Supplementary Material for the Paper
“Self-Normalizing Neural Networks”

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr and Sepp Hochreiter

November 2, 2017

Contents

S1 Background . . . . . . .. 4
S2 Theorems of the Main Paper . . . . . ... .. ... ... ... .. ... ... .... 6
S2.1 Theorem 1: Stable and Attracting Fixed Points Close to (0,1) . . . . . . . .. .. 6
S2.2 Theorem 2: Decreasing Variance from Above . . . . . ... .. ... ... ... 6
S2.3 Theorem 3: Increasing Variance from Below . . . ... ... ... ....... 7
S3 Proofs of the Theorems . . . . . . . . . .. . ... .. . 7
S3.1 Proofof Theorem 1 . . . . . . . . . . . . . . .. .. 7

S3.2 Proofof Theorem 2 . . . . . . . . . . . . . 8
S3.3 Proofof Theorem 3 . . . . . . . . . .. . . 13
S3.4 Lemmata and Other Tools Required for the Proofs . . . . . . .. ... ... ... 15
S3.4.1 Lemmata for proofing Theorem 1 (part 1): Jacobian norm smaller than one 15

S3.4.2 Lemmata for proofing Theorem 1 (part 2): Mapping within domain . . . 26

S3.4.3 Lemmata for proofing Theorem 2: The variance is contracting . . . . . . 27

S3.4.4 Lemmata for proofing Theorem 3: The variance is expanding . . . . . . . 31

S3.4.5 Computer-assisted proof details for main Lemma 12 in Section 3.4.1. . . 32

S3.4.6 Intermediate Lemmata and Proofs . . . . .. ... ... ... ..... 37

S4 Additional information on experiments . . . . . . .. ... Lo 95
S4.1 121 UCI Machine Learning Repository data sets: Hyperparameters . . . . . . . . 95
S4.2 121 UCI Machine Learning Repository data sets: detailed results . . . . . . . .. 97
S4.3 Tox21 challenge data set: Hyperparameters . . . . . . ... ... ........ 103
S4.4 HTRU?2 data set: Hyperparameters . . . . . . . . ... ... ... ........ 106

S5 AppendiX . . . ... e e e e e e 108



2 List of Figures

List of Figures
S1 Visualization of the mapping g for selected points . . . . . . . .. ... ... ... 6
S2 Graph of the main subfunction of the derivative of the second moment . . . . . . . 28
S3 Graph of the Abramowitz bound for the complementary error function. . . . . . . . 38
S4 Graphs of the functions e erfc(z) and ze® erfe(x). . . . .. . ... ... 38
S5 The graph of function i for low variances . . . . . ... ... .. ... ... 60
S6 Graph of the function h(x) = 32(0.1,—0.1, 2,1, \o1,Q01) + « « « « « o v v v v . 62

S7 Distribution of network inputs in Tox21 SNNs. . . . . .. . ... ... ... ... 105



List of Tables 3
List of Tables
S1 Hyperparameters considered for self-normalizing networks in the UCI data sets. . 95
S2 Hyperparameters considered for ReLLU networks with MS initialization in the UCI
datasets. . . . ... e 96
S3  Hyperparameters considered for batch normalized networks in the UCI data sets. . 96
S4 Hyperparameters considered for weight normalized networks in the UCI data sets. 96
S5 Hyperparameters considered for layer normalized networks in the UCI data sets. . 96
S6 Hyperparameters considered for Highway networks in the UCI data sets. . . . . . 97
S7 Hyperparameters considered for Residual networks in the UCI data sets. . . . . . 97
S8 Comparison of FNN methods on all 121 UCI datasets. . . . ... ... ... .. 98
S9 Method comparison on small UCI datasets . . . .. ... ............. 101
S10 Method comparison on large UCI datasets . . . . . . . ... ... ... ..... 102
S11 Hyperparameters considered for self-normalizing networks in the Tox21 data set. 103
S12 Hyperparameters considered for ReLU networks with MS initialization in the Tox21
dataset. . . ... e 103
S13 Hyperparameters considered for batch normalized networks in the Tox21 data set. 104
S14 Hyperparameters considered for weight normalized networks in the Tox21 data set. 104
S15 Hyperparameters considered for layer normalized networks in the Tox21 data set. 104
S16 Hyperparameters considered for Highway networks in the Tox21 data set. 104
S17 Hyperparameters considered for Residual networks in the Tox21 dataset. . . . . . 105
S18 Hyperparameters considered for self-normalizing networks on the HTRU2 data set. 106
S19 Hyperparameters considered for ReLLU networks with Microsoft initialization on
the HTRU2 dataset. . . . . . . . . . . . . . i et 106
S20 Hyperparameters considered for BatchNorm networks on the HTRU2 data set. . . 106
S21 Hyperparameters considered for WeightNorm networks on the HTRU2 data set. 107
S22 Hyperparameters considered for LayerNorm networks on the HTRU2 data set. . . 107
S23 Hyperparameters considered for Highway networks on the HTRU?2 data set. 107
S24 Hyperparameters considered for Residual networks on the HTRU?2 data set. 107



4 S1 Background

Overview

We present supplementary material for the paper “self normalizing neural networks”. This intro-
duction sets the background, definitions, and formulations. The theorems of the main paper are
presented in the next section. The following section is devoted to the proofs of these theorems.
The last section reports additional results and details on the experiments that are presented in the
main paper, such as hyperparameter selection. The appendix shows that our theoretical bounds
can be confirmed by numerical methods as a sanity check.

The proof of theorem 1 is based on the Banach’s fixed point theorem for which we require
(1) a contraction mapping, which is proved in Subsection S3.4.1 and (2) that the mapping stays
within its domain, which is proved in Subsection S3.4.2 For part (1), the proof relies on the main
Lemma 12, which is a computer-assisted proof, and can be found in Subsection S3.4.1. The
validity of the computer-assisted proof is shown in Subsection S3.4.5 by error analysis and the
precision of the functions’ implementation. The last Subsection S3.4.6 compiles various lemmata
with intermediate results that support the proofs of the main lemmata and theorems.

S1 Background

We consider a neural network with activation function f and two consecutive layers that are
connected by weight matrix W. Since samples that serve as input to the neural network are
chosen according to a distribution, the activations x in the lower layer, the network inputs
z = W, and activations y = f(z) in the higher layer are all random variables. We assume that
all units z; in the lower layer have mean activation . := E(z;) and variance of the activation
v = Var(z;) and a unit y in the higher layer has mean activation f := E(y) and variance
v := Var(y). Here E(.) denotes the expectation and Var(.) the variance of a random variable. For
activation of unit i, we have net input z = w” & and the scaled exponential linear unit (SELU)
activation y = selu(z), with

T ifx >0

selu(z) = A { : (1)

ae® —a ifx <0

For n units x;, 1 < 7 < n in the lower layer and the weight vector w € R", we define n times

the mean by w := Y"1 | w; and n times the second moment by 7 := > | w?.

We define a mapping g from mean p and variance v of one layer to the mean /i and variance
v in the next layer:
g9: (wv) = (1,v). )

For neural networks with scaled exponential linear units, the mean is of the activations in the next
layer computed according to

0 e
/Nj' = / )\a(exp(z) - 1)pGauss(z; U, v VT)dZ + / )‘ZpGauss(Z; Hw, v/ l/T)ClZ ) 3)
0

— 00

and the second moment of the activations in the next layer is computed according to

~ 0 o
45:/ )\zaz(exp(z)—1)2pGauSS(z;uw,\/1/T)dz —I—/ AQZQpGauss(z;uw,\/uT)dz. )

0
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Therefore, the expressions i and v have the following form:

i, w, v, T\ ) = %)\ <—(a + uw) erfe (é\%) + 35
aettT erfe <'L$j;;> + \/Z\/Eeﬁf + 2,uw>

Dy w, v, N @) = E(pyw, v, 7\ ) — (i, w, v, 7, A, @) ) (6)
é(u,w,y, T, A\ ) = %)\2 <((uw)2 + VT) (erf <\/§jﬁ> + 1> + @)
o? (—26’”‘””; erfc (%) + 2ot rT) orfe (%) +

exfe ( é‘jﬁ)) + \/Z(Mme—%‘éflf)

We solve equations Eq. 5 and Eq. 6 for fixed points ;i = p and = v. For a normalized weight
vector with w = 0 and 7 = 1 and the fixed point (x, ) = (0, 1), we can solve equations Eq. 5
and Eq. 6 for o and A\. We denote the solutions to fixed point (s, v) = (0,1) by a1 and Ao;.

2
Qg = — ’T ~ 1.67326 (8)
erfc (%) exp (%) -1
Aol = (1 — erfc (\2) \/E) V2

(2 erfe (V2) ¢ + merfe <1>2 e —2(2 + ) erfc (1) Jeimt 2) ~1/2

V2 V2

AOI ~ 1.0507 .
The parameters g1 and \g; ensure

/1(07071717)\0170[01) =0
5(0707 17 1,)\017Oé01) =1

Since we focus on the fixed point (u,~) = (0, 1), we assume throughout the analysis that
a = ap1 and A = Ag;. We consider the functions fi(u, w, v, T, A1, @o1), U(i, w, v, T, Ao1, Qo1)s
and €y, w, v, T, A1, @p1) on the domain Q = {(j1,w, v, 7) | 1t € [fhmin, fhmax] = [—0.1,0.1],w €
[Winin, Wmax) = [—0.1,0.1], ¥ € [Vmin, Vmax] = [0.8,1.5], 7 € [Tmin, Tmax] = [0.95, 1.1]}.

