
A Fast low-rank approximation of AAT

We give an algorithm which matches the lower bound of Theorem 3.
Theorem 10. There is an algorithm, which given A 2 Rn⇥d computes N 2 Rn⇥k in O(nnz(A)k)+
n · poly(k/✏) time such that probability 99/100:

kAAT �NNT k2F  (1 + ✏)kAAT � (AAT
)kk2F .

Proof. It is known (see Lemma 11 of [CW17]) that there exists a distribution over random matrices
R,S 2 Rn⇥O(k/✏) which can be applied to A in O(nnz(A)) + n · poly(k/✏) time such that with
probability 199/200, setting

Y ⇤
= argmin

Y 2O(k/✏)⇥O(k/✏) with rank k

kAATRY STAAT �AAT k2F

we have:

kAATRY ⇤STAAT �AAT k2F  (1 + ✏)kAAT � (AAT
)kk2F .

We can solve for an approximately optimal ˜Y by further sketching our problem on the left and
right (similar to the technique used in Lemma 15 of [CW17]). Specifically, if we let TL, TR 2
Rn⇥poly(k/✏) be drawn from the Count Sketch distribution, we can solve:

˜Y = argmin

Y 2O(k/✏)⇥O(k/✏) with rank k

kTT
L AATRY STAATTR � TT

L AATTRk2F

and are guaranteed that with probability 99/100,

kAATR ˜Y STAAT �AAT k2F  (1 + 2✏)kAAT � (AAT
)kk2F . (11)

Computing ˜Y requires forming TT
L A, ATR, STA, and ATTR and then multiplying the appropriate

matrices together. This takes O(nnz(A)) + n poly(k/✏) time. Once TT
L AATR, STAATTR and

TT
L AATTR have been formed we can solve for ˜Y in poly(k/✏) time using the formula of [FT07].

Finally, since ˜Y is rank-k we can factor ˜Y = V V T for V 2 RO(k/✏)⇥k using the SVD. We can then
compute N

1

= AATRV 2 Rn⇥k and N
3

= AATSV 2 Rn⇥k which satisfy kAAT �N
1

NT
2

k2F 
(1 + 2✏)kAAT � (AAT

)kk2F with probability 99/100 by (11).

N
1

and N
2

both require O(nnz(A)k) + n · poly(k/✏) time to compute. The theorem follows from
adjusting constants on ✏ and noting that we can symmetrize N

1

NT
2

to form NNT if desired in
n · poly(k/✏) time.

B Hardness of outputting a low-rank subspace

Theorem 3 shows a lower bound on outputting a relative-error low-rank approximation to MMT .
Here we show that this hardness extends to the possibly easier problem of just outputting a low-rank
span that contains a relative-error low-rank approximation. This result extends analogously to the
other kernel lower bounds discussed in Section 2.
Theorem 11 (Hardness of low-rank span for MMT). Assume there is an algorithm A which
given any M 2 Rn⇥d returns orthonormal Z 2 Rn⇥k such that kMMT � ZZTMMT k2F 
�

1

kMMT � (MMT
)kk2F in T (M,k) time for some approximation factor �

1

.

For any A 2 Rn⇥d and C 2 Rd⇥k each with integer entries in [��

2

,�
2

], let B = [AT , wC]

T

where w = 3

p
�

1

�

2

2

nd. It is possible to compute the product AC in time T (B, 2k) + ˜O((n +

d)k!�1

).

Proof. ZZTMMT is the projection of M onto the column span of Z. This projection can be
performed approximately using standard leverage score sampling techniques (see e.g., [CW13]).
Let S 2 Rs⇥n be a sampling matrix sampling rows of Z by its row norms (its leverage scores since

12

it is orthonormal) where s = c(k log k) or some sufficiently large constant c. Let R be the n ⇥ k
matrix which selects the last k columns of MMT .

Letting X⇤
= argminX2k⇥k kZXT � MMTRk2F and X = argminX2k⇥k kSZXT �

SMMTRk2F we have by a well known leverage score approximate regression result with high
probability in k:

kZXT �MMTRk2F = O(1) · kZ(X⇤
)

T �MMTRk2F
= O(1) · kZZTMMTR�MMTRk2F
= O(�

1

)kMMT � (MMT
)kk2F .

Further, computing X requires ˜O(dk!�1

) time to compute the O(k log k)⇥ k submatrix SMMTR

as well as ˜O(k!) =

˜O(nk!�1

) to perform the regression. This gives the result via Theorem
3 since computing Z with rank-2k ZXT gives a low-rank approximation of MMT with error
O(�

1

)kMMT �(MMT
)

2kk2F measured on the last k columns of M . Small error on these columns
is all that is needed to recover AC accurately (see proof of Theorem 3).

C Additional lower bound proofs

We now prove our hardness result for kernels depending on the squared distance kai � ajk2
2

.

Theorem 5. Consider any kernel function : Rd ⇥Rd ! R+ with (ai, aj) = f(kai � ajk2) for
some function f which can be expanded as f(x) =

P1
q=0

cqx
q with c

1

6= 0 and |cq/c1|  Gq�1

and for all q � 2 and some G � 1.

