampling matrix sampling rows of Z by its row norms (its leverage scores since
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it is orthonormal) where s = c(k log k) or some sufficiently large constant c. Let R be the n ⇥ k
matrix which selects the last k columns of MMT .

Letting X⇤
= argminX2k⇥k kZXT � MMTRk2F and X = argminX2k⇥k kSZXT �

SMMTRk2F we have by a well known leverage score approximate regression result with high
probability in k:

kZXT �MMTRk2F = O(1) · kZ(X⇤
)

T �MMTRk2F
= O(1) · kZZTMMTR�MMTRk2F
= O(�

1

)kMMT � (MMT
)kk2F .

Further, computing X requires ˜O(dk!�1

) time to compute the O(k log k)⇥ k submatrix SMMTR

as well as ˜O(k!) =

˜O(nk!�1

) to perform the regression. This gives the result via Theorem
3 since computing Z with rank-2k ZXT gives a low-rank approximation of MMT with error
O(�

1

)kMMT �(MMT
)

2kk2F measured on the last k columns of M . Small error on these columns
is all that is needed to recover AC accurately (see proof of Theorem 3).

C Additional lower bound proofs

We now prove our hardness result for kernels depending on the squared distance kai � ajk2
2

.

Theorem 5. Consider any kernel function  : Rd ⇥Rd ! R+ with  (ai, aj) = f(kai � ajk2) for
some function f which can be expanded as f(x) =

P1
q=0

cqx
q with c

1

6= 0 and |cq/c1|  Gq�1

and for all q � 2 and some G � 1.

Assume there is an algorithm A which given input M 2 Rn⇥d with kernel matrix K =

{ (mi,mj)}, returns N 2 Rn⇥k satisfying kK �NNT k2F  �

1

kK �Kkk in T (M,k) time.

For any A 2 Rn⇥d, C 2 Rd⇥k, with integer entries in [��

2

,�
2

], let B = [w
1

AT , w
2

C]

T

where w
1

=

w2

36

p
�1�

2
2nd

and w
2

=

1

(16Gd2
�

4
2)(36

p
�1�

2
2nd)

. It is possible to compute AC in time
T (B, 2k + 3) +O(nk!�1

).

Proof. Define the distance matrix D 2 Rn+k⇥n+k with Di,j = kbi � bjk2. Using the fact that
kbi � bjk2 = kbik2 + kbik2 � 2bTi bj we have D = E + ET � 2BBT where E is a rank-1 matrix
with all rows equal to [kb

1

k2
2

, ..., kbn+kk2
2

]. We can write the kernel matrix for B and k as:

K = c
0


1 1

1 1

�
+ c

1

(E + ET
)� 2c

1


w2

1

AAT w
1

w
2

AC
w

1

w
2

CTAT w2

2

CTC

�
+ c

2

D(2)

+ c
3

D(3)

+ ... (12)

where D
(q)
i,j = kbi � bjk2q . Let ¯K be K � c

0

· 1 � c
1

(E + ET
) , with its top n ⇥ n block set to

0. ¯K has rank at most 2k and if we set Q 2 Rn⇥2k+3 to be a matrix with columns spanning the
columns of ¯K, the all ones vector, E and ET , then letting N be the result of running A on B with
rank 2k + 3:

kK �NNT k2F  �

1

kK �QQTKk2F  �

1

����


�2c

1

w2

1

AAT
+ c

2

ˆD(2)

+ ... 0

0 0

�����
2

F

(13)

where ˆD(q) denotes the top left n⇥ n submatrix of D(q).

By our bounds on the entries of A, for i, j  n, kbi� bjk2  4d�2

2

w2

1

and by our setting of w
1

, w
2

,
plugging into (13) we have for all i, j:

|(K �NNT
)i,j |  kK �NNT kF (14)


p
�

1

n

 
2c

1

d�2

2

w2

1

+

1X

q=2

cq(4d�
2

2

w2

1

)

q

!


p
�

1

nc
1

d�2

2

w2

1

 
2 +

1X

q=2

(4Gd�2

2

w2

1

)

q�1

!
(Since |cq/c1|  Gq�1)

 3

p
�

1

nc
1

d�2

2

w2

1

 w
1

w
2

c
1

12

(15)
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where the second to last bound follows from the fact that w
1

< w
2

and w
2

is set small enough so
(4Gd�2

2

) · w2

2

⌧ 1/2 so the series converges to a sum < 1. Additionally, for i  n and j  k (i.e.,
considering the entries of K corresponding to AC) we have:

Ki,n+j = c
0

+ c
1

(E + ET
)i,n+j � 2c

1

w
1

w
2

(AC)i,j +

1X

q=2

cqD
(q)
i,n+j .

This last sum can be bounded by:
�����

1X

q=2

cqD
(q)
i,n+j

�����  c
1

1X

q=2

Gq�1

(4�

2

2

dw2

2

)

q (By assumption |cq/c1|  Gq�1)

 c
1

w
1

w
2

1X

q=2

Gq�1w
2(q�1)

2

w
2

w
1

�
4�

2

2

d
�q

 c
1

w
1

w
2

1X

q=2

Gq�1w2q�3

2

�
4�

2

2

d
�q (Using w2

w1
 1

w2
.)

 1

3

c
1

w
1

w
2

. (Using w
2

 1/4
16G�

4
2d

2 so the series converges.)

If we set v = NNT
i,n+j � c

0

� c
1

(E+ET
)i,n+j we thus have combining with (14) for i  n, j  k

|v + 2c
1

w
1

w
2

(AC)i,j | 
5c

1

w
1

w
2

12

and so we can compute (AC)i,j exactly by rounding v to the nearest integer multiple of c
1

w
1

w
2

.
This gives the theorem since we can compute the required entries of NNT and E in O(nk!�1

)

time.
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