Figure S1 visualizes the mapping g for w = 0 and 7 = 1 and a1 and Ag; at few pre-selected
points. It can be seen that (0, 1) is an attracting fixed point of the mapping g.
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Figure S1: For w = 0 and 7 = 1, the mapping g of mean p (z-axis) and variance v (y-axis) to
the next layer’s mean /i and variance 7 is depicted. An arrow shows in which direction (u, v) is
mapped by g : (u,v) — (f1, 7). Note that (0, 1) is an attracting fixed point of the mapping g.

S2 Theorems of the Main Paper

S2.1 Theorem 1: Stable and Attracting Fixed Points Close to (0,1)

Theorem 1 shows that the mapping g defined by Eq. (5) and Eq. (6) exhibits a stable and attracting
fixed point close to zero mean and unit variance. Theorem 1 establishes the self-normalizing
property of self-normalizing neural networks (SNNs). The stable and attracting fixed point leads
to robust learning through many layers.

Theorem 1 (Stable and Attracting Fixed Points). We assume o = g1 and A = \g1. We restrict
the range of the variables to the domain € [—0.1,0.1], w € [-0.1,0.1], v € [0.8,1.5], and
7 € [0.95,1.1]. For w = 0 and 7 = 1, the mapping Eq. (5) and Eq. (6) has the stable fixed
point (u,v) = (0,1). For other w and T the mapping Eq. (5) and Eq. (6) has a stable and
attracting fixed point depending on (w,T) in the (u,v)-domain: p € [—0.03106,0.06773] and
v € [0.80009, 1.48617]. All points within the (i, v)-domain converge when iteratively applying
the mapping Eq. (5) and Eq. (6) to this fixed point.

S2.2 Theorem 2: Decreasing Variance from Above

The next Theorem 2 states that the variance of unit activations does not explode through consecu-
tive layers of self-normalizing networks. Even more, a large variance of unit activations decreases
when propagated through the network. In particular this ensures that exploding gradients will
never be observed. In contrast to the domain in previous subsection, in which v € [0.8, 1.5], we
now consider a domain in which the variance of the inputs is higher v € [3, 16] and even the range
of the mean is increased p € [—1, 1]. We denote this new domain with the symbol Q%+ to indicate
that the variance lies above the variance of the original domain 2. In Q™", we can show that the
variance U in the next layer is always smaller then the original variance v. Concretely, this theorem
states that:

Theorem 2 (Decreasing v). For A = M1, @ = aq1 and the domain QT +: —1 < p < 1,
01 <w<01,3< v <16 and0.8 <7 < 1.25 we have for the mapping of the variance
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U(p,w, v, T, A, @) given in Eq. (6)
v(p, w, v, T, A1, 01) < V. 9)

The variance decreases in [3,16] and all fixed points (u,v) of mapping Eq. (6) and Eq. (5) have
v <3

S2.3 Theorem 3: Increasing Variance from Below

The next Theorem 3 states that the variance of unit activations does not vanish through consecutive
layers of self-normalizing networks. Even more, a small variance of unit activations increases
when propagated through the network. In particular this ensures that vanishing gradients will
never be observed. In contrast to the first domain, in which v € [0.8,1.5], we now consider
two domains 2] and 2, in which the variance of the inputs is lower 0.05 < v < 0.16 and
0.05 < v < 0.24, and even the parameter 7 is different 0.9 < 7 < 1.25 to the original 2. We
denote this new domain with the symbol €2, to indicate that the variance lies below the variance
of the original domain €2. In Q" and );, we can show that the variance © in the next layer is
always larger then the original variance v, which means that the variance does not vanish through
consecutive layers of self-normalizing networks. Concretely, this theorem states that:

Theorem 3 (Increasing v). We consider A = \o1, @ = a1 and the two domains Q7 = {(p,w, v, 7) | —
01<p<01,-01<w<0.1,005 <v<0.16,08 <7< 1.25} and Q) = {(p,w,v,7) | —
0.1<p<01,-0.1<w<0.1,0.05 < v<0.24,09 < 7 < 1.25}.

The mapping of the variance v(u,w, v, T, A, v) given in Eq. (6) increases
ﬂ(ﬂ,w,V,T,)\01,0401) > v (10)

in both Q] and Q)5 . All fixed points (p, v) of mapping Eq. (6) and Eq. (5) ensure for 0.8 < T that
v > 0.16 and for 0.9 < 7 that v > 0.24. Consequently, the variance mapping Eq. (6) and Eq. (5)
ensures a lower bound on the variance v.

S3 Proofs of the Theorems

S3.1 Proof of Theorem 1

We have to show that the mapping g defined by Eq. (5) and Eq. (6) has a stable and attracting fixed
point close to (0, 1). To proof this statement and Theorem 1, we apply the Banach fixed point
theorem which requires (1) that g is a contraction mapping and (2) that g does not map outside the
function’s domain, concretely:

Theorem 4 (Banach Fixed Point Theorem). Let (X, d) be a non-empty complete metric space
with a contraction mapping f : X — X. Then f has a unique fixed-point xy € X with f(xs) =
xy. Every sequence x,, = f(xn_1) with starting element xo € X converges to the fixed point:
Tp ——> Tf.

n—oo

Contraction mappings are functions that map two points such that their distance is decreasing:
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Definition 1 (Contraction mapping). A function f : X — X on a metric space X with distance
d is a contraction mapping, if there is a 0 < § < 1, such that for all points w and v in X:

d(f(w), f(v)) < dd(u,v).

To show that g is a contraction mapping in §2 with distance ||.||2, we use the Mean Value
Theorem for u, v € 2

l9(w) = g(v)ll2 < M [lu — vz, (11

in which M is an upper bound on the spectral norm the Jacobian H of g. The spectral norm
is given by the largest singular value of the Jacobian of g. If the largest singular value of the
Jacobian is smaller than 1, the mapping ¢ of the mean and variance to the mean and variance
in the next layer is contracting. We show that the largest singular value is smaller than 1 by
evaluating the function for the singular value S(u,w, v, 7, A\, @) on a grid. Then we use the Mean
Value Theorem to bound the deviation of the function .S between grid points. To this end, we have
to bound the gradient of S with respect to (u,w, v, 7). If all function values plus gradient times
the deltas (differences between grid points and evaluated points) is still smaller than 1, then we
have proofed that the function is below 1 (Lemma 12). To show that the mapping does not map
outside the function’s domain, we derive bounds on the expressions for the mean and the variance
(Lemma 13). Section S3.4.1 and Section S3.4.2 are concerned with the contraction mapping and
the image of the function domain of g, respectively.

With the results that the largest singular value of the Jacobian is smaller than one (Lemma 12)
and that the mapping stays in the domain 2 (Lemma 13), we can prove Theorem 1. We first recall
Theorem 1:

Theorem (Stable and Attracting Fixed Points). We assume o = a1 and X = Xg1. We restrict
the range of the variables to the domain p € [—0.1,0.1], w € [-0.1,0.1], v € [0.8,1.5], and
T € [0.95,1.1]. For w = 0 and 7 = 1, the mapping Eq. (5) and Eq. (6) has the stable fixed
point (u,v) = (0,1). For other w and T the mapping Eq. (5) and Eq. (6) has a stable and
attracting fixed point depending on (w,T) in the (u,v)-domain: p € [—0.03106,0.06773] and
v € [0.80009,1.48617]. All points within the (u,v)-domain converge when iteratively applying
the mapping Eq. (5) and Eq. (6) to this fixed point.

Proof. According to Lemma 12 the mapping g (Eq. (5) and Eq. (6)) is a contraction mapping in the
given domain, that is, it has a Lipschitz constant smaller than one. We showed that (y, ) = (0, 1)
is a fixed point of the mapping for (w,7) = (0, 1).

The domain is compact (bounded and closed), therefore it is a complete metric space. We fur-
ther have to make sure the mapping g does not map outside its domain 2. According to Lemma 13,
the mapping maps into the domain p € [—0.03106,0.06773] and v € [0.80009, 1.48617].

Now we can apply the Banach fixed point theorem given in Theorem 4 from which the state-
ment of the theorem follows. O

S3.2 Proof of Theorem 2

First we recall Theorem 2:
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Theorem (Decreasing v). For A = \g1, @ = ap1 and the domain Q*+: —1 < p < 1,
—01 <w <01 3< v <16 and 08 < 7 < 1.25 we have for the mapping of the vari-
ance U(p,w, v, T, \, ) given in Egq. (6)

I;(/’vaayaTa)‘()lvaOl) < v. (12)

The variance decreases in [3,16] and all fixed points (u,v) of mapping Eq. (6) and Eq. (5) have
v <3

Proof. We start to consider an even larger domain —1 < ¢ < 1, —0.1 < w < 0.1, 1.5 < v £ 16,
and 0.8 < 7 < 1.25. We prove facts for this domain and later restrict to 3 < v < 16, i.e. Qtt.
We consider the function g of the difference between the second moment ¢ in the next layer and
the variance v in the lower layer:

g(/j’u(")?l/?TvAOluaOl) = g(u7w7V777)\017a01) - v. (13)

If we can show that g(u,w, v, 7, Ao1, 201) < O for all (p,w,v,7) € Q™ , then we would obtain
our desired result 7 < & < v. The derivative with respect to v is according to Theorem 16:

o0 ~
59(“7(#7’/77—) /\Olaa()l) = 55(”7“-’7’/77_7)\0170401) -1<0. (14)

Therefore g is strictly monotonically decreasing in v. Since & is a function in 7 (these variables
only appear as this product), we have for z = v