Assume there is an algorithm A which given input M 2 Rn⇥d with kernel matrix K =

{ (mi,mj)}, returns N 2 Rn⇥k satisfying kK �NNT k2F  �

1

kK �Kkk in T (M,k) time.

For any A 2 Rn⇥d, C 2 Rd⇥k, with integer entries in [��

2

,�
2

], let B = [w
1

AT , w
2

C]

T

where w
1

=

w2

36

p
�1�

2
2nd

and w
2

=

1

(16Gd2
�

4
2)(36

p
�1�

2
2nd)

. It is possible to compute AC in time
T (B, 2k + 3) +O(nk!�1

).

Proof. Define the distance matrix D 2 Rn+k⇥n+k with Di,j = kbi � bjk2. Using the fact that
kbi � bjk2 = kbik2 + kbik2 � 2bTi bj we have D = E + ET � 2BBT where E is a rank-1 matrix
with all rows equal to [kb

1

k2
2

, ..., kbn+kk2
2

]. We can write the kernel matrix for B and k as:

K = c
0


1 1

1 1

�
+ c

1

(E + ET
)� 2c

1


w2

1

AAT w
1

w
2

AC
w

1

w
2

CTAT w2

2

CTC

�
+ c

2

D(2)

+ c
3

D(3)

+ ... (12)

where D
(q)
i,j = kbi � bjk2q . Let ¯K be K � c

0

· 1 � c
1

(E + ET
) , with its top n ⇥ n block set to

0. ¯K has rank at most 2k and if we set Q 2 Rn⇥2k+3 to be a matrix with columns spanning the
columns of ¯K, the all ones vector, E and ET , then letting N be the result of running A on B with
rank 2k + 3:

kK �NNT k2F  �

1

kK �QQTKk2F  �

1

����


�2c

1

w2

1

AAT
+ c

2

ˆD(2)

+ ... 0

0 0

�����
2

F

(13)

where ˆD(q) denotes the top left n⇥ n submatrix of D(q).

By our bounds on the entries of A, for i, j  n, kbi� bjk2  4d�2

2

w2

1

and by our setting of w
1

, w
2

,
plugging into (13) we have for all i, j:

|(K �NNT
)i,j |  kK �NNT kF (14)


p
�

1

n

2c

1

d�2

2

w2

1

+

1X

q=2

cq(4d�
2

2

w2

1

)

q

!


p
�

1

nc
1

d�2

2

w2

1

2 +

1X

q=2

(4Gd�2

2

w2

1

)

q�1

!
(Since |cq/c1|  Gq�1)

 3

p
�

1

nc
1

d�2

2

w2

1

 w
1

w
2

c
1

12

(15)

13

where the second to last bound follows from the fact that w
1

< w
2

and w
2

is set small enough so
(4Gd�2

2

) · w2

2

⌧ 1/2 so the series converges to a sum < 1. Additionally, for i  n and j  k (i.e.,
considering the entries of K corresponding to AC) we have:

Ki,n+j = c
0

+ c
1

(E + ET
)i,n+j � 2c

1

w
1

w
2

(AC)i,j +

1X

q=2

cqD
(q)
i,n+j .

This last sum can be bounded by:
�����

1X

q=2

cqD
(q)
i,n+j

�����  c
1

1X

q=2

Gq�1

(4�

2

2

dw2

2

)

q (By assumption |cq/c1|  Gq�1)

 c
1

w
1

w
2

1X

q=2

Gq�1w
2(q�1)

2

w
2

w
1

�
4�

2

2

d
�q

 c
1

w
1

w
2

1X

q=2

Gq�1w2q�3

2

�
4�

2

2

d
�q (Using w2

w1
 1

w2
.)

 1

3

c
1

w
1

w
2

. (Using w
2

 1/4
16G�

4
2d

2 so the series converges.)

If we set v = NNT
i,n+j � c

0

� c
1

(E+ET
)i,n+j we thus have combining with (14) for i  n, j  k

|v + 2c
1

w
1

w
2

(AC)i,j | 
5c

1

w
1

w
2

12

and so we can compute (AC)i,j exactly by rounding v to the nearest integer multiple of c
1

w
1

w
2

.
This gives the theorem since we can compute the required entries of NNT and E in O(nk!�1

)

time.

14

	Introduction
	Low-rank kernel approximation
	Fast algorithms for relative-error kernel approximation
	Our results
	Lower bounds
	Improved algorithm for radial basis function kernels

	Lower bounds
	Lower bound for low-rank approximation of MMT.
	Lower bound for dot product kernels
	Lower bound for distance kernels

	Input sparsity time kernel PCA for radial basis kernels
	Basic algorithm
	Input sparsity time implementation
	Sampling Frequencies
	Computing

	An alternative approach

	Conclusion
	Fast low-rank approximation of AAT
	Hardness of outputting a low-rank subspace
	Additional lower bound proofs