0 - 0 - 0x 0 -
ot = ot ow  axt (1)
and
0 - 0 - 0x 0 -
= g2 — Zgy. 1
or Ox> Ot 8x§y (16)
Therefore we have according to Theorem 16:
N v oo -
E&(M,CU,V,T,)\Ol,OéOl) = ; ag(ﬂuwayaTv)‘OlvaOl) > 0. (17)
Therefore
0 ~
Eg(u,w,y,ﬂ)\gl,a()l) = Ef(y,,w,u,ﬁ o1, a01) > 0. (18)

Consequently, g is strictly monotonically increasing in 7. Now we consider the derivative with
respect to p and w. We start with a%f(u, w, v, T, A, «), which is

(ic;(u,w, v, T\ @) = (19)
2 2 [ pwt+ir Hw +vT
)\w<a ( e 2>erfc (\/§ VT)Jr

vt w 2 20,2
2 2pw+2vT f pw + ) < _ < H >> \/7 —&
a‘e erfc + uw | 2 — erfe + N .
( \/iﬂl/T a \/5\/1/7 ™




10 S3 Proofs of the Theorems

We consider the sub-function

whuT 2 uw—2vT 2
\/»\/E B < ljf\/ﬁ) erfc (lyi_/ﬂ-) — €<l\/§\/ﬁ) eI'fC <,uw+21/7'>> . (20)
vT

We set x = v7 and y = puw and obtain

\/7\f ( (25) exte (j;:/y%) ~ (L) e Gf{:/;)) : Q1)

The derivative to this sub-function with respect to y is

a? (e e 2z +y) erfc(Q:”J’y) —e 2 (r+y) erfc(

V2Va f 22)
. =
\/» 2f e@%ﬁ(mﬂy)erfc(f}) e(%-mi(aﬂry erfc )
2a°/x L —
V2V
€T

The inequality follows from Lemma 24, which states that ze* erfe(z) is monotonically in-
creasing in z. Therefore the sub-function is increasing in y. The derivative to this sub-function
with respect to x is

z+y)> 2
\/77'0(2 <€ 2 ;;y) (4_2U2 _ y2) erfc (fﬁjg) (23)
(z+y)?

—e" 5 (z — y)(z +y) erfe (3%/2)) —V2(a® —1) 2

The sub-function is increasing in x, since the derivative is larger than zero:

1
2\/mr?

(2z+y)

2
vra <e NoNE oz

(422 — y?) erfc ( 2r+y> s (x —y)(x +y)erfe ( 2ty )) — V2232 (0 — 1)

2y/ma?
(24)

(2z—y)(2z+y)2 _ (z—y)(z+y)2 — /232 (a2 _ 1)
(G e) () )
2\/ma?

( (2e—y)z+y)2(V2ZVE)  (a—y)(a+y)2

3/2 Oé _1)
ﬂ(2w+y+\/ (2x+y)2+4x) N3 (m+y+\/ m+y 2+8“¢

2/ma?

(2z—y)(2z+y)2 (z—y) (z+y)2 04 o 1
f 2:p+y+\/(2x+y)2+4x> f<x+y+\/ (z+y) 2+8x

NNk

=
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2 (2z—y)(2z+y)2 B (e—y)(@+1)2 B -
ﬁa (ﬁ(?z-‘r?ﬁ*\/(?m-ﬁ-y)?+2(2Z+y)+1) ﬁ(m_"y"'\/(m+y)2+0‘878~2(r+y)+0,8782)> x (a )

V2 /T23/2

V2 /T2

(2z—y)(2z+y)2 (z—y)(z+y)2 2
V(2( 2x+y )+1) \/7?(2(x+y)+0.878)> -z (O‘ o 1)

V2 T3/

2(z+y)+0.878) (2 —y)(2z+y)2 (a:fy)(x+y)(2(2x+y)+1)2)

o’

N

ﬁaQ

N N
(2(22 4+ y) + 1)(2(z + y) + 0.878)v/2/mx3/2
Vra? (—z (o = 1) (2(2z + y) + 1)(2(z + y) + 0.878))
(2(2z +y) + 1)(2(x + 5) + 0.878)v/2/7a3/2
823 4 1222y + 4.1456922 + 4xy? — 6.76009zy — 1.58023z + 0.683154y2
(2(2z +y) + 1)(2(x + ) + 0.878)v/2/7x3/2
823 — 0.1 - 1222 + 4.14569z% + 4 - (0.0)%z — 6.76009 - 0.1z — 1.58023x + 0.683154 - (0.0)?
(2(22 4+ y) + 1)(2(x + y) + 0.878)v/2/7x3/2

827 + 2.94569x — 2.25624 B

22z +y) + 1)(2(z 4+ y) + 0.878)V2y/7TVT
8(z — 0.377966)(z + 0.746178) -

(2(2z +y) + 1)(2(z +y) + 0.878)V2/TV/x

We explain this chain of inequalities:

(2z—y) (2z+y)2 (z—y)(z+y)2 - (az _ 1)
f 22+y++/(2z+y+1) ) ﬁ<m+y+\/(m+y+0.878)2)

+

» First inequality: We applied Lemma 22 two times.
» Equalities factor out /2/z and reformulate.
m Second inequality part 1: we applied

0<2y= 2v+y)+dz+1<(2r+y)?+22r+y)+1=2z+y+1)*. (25

m Second inequality part 2: we show that for a = 1—10 (1 / w - 13) following holds:
82 _ (a® +2a(z+y)) > 0. We have 258 — (a®>+2a(z+y)) = & —2a > 0 and

m ™
8%8?‘” - (a2 + 2a(zx + y)) = —2a < 0. Therefore the minimum is at border for minimal z

and maximal y:

2
8-1.2_ 3 /960+1697T_13 (1.240.1) + i /960+1697T_13 — 0.
T 10 T 10 T

(26)

Thus

— > d*+2a(z +y) . (27)
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for a = 45 (/2L —13) > 0.878.

= Equalities only solve square root and factor out the resulting terms (2(2z + y) + 1) and
(2(x +y) 4+ 0.878).

m We set @ = ap; and multiplied out. Thereafter we also factored out z in the numerator.
Finally a quadratic equations was solved.

The sub-function has its minimal value for minimal x = v7 = 1.5 - 0.8 = 1.2 and minimal
y = puw = —1-0.1 = —0.1. We further minimize the function

pw? w 0.12 0.1
o (2 — erf —0.1ez212 | 2 — erf ) 2
pwe < erc(\@ VT)) > —0.1e < erc(\&m)) (28)

We compute the minimum of the term in brackets of a%é (1, w,v, 7, A\, a) in Eq. (19):

1202 pw
we'mr (2 —erfe [ ——— + 29
e’ (2-ate( ) @)
w—4vT 2 uw—2vT 2
oe%l <— (e«t/ﬁﬁ) erfc (uw + VT) — e(lﬂ\/ﬁ> erfc <uw + 2VT)>> +

oy (- () are (L2200 () e (21201

0.1¢51 (2 — erfc <ff>) F\[ 0.212234 .

Therefore the term in brackets of Eq. (19) is larger than zero. Thus, %é (1, w, v, T, A, ) has the

sign of w. Since é is a function in uw (these variables only appear as this product), we have for
T = pw

0 - 0 ~0x 0 -
55—% @—%ffﬂ (30)
and
0 - 0 -0z 0 -
Wt T e GD
0 - o -
aiwé.(/i?waya T, )\01,0[01) = g mg(uawv v, T, )\()1,0[01) . (32)

Since -2 e ¢ has the sign of w, 0 5 has the sign of . Therefore

ig(,u,w, v, T, A1, @01) (33)

g(p,w, v, 7, Ao1,01) = Ew

9
Oow
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has the sign of p.

We now divide the p-domain into —1 < g < 0 and 0 < p < 1. Analogously we divide the
w-domain into —0.1 < w < 0 and 0 < w < 0.1. In this domains g is strictly monotonically.

For all domains g is strictly monotonically decreasing in v and strictly monotonically increas-
ing in 7. Note that we now consider the range 3 < v < 16. For the maximal value of g we set
v =3 (wesetitto 3!) and 7 = 1.25.

We consider now all combination of these domains:
-1 pu<0and 0.1 <w<O0:
g is decreasing in u and decreasing in w. We set 4 = —1 and w = —0.1.
g(—1,-0.1,3,1.25, A\p1, g1) = —0.0180173 . 34)
B -1 < pu<0and0 < w <0.1:
g is increasing in ¢ and decreasing in w. We set 4 = 0 and w = 0.
g(O, 0, 3, 1.25, )\01, 0101) = —0.148532 . (35)
B0 pu<<land 0.1 <w <0
g is decreasing in p and increasing in w. We set ;4 = 0 and w = 0.
9(0,0,3,1.25, A\g1, p1) = —0.148532. (36)
B0 p<land0 < w <0.1:
g is increasing in p and increasing in w. We set 4y = 1 and w = 0.1.

9(1,0.1,3,1.25, \o1, 1) = —0.0180173 . (37)

Therefore the maximal value of g is —0.0180173.

S3.3 Proof of Theorem 3

First we recall Theorem 3:

Theorem (Increasing v). We consider A = A\o1, @ = o and the two domains Q] = {(p,w,v,7) | —
01<1<01,-01<w<0.1,0.056 < v <0.16,0.8 < 7 < 1.25} and Q;, = {(p,w, v, 7) | —
01<p<01,-01<w<0.1,0.00 <v<024,09 <7 < 1.25}.

The mapping of the variance v(j,w, v, T, \, ) given in Eq. (6) increases
ﬂ(l”’?w?V? T, )\Olva()l) > v (38)

in both Q) and ), . All fixed points (u, v) of mapping Eq. (6) and Eq. (5) ensure for 0.8 < 7 that
v > 0.16 and for 0.9 < 7 that v > 0.24. Consequently, the variance mapping Eq. (6) and Eq. (5)
ensures a lower bound on the variance v.
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Proof. The mean value theorem states that there exists a ¢ € [0, 1] for which

E(p,w, v, T, Ao1, 01) — E(Hy W,y Vmin, T, Ao, Q01) = (39)
ag(u, W,V + t(Vmin — V), Ty A1, @01) (¥ — Vmin) -

Therefore
E(p,w, v, 7, Xot, a01) = E(1t, W, Vimin, T, Ao1, 1) + (40)

o0 ~
ag(ﬂvwvl/ + t(Vmin - V)a'ra )\01,0[01) (V - Vmin) .

Therefore we are interested to bound the derivative of the £&-mapping Eq. (7) with respect to v:

%é(/ﬁ?way7 T, )\01,0&01) = (41)

2 2 w4t 2 w+2-vT 2 .
Ly2 ot (az (_ (e%*m) erfc (W*) 2 AE) e (W») _
2 Vo uT Vo uT

erfe <J§jﬁ) +2> .

The sub-term Eq. (298) enters the derivative Eq. (41) with a negative sign! According to
Lemma 18, the minimal value of sub-term Eq. (298) is obtained by the largest largest v, by the

smallest 7, and the largest y = pw = 0.01. Also the positive term erfc ( é‘%) + 2 is multiplied

by 7, which is minimized by using the smallest 7. Therefore we can use the smallest 7 in whole
formula Eq. (41) to lower bound it.

First we consider the domain 0.05 < v < 0.16 and 0.8 < 7 < 1.25. The factor consisting
Coq . . _0.01.0.01 . X
of the exponential in front of the brackets has its smallest value for e~ 20.05.0.8. Since erfc is

: . . . _ o001 :
monotonically decreasing we inserted the smallest argument via erfc ( 7 m) in order to

obtain the maximal negative contribution. Thus, applying Lemma 18, we obtain the lower bound
on the derivative:

2 2 w4t 2 w+2-vT 2 .
1)\2 Te Tur (a2 (— (e«tﬁjﬁ) erfc <W> = 2e<u\/5+jﬁ> erfc <W>)> —
2 Voot Vo uT

(42)

LW
erffc| —— | +2| >
<\/§\/W) )
0. . 2 .
10.86_ 8-810'5?.‘(?‘% )\(2)1 <0¢%1 (_ (e(M) orfe <016 0.8 + 001> _
2 Vv210.16 - 0.8

2:0.16.0.8+0.01)? 2-0.16 - 0.8 + 0.01 0.01
2€< V2/0.160.8 ) erfc( ))) — erfe (—) + 2> > 0.969231 .
v21/0.16-0.8 v21/0.05- 0.8 )

For applying the mean value theorem, we require the smallest (). We follow the proof of
Lemma 8, which shows that at the minimum y = pw must be maximal and * = v7 must be min-
imal. Thus, the smallest £(u,w, v, 7, o1, ao1) is £(0.01,0.01,0.05,0.8, A1, 1) = 0.0662727
for 0.05 < vand 0.8 < 7.
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Therefore the mean value theorem and the bound on (/)% (Lemma 43) provide
U= g(u7 w,V, T, )\017 aOl) - (ﬁ(/’% w,V, T, )‘017 aOl))Z > (43)
0.0662727 + 0.969231(v — 0.05) — 0.005 = 0.01281115 + 0.969231v >
0.08006969 - 0.16 4+ 0.969231v > 1.049301v > v.

Next we consider the domain 0.05 < v < 0.24 and 0.9 < 7 < 1.25. The factor consisting
L. . _0.01.0.01 . R
of the exponential in front of the brackets has its smallest value for e~ 20.05-0.9. Since erfc is

. . . . o 001 .
monotonically decreasing we inserted the smallest argument via erfc ( 570.05090 m) in order to

obtain the maximal negative contribution.

Thus, applying Lemma 18, we obtain the lower bound on the derivative:

2,2 wHvT 2 w+2-vT 2 .
%)\2 Te Tur <a2 (— <e(u\/§ﬁ) erfc <,uw + 1/7‘) - Qe(uﬁ\m ) erfc (,uw 2 UT))) -

V2T PNz
(44)
Hw
erfc +2) >
() +2)
-U. . 2 .
10.93‘3333‘3% 2 (agl (_ <e<(m) erfe (0.24 0.9+ 0.01) B
2 Vv210.24-0.9
2.0.24-0.940.01 ) 2 2-0.24-0.94+0.01 0.01
26( V2/0.24:0.9 ) erfc< >>> — erfe <—> +2> > 0.976952 .
V24/0.24-0.9 v/2+/0.05-0.9 )

For applying the mean value theorem, we require the smallest 77(v). We follow the proof of
Lemma 8, which shows th~at at the minimum y = fw must be maximal and x = v7 must be min-
imal. Thus, the smallest &(u, w, v, T, A1, co1) is £(0.01,0.01,0.05,0.9, A1, 1) = 0.0738404
for 0.05 < v and 0.9 < 7. Therefore the mean value theorem and the bound on ( /])2 (Lemma 43)
gives

U= é(luv W, V, T, )\017 aOl) - (ﬁ(/’tv W, V, T, )\017 aOl))Q > (45)
0.0738404 + 0.976952(v — 0.05) — 0.005 = 0.0199928 + 0.976952 - v >
0.08330333 - 0.24 + 0.976952v > 1.060255v > v .

S3.4 Lemmata and Other Tools Required for the Proofs
S3.4.1 Lemmata for proofing Theorem 1 (part 1): Jacobian norm smaller than one

In this section, we show that the largest singular value of the Jacobian of the mapping g is smaller
than one. Therefore, g is a contraction mapping. This is even true in a larger domain than the
original ©2. We do not need to restrict 7 € [0.95, 1.1], but we can extend to 7 € [0.8,1.25]. The
range of the other variables is unchanged such that we consider the following domain throughout
this section: p € [—0.1,0.1},w € [-0.1,0.1], » € [0.8,1.5], and 7 € [0.95, 1.1].
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Jacobian of the mapping. In the following, we denote two Jacobians: (1) the Jacobian J of the
mapping h : (u,v) — (f,€), and (2) the Jacobian H of the mapping g : (i, v) — (ft, ) because
the influence of [i on 7 is small, and many properties of the system can already be seen on 7.

(I T2\

J = ( Jo1 Jo2 > B ( > (46)
_( Hu Hiz )\ _ Ju T2

"= ( Ho1 Hoo ) N < Jo1 — 211 J22 — 20012 ) “7)

The definition of the entries of the Jacobian 7 is:

Sl
A T~
Yodlo
A T

0 .
jll(,uvwaya T, )\7 a) = @M(M7M7V7 77A7a) = (48)
1 vr pw 4+ vT Jw
“Mw [ aet T2 erfe () — erfc < ) + 2>
2 < NON Voot
0 .
Jz(p,w, v, 7, A, @) = o fi(p,w, v, T, A, @) = (49)
2,2
}/\7‘ aet T erfe (W) — (a—1)4/ ie‘ Tor
4 Vo uT T
o0 -~
le(/.L,(JJ,V, T, )‘7 Oé) = ag(ﬂvwayv T, )‘a Od) = (50)

vr + vt
Ao [ o? (—et5 ) erfe (uw) +
< ( ) \/Q\/VT

2ur w 2 2,2
2 2uw+ 20 g (MY T >+ (2_ f < K )) +\/7 -5
a‘e erfc w erfc VvTe vt
( \/5\/117' # \/5\/1/7' ™

0
jZQ(IU'vwayaTv)‘?a) = 55(/’67(")71/77—))‘70[) = (51)

1 vt Uw + vt
N (—e““’+ 2 ) erfc () +
2 ( NN

+ 2vT Hw
20222V orfe RO VT _ erfc +2
\@\/VT \/5\/1/7'

Proof sketch: Bounding the largest singular value of the Jacobian. If the largest singular
value of the Jacobian is smaller than 1, then the spectral norm of the Jacobian is smaller than 1.
Then the mapping Eq. (5) and Eq. (6) of the mean and variance to the mean and variance in the
next layer is contracting.

We show that the largest singular value is smaller than 1 by evaluating the function S(u, w, v, 7, A, @)
on a grid. Then we use the Mean Value Theorem to bound the deviation of the function .S between
grid points. Toward this end we have to bound the gradient of S with respect to (u, w, v, 7). If
all function values plus gradient times the deltas (differences between grid points and evaluated
points) is still smaller than 1, then we have proofed that the function is below 1.
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The singular values of the 2 x 2 matrix

A= < ann an ) (52)
a1 G2
are

1
s1= 5 (\/(au +ag2)? + (az1 — a12)? + /(a1 — az2)? + (a2 + a21)2) (53)

1
s2=5 (\/(an + ag)? + (az1 — a12)? — /(a11 — ax)? + (a2 + a21)2> . (54)
We used an explicit formula for the singular values ( , ). We now set Hq1 = a1, Hi2 =

a12, Ho1 = ag1, Hoa = ago to obtain a formula for the largest singular value of the Jacobian
depending on (,w, v, T, A, ). The formula for the largest singular value for the Jacobian is:

S(p,w,v, 7, \,a) = (\/(Hn + Hao)2 + (Hor — H12)? + /(Hi1 — Ho2)? + (Hio + H21)2)
(59)

1
=3 (\/(jll + J22 — 20712)% + (Jo1 — 2011 — Th2)? +

V(T — T + 2i1T12)2 + (T2 + Jo1 — 2#1711)2) ,

where J are defined in Eq. (48) and we left out the dependencies on (p, w, v, T, A\, &) in order
to keep the notation uncluttered, e.g. we wrote 711 instead of J11 (p, w, v, T, A, @).

Bounds on the derivatives of the Jacobian entries. In order to bound the gradient of the
singular value, we have to bound the derivatives of the Jacobian entries J11(u,w, v, T, A, @),
Ji2(p,w, v, 7, N ), Ja1(p, w, v, 7, A, ), and Joo(p, w, v, T, A, ) with respect to 41, w, v, and
7. The values A\ and « are fixed to A\g; and «1. The 16 derivatives of the 4 Jacobian entries with
respect to the 4 variables are:

2
9 1 2.2 wivr)? \F(Of -1)
Ju — e mr | ae (et erfe <,uw + VT) - (56)
ou 2 Voot VT
2
9 | e (20— Do -
Ju = A" [ YT a(pw + 1)6(H o erfc <W>
Ow 2 T NONZE

W
erfc + 2
2 —
01 = 1)\7'we_u22”ﬁ2 (ae(w'jv:ﬂ erfc <MW+VT> + z (<a o - >>

g 4 V2\/uT (v7)3/2 N
1 2w2 wHvT 2 2 — 1
0T _ “Avwe” T <aew 5or erfe (uw i VT) +4/= <(a Jw o ))

3

or 4 T\/ﬁ (v7)3/2 ST

)
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0J12 _ o0Ju
ou ov
012 1 _ple? (pewtvr)? pw + vT \/5 (v — 1)pw a
= 7)\ vT vT f —
Ow 4 pre. = ae ? ere \f,/m- + (v7)3/2 T
1 2,2 wHvT
012 = Zde ‘mr (oz7’2e(u 2 . erfc (uw * yT) +
61/ 8 \/5,/1/7‘
2 (- e | rlatapm —1) _ar¥
T N 13/2 NG
2W2 w vT 2 w vT 2
01 = f)\e S <20¢€(# o : erfc <W> + 041/7'6<M o : erfc <W> +
or 8 V2\/uT V2 /UT
_ _ 2,2 _
2 ((=1)(« fl),uw N a—l—auw—l—l_a -
T (v1)3/2 T
2
0T = \%W? <a2 (—e‘ “22;?2) emwztf) erfc (uw + yT) +
o V2\/uT
w vT 2 2(JJ2 2
202 5 g (W) _erfe (W) ; 2>
Vo uT Voot
0Tn _ 22 (az(lMJr 1) (_e_uw ) s (W) N
Ow NONIZ
9 wotvn)? _ pu? (,uw - 2V7’>
o“2uw + 1)e” 2vr e 2vr erfec | ————=—
(2 ) oWz
2uw | 2 — erfe \/7 vTe W
z ( (WT)) )
w vT 2
0J21 _ 1y e < < (pertvr) )e (,qurl/T) N
v V2\/UT
1o? (uw;f:f)z ( pw + 21/7'> \/%(_1) (a - 1)
NONIZ N
w vT 2
ONES _ Ly e <a2 ( (o) > <,uw—|—1/7'> N
or V2T
2 (uw;—f:f)z ([Lw + 21/7'> \/> (Oé - 1)
Vayir Nz
0J22 _ 0J21
ou ov
0oz = *)\2,11,7'67;37 (on (—ew;r}> erfc (uw + VT) +
&,u 2 \/5,/1/7'

2 2
o (nw+2vr)? pw + 2vT 2= (o® = 1)
da”e 2vr  erfc
\/5«/1/7' V VT
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2,2 w+VT 2
02 = 1)\27'26_% <a2 <—e(H o > erfc (,uw * VT) +
ov 4 \/ﬁ\/ﬁ
Sazemw;f:r)? erfe (uw +2uT N \/5 (0? —1) pw 302
V2\/vT 7r (v7)3/2 N
2,2 WTVT 2
022 = })\2 <—2a2e Bor e(M o erfc <uw + VT) —
or 4 NNz
M (uw+u‘r)2 erfc <Mw —+ I/T> I 4 2 (;_Lw+21/7—)2 _[J.QWZ (/,L(,L) + 2V7'>

azyTe_ vr e 2ur a‘e 2vr e 2vr erfc

\/iw/m' \/5\/1/7'
(pw u7‘)2 2,2 2
8a’vTe — e~ erfe <W> + 2 (2 — erfc < kad )> +
Vo Ut NONZE

2 _u;w2 (a2 — 1) Uw
i ()

Lemma 5 (Bounds on the Derivatives). The following bounds on the absolute values of the deriva-
tives of the Jacobian entries J11(p, w, v, T, A\, &), Jia(p, w, v, 7, \, &), Jo1(p, w, v, 7, \, o), and
J22(p, w, v, T, A, ) with respect to p, w, v, and T hold:

3(*37;1 < 0.0031049101995398316 (>7)
3(%1 < 1.055872374194189

‘987;1 < 0.031242911235461816

‘9(57;1 < 0.03749149348255419

8£2 < 0.031242911235461816

a£2 < 0.031242911235461816

‘951/12 < 0.212327838238624354

8(;77{2 < 0.2124377655377270

"9(\9751 < 0.02220441024325437

< 1.146955401845684

’&721
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0(5721 < 0.14983446469110305
1%
8(:)721 < 0.17980135762932363
=
85722 < 0.14983446469110305
I
85722 < 0.14983446469110305
()
85722 < 1.805740052651535
14
O0F2| 5 396685007216327
or
Proof. See proof 39. U

Bounds on the entries of the Jacobian.

Lemma 6 (Bound on J11). The absolute value of the function

T = %)\w (ae’“‘”'% erfc (\%7—\7%) — erfc (\/gww) + 2) is bounded by |J11] < 0.104497 in

the domain —0.1 < ¢t < 0.1, -0.1 € w <008 < v <15 and08 <7< 1.25 fora = ap
and \ = )\01.

Proof.

1 vt pw + vt pw
=|=A POt erfe | e —I—2—erfc< >>‘
[Tl ’2 “ <ae erc(\/?\/m-) NeNZ

1
< [5lIMlwl (|a]0.587622 + 1.00584) < 0.104497,
(58)

where we used that (a) Jp; is strictly monotonically increasing in pw and |2 — erfc (%) | <

1.00584 and (b) Lemma 47 that |+ 5 erfc (%) | < Q025 e (Oj;j%l) — 0.587622

Lemma 7 (Bound on J12). The absolute value of the function

2,2
T2 = AT <ae”w+2 erfc (%j’%) —(a—1)y/2e" Tor ) is bounded by | J12| < 0.194145
in the domain —0.1 < p < 0.1, —0.1 € w £ 0.1, 08 < v € 1.5, and 0.8 < 7 < 1.25 for

a = p1 and A = )\01.

Proof.

1
1ol < Al <

vT 2 2,2
aet 13 erfe <uw + VT) —(a—1)/—e" o
NN T
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1
1 AII7110.983247 — 0.302294] <
0.194035 (59)

For the first term we have 0.434947 < eH“t'% erfc (\‘?J”’T) < 0.587622 after Lemma 47
N

2w2
and for the second term 0.582677 < \/%6_#27 < 0.997356, which can easily be seen by
maximizing or minimizing the arguments of the exponential or the square root function. The first

term scaled by « is 0.727780 < aelt T erfe ( %;’%) < 0.983247 and the second term scaled

20.)2
by a — 1is 0.392294 < (a — 1)4/=2-¢~ ‘= < 0.671484. Therefore, the absolute difference

VT

between these terms is at most 0.983247 — 0.392294 leading to the derived bound.
O

Bounds on mean, variance and second moment. For deriving bounds on i, &, and 7, we need
the following lemma.

Lemma 8 (Derivatives of the Mapping). We assume o« = a1 and A = \g1. We restrict the range
of the variables to the domain 1 € [—0.1,0.1], w € [-0.1,0.1], v € [0.8,1.5], and T € [0.8,1.25].

The derivative %ﬂ(u, w, v, T, \, ) has the sign of w.

The derivative 8%'&(”’ w, v, T, A, @) is positive.

The derivative %g(u, w, v, T, \, &) has the sign of w.
)

The derivative %g(u, w,V, T, A\, ) is positive.

Proof. See 40. [

Lemma 9 (Bounds on mean, variance and second moment). The expressions [i, é, and U for
a = ag1 and X = g1 are bounded by —0.041160 < i < 0.087653, 0.703257 < §~ < 1.643705
and 0.695574 < v < 1.636023 in the domain pu € [—0.1,0.1], v € [0.8,15], w € [-0.1,0.1],
T € [0.8,1.25].

Proof. We use Lemma 8 which states that with given sign the derivatives of the mapping Eq. (5)
and Eq. (6) with respect to v and p are either positive or have the sign of w. Therefore with given
sign of w the mappings are strict monotonic and the their maxima and minima are found at the
borders. The minimum of i is obtained at yuw = —0.01 and its maximum at uw = 0.01 o7, and it
easily follows with

[L(—O.]_, 0.1, 08, 08, )\01, 0501)
—0.041160 < [L(—Ol, 0.1,0.8,0.8, A\o1, 0501)

[L(Ol, 0.1, 1.5, 1.25, )\01, 0101)
[L(O.l, 0.1,1.5,1.25, Ao1, Ot()l) < 0.087653,

VAR
VAS/A

Similarly, the maximum and minimum of ¢ is obtained at these values

3
f(—O.l, 0.1, 0.8, 0.8, )\01, 0401) <g
0.703257 < £(—0.1,0.1,0.8,0.8, Aoz, ) <&

£(0.1,0.1,1.5,1.25, A1, aro1)

<
< £(0.1,0.1,1.5,1.25, A\o1, o) < 1.643705.
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Hence,

0.703257 — % < € — i? < 1.643705 — ji%.
0.703257 — 0.007683 < & < 1.643705 — 0.007682.
0.695574 < I < 1.636023.

Upper Bounds on the Largest Singular Value of the Jacobian.

Lemma 10 (Upper Bounds on Absolute Derivatives of Largest Singular Value). We set o = aq;
and N = Aoy and restrict the range of the variables to |1 € [fimin, bmax] = [—0.1,0.1], w €
[Wmin, Wmax) = [—0.1,0.1], ¥ € [Vmin, Vmax] = [0.8,1.5], and T € [Tmin, Tmax] = [0.8, 1.25].

The absolute values of derivatives of the largest singular value S(u,w,v, T, \, ) given in
Eq. (55) with respect to (uu,w, v, T) are bounded as follows:

951 _ 032112, (60)
op
8—3 < 2.63690 , 61)
Ow
051 _ 2.28242 | (62)
ov
% < 2.98610 . (63)
or

Proof. The Jacobian of our mapping Eq. (5) and Eq. (6) is defined as

Hir Hio J11 J12
H = = s . 64
< Ho1 Hao > ( Jo1 — 20011 Je2 — 20012 ) (64)

and has the largest singular value

1
S(p,w,v, 7, A\, a) = 5 (\/(Hn — Ha2)2 + (Hiz + Ha1)? + v/ (Hi1 + Hao)?2 + (Hio — 7'[21)2) ;

(65)
according to the formula of ( ).
‘We obtain
' oS 1 Hi1 — Hao Hi1 + Hao
= = |z + <
OHu 2\ V(Hin —Ho2)2 + (Hiz + Ha)?2 /(Hi1 + Hoo)? + (Hor — Hi2)?
(66)

1+1
+*1

1 L + ! < =
2 || [Olotran? (ln—H12)? 2
(H11—H22)? (H11+H22)?




S3 Proofs of the Theorems 23

and analogously

‘ as | |1 Hiz2 + Hot _ Hor — Hio <1
OHiz 2\ /(Hi1 — Hoo)? + (Hiz + H21)?2 /(Hir + Ha2)? + (Har — Haz)?

(67)
and
‘ os | |1 Ho1 — Hio n Hio + Hor <1
OHon 2\ /(Hi1 +Ha2)? + (Hor — H12)2  /(Hi1 — Ho2)? + (Hia + Ho1)?

(63)
and
‘ 0S _ |1 Hit + Hao _ Hi1 — Hao <1
OHa2 2\ /(Hi1 +Ha2)? + (Hor — H12)2  /(Hi1 — Ho2)2 + (Hia + Ha1)?

(69)

We have
oS oS 0 oS 0 oS 0 oS 0
_ Hi n Hio n Hot n Hoo (70)

du  OHn Ou 0Hi12 O OHa1 O 0Haz Op

oS oS 0

o5 _ Hi1 n 0S OHio 4 0S OHo n 0S OHoo 1)
Oow O0H11 Ow O0Hio Ow O0Ho1 Ow O0Hoo Ow

oS 0S OHi 0S O0Hiz 0S OHx 0S OHa

e 2
v " OHu Ov | 0MHyy 0v | OHam Ov | 0Hy Ov (72)
0S B 0S O0Hi 0S O0Hio 0S O0Ho 0S O0Hao
or ~ OHn or | OHw or | 0Hm or | oMy Or (73)

(74)

from which follows using the bounds from Lemma 5:

Derivative of the singular value w.r.t. u:

oS

— < 75

an (75)

0S | |0H11 0S ||0H1s 0S | |0Ha 0S | |0Has

OHu|| Op OHi2|| Op OHo1|| Op OHao || Op

OH1 OHi12 n OHon n OHao <

ou ou o ou

oJn 0J12 n 0J21 — 20011 n 0J22 — 21712

ou ou ou ou

0J1 0J12 0J21 0J22 oJi| - 2 0Ji2| .

2 2 2 2 <
au ‘ a ’ au +' o + ' au ]+ 2 |Jul|” + ‘ o || + 2| T2 | T

0.0031049101995398316 + 0.031242911235461816 + 0.02220441024325437 + 0.14983446469110305+

2-0.104497 - 0.087653 + 2 - 0.104497%+
2-0.194035 - 0.087653 + 2 - 0.104497 - 0.194035 < 0.32112,
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where we used the results from the lemmata 5, 6, 7, and 9.

Derivative of the singular value w.r.t. w:

oS

W (76)
0S ||0H11 oS | |0H12 oS | |0Ho oS | |0Ho9

OH11 ow OHio|| Ow OHo1 ow OHoo || Ow

OH11 OH12 OHa21 OHao

<

ow +’ ow +‘ ow +‘ ow |

0J11 n 0J12 n 0J21 — 200J11 n 0J22 — 21712

Oow Oow Oow Oow =

dJn 0J12 0T 0T 0J1 ﬂ

50 +‘ 50 +’ (%J +' 50 +2‘ oo | 1Al 2170l |51+

5 ~
2’ T2 |5 12071a] | 2| < (77)

2.38392 + 2 - 1.055872374194189 - 0.087653 + 2 - 0.1044972 + 2 - 0.031242911235461816 - 0.087653

+2-0.194035 - 0.104497 < 2.63690 ,

where we used the results from the lemmata 5, 6, 7, and 9 and that z is symmetric for p, w

Derivative of the singular value w.r.t. v:

oS

— < (78)
v

oS | |OH11 oS | |0H12 oS | |0Ho oS | |0Haa

OH11 ov OH1s ov OHo ov OHas ov

OH11 OHi2 n OHa1 n OHao <

ov ov ov ov

0J1 0J12 n 0J21 — 2iJn . 0J22 — 2i1J12

ov ov ov ov =

0J11 0J12 0J21 0J22 0Ju1 0J12

o) | |2 2o 2 1 217 e + 2| P+ 21

2.19916 + 2 - 0.031242911235461816 - 0.087653 4 2 - 0.104497 - 0.194035+
2-0.21232788238624354 - 0.087653 + 2 - 0.194035% < 2.28242

where we used the results from the lemmata 5, 6, 7, and 9.
Derivative of the singular value w.r.t. 7:

0S8

o (79)
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oS ||0H11 oS ||0H12 oS ||0Ho oS || 0Ha9
87‘[11 87‘ 87‘[12 87‘ 8%21 87’ 87‘(22 87'
OH11 OH 12 OHo1 n OHoo <
or or or or |
oJn n 0J12 n 0J21 — 20T n 0J22 — 201012
or or or or =
0Jn 0J12 0J21 0J22 5\711 ﬂ
2 2 —
or +'87 +‘aT or | © A+ 21Tl 57] +
0T
2‘ o |1+ 2|7l ) (80)
2.82643 + 2 - 0.03749149348255419 - 0.087653 + 2 - 0.104497 - 0.194035+
2.0.2124377655377270 - 0.087653 + 2 - 0.194035% < 2.98610 ,
where we used the results from the lemmata 5, 6, 7, and 9 and that f is symmetric for v, 7.
d
Lemma 11 (Mean Value Theorem Bound on Deviation from Largest Singular Value). We set
a = ag1 and X = Aoy and restrict the range of the variables to |1 € [fimin, fimax] = [—0.1,0.1],
W € [Wmin, Wmax] = [—0.1,0.1], ¥ € [Vmin, Vmax] = [0.8,1.5], and 7 € [Tiin, Tmax] = [0.8, 1.25].

The distance of the singular value at S(p, w, v, T, A\o1, 1) and that at S(pu+ Ap, w+ Aw, v+
Av, T + AT, A1, 1) is bounded as follows:

IS+ Ap,w + Aw, v+ Av, 7 4+ AT, Ao, 1) — S(p,w, v, 7, Aot, a01)| < (81)
0.32112 | Ap| + 2.63690 | Aw| + 2.28242 |Av| + 2.98610|A7| .

Proof. The mean value theorem states that a ¢ € [0, 1] exists for which
S(p+ Ap,w + Aw, v+ Av, 7+ AT, M1, 201) — S(p,w, v, 7, Ao1, 1) = (82)
oS
a—(,u + tAp, w4 tAw, v + tAv, T + tAT, Ao1, a01) Ap +
1w
oS
a—(,u + tAp, w4 tAw, v + tAv, T + tAT, A1, @01) Aw +
w
0
0

S
—(p+ tAp, w + tAw, v + tAv, T + tAT, A1, 1) Av +
v

S
E(,u + tAp, w4 tAw, v + tAv, T + tAT, o1, ap1) AT

from which immediately follows that

|S(p+ Ap,w + Aw, v + Av, 7 + AT, A1, a01) — S(p,w, v, 7, Aor, a01)] < (83)
gi(u—i-tAuyw+tAw,V—i—tAV,T‘f’tAT?/\Ol’O‘Ol) [Aul +

S
6—(,u + tAp, w4 tAw, v + tAv, T + tAT, o1, ap1)| |Aw| +

oS

3 —(p+ tAp,w + tAw, v + tAv, T + tAT, X1, a01) | |Av| +
v
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%(u +tAM, W + tAW, v + tAY, T + tAT, Aoy, ao1)| |AT] .

We now apply Lemma 10 which gives bounds on the derivatives, which immediately gives the
statement of the lemma. 0

Lemma 12 (Largest Singular Value Smaller Than One). We set & = aig1 and A = A\g1 and restrict
the range of the variables to ji € [—0.1,0.1], w € [-0.1,0.1], v € [0.8,1.5], and T € [0.8,1.25].

The the largest singular value of the Jacobian is smaller than 1:
S(p,w, v, 7, A1, 01) < 1. (84)

Therefore the mapping Eq. (5) and Eq. (6) is a contraction mapping.

Proof. We set Ap = 0.0068097371, Aw = 0.0008292885, Av = 0.0009580840, and AT =
0.0007323095.

According to Lemma 11 we have

|S(:u + AM? w + Aw» v+ AV? T+ AT, )\017 aOl) - S(/'vaa v, T, )\017 a01)| < (85)
0.32112 - 0.0068097371 + 2.63690 - 0.0008292885+
2.28242 - 0.0009580840 + 2.98610 - 0.0007323095 < 0.008747 .

For a grid with grid length Ap = 0.0068097371, Aw = 0.0008292885, Av = 0.0009580840,
and A7 = 0.0007323095, we evaluated the function Eq. (55) for the largest singular value in
the domain p € [—0.1,0.1], w € [-0.1,0.1}, v € [0.8,1.5], and 7 € [0.8,1.25]. We did this
using a computer. According to Subsection S3.4.5 the precision if regarding error propagation
and precision of the implemented functions is larger than 10~'3. We performed the evaluation
on different operating systems and different hardware architectures including CPUs and GPUs.
In all cases the function Eq. (55) for the largest singular value of the Jacobian is bounded by
0.9912524171058772.

We obtain from Eq. (85):

S(p+ Ap,w + Aw, v + Av, 7+ AT, Ao, a01) < 0.9912524171058772 + 0.008747 < 1.
(86)

O]

S3.4.2 Lemmata for proofing Theorem 1 (part 2): Mapping within domain

We further have to investigate whether the the mapping Eq. (5) and Eq. (6) maps into a predefined
domains.

Lemma 13 (Mapping into the domain). The mapping Eq. (5) and Eq. (6) map for a = ap
and X\ = o1 into the domain p € [—0.03106,0.06773] and v € [0.80009, 1.48617] with w €
[—0.1,0.1] and T € [0.95,1.1].
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Proof. We use Lemma 8 which states that with given sign the derivatives of the mapping Eq. (5)
and Eq. (6) with respect to & = g1 and A = g are either positive or have the sign of w. Therefore
with given sign of w the mappings are strict monotonic and the their maxima and minima are found
at the borders. The minimum of [ is obtained at pyw = —0.01 and its maximum at yw = 0.01 o,
and it easily follows with

£(—0.1,0.1,0.8,0.95, Ao1, 001)
—0.03106 < f1(—0.1,0.1,0.8,0.95, Ao1, 1)

71(0.1,0.1,1.5, 1.1, Aoy, 1)

IS
& < ((0.1,0.1,1.5, 1.1, Ag1, 1) < 0.06773,

//\ /A

that i € [—0.1,0.1].

Similarly, the maximum and minimum of £( is obtained at these values

(i
£(—0.1,0.1,0.8,0.95, X1, a1 ) <€ <
<

< £(0.1,0.1,1.5,1.1, A1, co1)
0.80467 < £(—0.1,0.1,0.8,0.95, A1, ap1) <€ < £(0.1,0.1,1.5, 1.1, Aoy, ) < 1.48617.
Since |€ — 7| = |%| < 0.004597, we can conclude that 0.80009 < 7 < 1.48617 and the value
remains in [0.8, 1.5]. O

Corollary 14. The image g(') of the mapping g : (u,v) — (i, ) (Eq. (2)) and the domain
QO ={(p,v)| =01 < p<0.1,0.8 < pu < 1.5} is a subset of V':

g() &, (87)
forallw € [—0.1,0.1] and T € [0.95, 1.1].

Proof. Directly follows from Lemma 13. 0

S3.4.3 Lemmata for proofing Theorem 2: The variance is contracting

Main Sub-Function. We consider the main sub-function of the derivate of second moment, J22
(Eq. (48)):

0 - vr pw + vt pw + 2vT pw
—&= 7)\2 —a?eM 2 erfe () + 202HOTIT orfe () — erfe ( +2
v 2 < NoNZs V2T NN

(88)

that depends on pw and v, therefore we set x = v7 and y = uw. Algebraic reformulations
provide the formula in the following form:

1 2 iy)? (2011)” 2 ! 5
22102 <—e_gac> <e( erf) erfc ( y—i—x) — 2e : ;vy) erfc (y+ $> 761;:6 erfc< - > N 2>
> NoNG vave vave

S <

For A = A\op1 and @ = a1, we consider the domain —1 1, -0.1 € w < 0.1,

1.5 < v <16,and, 0.8 < 7 < 1.25.

For x and y we obtain: 0.8 - 1.5 =12 <2 <20=1.25-16and0.1-(—1) = —-0.1 <y <
0.1 = 0.1 1. In the following we assume to remain within this domain.
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. . . (@+v)?
Figure S2: Left panel: Graphs of the main subfunction f(z,y) = e - erfc (\E:%) —
(22+y)? . L . . .
2e = erfc (3‘%&%) treated in Lemma 15. The function is negative and monotonically increas-

ing with x independent of y. Right panel: Graphs of the main subfunction at minimal x = 1.2.
The graph shows that the function f(1.2,y) is strictly monotonically decreasing in y.

Lemma 15 (Main subfunction). For 1.2 < x < 20 and —0.1 < y < 0.1,

the function

(a+y)? x4y > (2z+y)? <2x + y>
e 2= erfc —2e 22 erfc 90
(ﬁﬁ oNG o

is smaller than zero, is strictly monotonically increasing in x, and strictly monotonically decreas-
ing in y for the minimal x = 12/10 = 1.2.

Proof. See proof 44. O

The graph of the subfunction in the specified domain is displayed in Figure S2.

Theorem 16 (Contraction v-mapping). The mapping of the variance v(u,w,v, T, A, ) given in
Eq. (6) is contracting for A\ = )1, a« = a1 and the domain Q7: —0.1 < 4 < 0.1, 0.1 < w <
0.1, 1.5 <v <16, and 0.8 < 7 < 1.25, that is,

o < 1. ()]

‘17(:“7 w,V, T, )‘017 aOl)

Proof. In this domain Q" we have the following three properties (see further below): %E < 1,
i >0, and % i > 0. Therefore, we have

<1 92)
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= We first proof that 8%5 < 1in an even larger domain that fully contains 7. According to
Eq. (48), the derivative of the mapping Eq. (6) with respect to the variance v is

o0 ~
af(ﬂawaya T, /\0170401) = (93)

1 vr pw + vt

—N2r <a2 (—e“erT) erfc <> +

2 V2T

+ 2vT Hw
202e2HOTT orfe (uw) — erfc <> + 2> .
\/5\/1/7' \@\/VT
For A\ = Xp1,a=ap1, -1 < p <1, -01<w<011.5<r<16,and 0.8 < 7 < 1.25,
we first show that the derivative is positive and then upper bound it.
According to Lemma 15, the expression
(pw VT)2 (nw UT)2 2
T aate (M) a1 2T o4
\/5\/1/7 \/5\/1/7'

is negative. This expression multiplied by positive factors is subtracted in the derivative
Eq. (93), therefore, the whole term is positive. The remaining term

pw
2 — erf
erc(\/§ W) (95)

of the derivative Eq. (93) is also positive according to Lemma 21. All factors outside the
brackets in Eq. (93) are positive. Hence, the derivative Eq. (93) is positive.

The upper bound of the derivative is:

1 vr pw + vt
M7 oy (=t ) erfe <) + 96
5701 < 01 ( ) NN (96)

+ 2vT Hw
202, 22T orfe <uw) — erfe < ) + 2> =
01 \/5\/1/7 \/5\/1/7'

1 p2o? (pw+vr)? pw + vt
A7 [ o (—e_ 2ur > (e vt erfe () —
(ot 207)> pw + 21/7’)) ( Hw > )
2¢ 2 erfc| ——— — erfc +2 | <
< V2/UT V2T
]_ 1/20.12 w vT 2
~1.25M03, <a31 (—el%f ) (e<M 2o erfc (W) -
2 \/5\/1/7'
(uw+2v7)2 pw + 21/7')) ( Hw > )
2¢ 2 erfc| ——— — erfc +2 ] <
( ﬁ\/l/’i‘ ﬁ\/l/’i‘

2
11.25)\31 <a%1 <e(£%> erfc <1\/2§—\;%> -

2

2.1.240.1\? 2.1.24+0.1 12,2
2e< ﬂ\/ﬁ> erfc <+>> <—el2vr > — erfc( pe > + 2) <
V2V1.2 NN
1 1.240.1)° 1.240.1
5125)\31 <—€O'OO[(2)1 (e(ﬁ\/ﬁ) erfC <m) —
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21.240.1) 2 2-1.2+40.1 pw
2 ( V2V12 ) f <)) — erf < ) +2> <
¢ e\ Vaviz N\ Vaver

1 5 0.0 2 (1<2+041)2 1.240.1
_ —e V2V1.2 - ) =
21.25)\01< e ag | e erfc JaVis

2.1.240.1) 2 2.1.2+0.1 0.1
2€< V2V12 ) erfc ()) — erfc () + 2) <
ViViz VaViz
0.995063 < 1.

We explain the chain of inequalities:

e First equality brings the expression into a shape where we can apply Lemma 15 for
the the function Eq. (90).

e First inequality: The overall factor 7 is bounded by 1.25.

e Second inequality: We apply Lemma 15. According to Lemma 15 the function Eq. (90)
is negative. The largest contribution is to subtract the most negative value of the func-
tion Eq. (90), that is, the minimum of function Eq. (90). According to Lemma 15 the
function Eq. (90) is strictly monotonically increasing in x and strictly monotonically
decreasing in y for x = 1.2. Therefore the function Eq. (90) has its minimum at mini-
mal x = v7 =1.5-0.8 = 1.2 and maximal y = puw = 1.0-0.1 = 0.1. We insert these
values into the expression.

L2£JJ2
e Third inequality: We use for the whole expression the maximal factor e™ G <1 by
setting this factor to 1.

e Fourth inequality: erfc is strictly monotonically decreasing. Therefore we maximize
its argument to obtain the least value which is subtracted. We use the minimal z =
vT =1.5:0.8 = 1.2 and the maximal y = pw = 1.0 0.1 = 0.1.

e Sixth inequality: evaluation of the terms.

= We now show that fi > 0. The expression fi(u, w, v, 7) (Eq. (5)) is strictly monotonically in-
creasing im pw and v7. Therefore, the minimal value in Q7 is obtained at /2(0.01,0.01, 1.5, 0.8) =
0.008293 > 0.

» Last we show that %ﬂ > 0. The expression %ﬂ(,u,w, v,7) = Ji2(p,w, v, 7) (Eq. (48))
can we reformulated as follows:

,u2w2 (uw+u7—)2

ATe” ar <\/7?ae wr erfe (%%) — ﬁfﬁ%”)
7
e o7

\712(;“7(")) v, T, >\7 Oé) =

. (pwtvr)? Va(a—
s pw+rT \ _ V2(a—1)
is larger than zero when the term /mae ™ 2 erfc ( N N

This term obtains its minimal value at yw = 0.01 and v7 = 16 - 1.25, which can easily be
shown using the Abramowitz bounds (Lemma 22) and evaluates to 0.16, therefore J12 > 0
in QF.

is larger than zero.
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S3.4.4 Lemmata for proofing Theorem 3: The variance is expanding

Main Sub-Function From Below. We consider functions in pw and v, therefore we set x =
pw and y = vT.

For A\ = Ap1 and a = g1, we consider the domain —0.1 < p < 0.1, —=0.1 < w < 0.1
0.00875 < v < 0.7,and 0.8 < 7 < 1.25.

For x and y we obtain: 0.8 - 0.00875 = 0.007 < = < 0.875 =1.25-0.7and 0.1 - (—0.1) =
—0.01 <y <£0.01 =0.1-0.1. In the following we assume to be within this domain.

In this domain, we consider the main sub-function of the derivate of second moment in the
next layer, J22 (Eq. (48)):

g~ 1 vr pw + vt pw + 2vT pw
—& =A% [ —alervt 2 efc()+2 22““’+2’”efc(>—efc< +2
81/5 2 T< @ ' NeNTZ “c ' V2T ' NeN

(98)

that depends on pw and v, therefore we set x = v7 and y = uw. Algebraic reformulations
provide the formula in the following form:

Yé = 99)

1 2 z 2 T 2 2 1 2
“\2ra? <—e_gw> (e( ;3) erfc (W> — 2e e 2+xy) erfc <y+x> + 7657 erfc <y> — 2)
2 V21 V2yz) o« V2\/x

Lemma 17 (Main subfunction Below). For 0.007 < x < 0.875 and —0.01 < y < 0.01, the
Junction

(@+y)> T+y > (2z+y)? (21‘ + y)
e 2 erfc| —=)—2e 22 erfc| —= 100
<\/§\/§ V2/x (100)

smaller than zero, is strictly monotonically increasing in x and strictly monotonically increasing
in y for the minimal x = 0.007 = 0.00875- 0.8, x = 0.56 = 0.7 - 0.8, z = 0.128 = 0.16 - 0.8,
and x = 0.216 = 0.24 - 0.9 (lower bound of 0.9 on 7).

Proof. See proof 45. O

Lemma 18 (Monotone Derivative). For A = Ag1, & = «qy and the domain —0.1 < p < 0.1,
—0.1 <w <£0.1,0.00875 < v £ 0.7, and 0.8 < 7 < 1.25. We are interested of the derivative of

wwtvr 2 wi2.vr\? .
T(JQW) exfe (fy;w) 0 (5) et (W)) ~ aon
VUT vt

The derivative of the equation above with respect to

» v is larger than zero;
» 7 is smaller than zero for maximal v = 0.7, v = 0.16, and v = 0.24 (with 0.9 < 7);

m y = pw is larger than zero for v = 0.00875 - 0.8 = 0.007, v7 = 0.7 - 0.8 = 0.56,
v =0.16 - 0.8 = 0.128, and v = 0.24 - 0.9 = 0.216.

Proof. See proof 46. ]
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S3.4.5 Computer-assisted proof details for main Lemma 12 in Section 3.4.1.

Error Analysis. We investigate the error propagation for the singular value (Eq. (55)) if the
function arguments p,w, v, 7 suffer from numerical imprecisions up to €. To this end, we first
derive error propagation rules based on the mean value theorem and then we apply these rules to
the formula for the singular value.

Lemma 19 (Mean value theorem). For a real-valued function f which is differentiable in the
closed interval [a, b], there exists t € [0, 1] with

fla) = f(b) = Vf(a+tlb-a)) - (a - b). (102)
It follows that for computation with error Az, there exists a t € [0, 1] with
f@+Az) — f(@)] < [Vf(@+tAa)]| |Az] . (103)

Therefore the increase of the norm of the error after applying function f is bounded by the norm
of the gradient ||V f(x + tAx)||.

We now compute for the functions, that we consider their gradient and its 2-norm:

m addition:
f(x) = 1 + 29 and Vf(x) = (1,1), which gives ||V f(z)|| = V2.
‘We further know that

|f(x+Ax) — f(x)] = |z1 + 22+ Az + Azg — 21 — 22| < [Azq| + [Azy| . (104)

Adding n terms gives:

n

Zn:ari—i—Axi — Zn:mz < Z|Aa:1] < AT oy - (105)
i=1 i=1

i=1
m subtraction:

f(x) = 1 — 29 and V f(x) = (1, —1), which gives ||V f(x)|| = v/2.
We further know that

lf(x+ Ax) — f(x)] = |x1 — 22 + Azy — Ay — x1 + 22| < |Azy| 4+ |Azg| . (106)

Subtracting n terms gives:

n

n n
Z—(xri-sz‘) + sz < Z\Amzl < AT oy - (107)
i=1 i=1 i=1

= multiplication:

f(@®) = z129 and V f(x) = (22, 1), which gives |V f(x)|| = ||=||.
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We further know that

|f(x 4+ Ax) — f(x)| = |z1 22+ Axy - 20+ Azg - 21 + Ay - Axg — 21 - 22| <

(108)
|Axy | |z2] 4 |Azs| 21| + O(A?) .
Multiplying n terms gives:
f[(xﬁmi) — ﬁ:c = ﬁxiimi + 0(AY)] < (109)
=1 =1 =1 =1
[Tl 3055 + o) < n Tt |55 + 0a).
i=1 =1 i=1 max
m division:
fle) =2 and Vf(x) = (i, —%), which gives |V f(x)|| = EQH
Z2 Z2 x5 x5
We further know that
x1 + Axy T (a:l + Axl)xg — wl(xg + Axg)
Ax) — = |— - = =
fla+Aw) - flo) = |22 o A,
(110)

Az Axo -1
xI9 x%

Azy 29 — Axo - 17

+0(A2).

x% + Axo - T

® square root:

f(z) =+/zand f'(z) = ﬁ, which gives | f'(x)| = 21

3

m exponential function:
f(z) = exp(x) and f'(x) = exp(z), which gives |f'(z)| = exp(z).

= error function:

f(z) = erf(x) and f'(z) = -2 (—2), which gives |f'(z)| =

= ﬁ exp exp(—xQ).

g

™

= complementary error function:

f(z) = erfe(x) and f'(x) = —% exp(—x?), which gives |f'(z)| = % exp(—z?).
Lemma 20. If the values u,w, v, T have a precision of €, the singular value (Eq. (55)) evaluated
with the formulas given in Eq. (48) and Eq. (55) has a precision better than 292e¢.

This means for a machine with a typical precision of 27°2 = 2.220446 - 10!, we have the
rounding error € ~ 10716, the evaluation of the singular value (Eq. (55)) with the formulas given
in Eq. (48) and Eq. (55) has a precision better than 10713 > 292¢.
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Proof. We have the numerical precision € of the parameters u, w, v, 7, that we denote by A, Aw, Av, At
together with our domain §2.

With the error propagation rules that we derived in Subsection S3.4.5, we can obtain bounds
for the numerical errors on the following simple expressions:

A (pw
A (vt
A (VT < (A(vr) -2+ A2 |1/T|) < (6e+1.25-1.5¢) /4 < 2¢
)+ A(vr) =3. 26
)+ ( 27) < 2.2¢
) 3e

NZ: S 21/0.64
1

< Ap|w| 4 Aw |p| < 0.2¢ (111)
< Avr|+ AT|v| <1 5e+ 1.5¢ = e

~— —

g
=
S
_l_
S
2
N
T T
€ &

/‘\

= 1.875¢

>
—
=
> &
—~ +
/AN /N
ol BB

g
~—
S
~—
N
| o
N
)
I~

€ < 3.5¢

1
2v2

>
/N

9

§
L

<V2-A(Vor) + v A(V2) < V2. 1875e 415125

< (A () - VEVIT + o] (xf V) ———

B>
A~
Sl

&
3
~——

(V2 x/ﬁ)

< 0.25¢

26 \/ + 1 e;E)
1

A(%) < <A(;M+V¢)-\f2\/ﬁ+,uw+1/7'\'A<\f2\/E)>Wé

< 8€.

(3.2e - V2v/0.64 + 1.885 - 3.55)

2.0.64

Using these bounds on the simple expressions, we can now calculate bounds on the numerical
errors of compound expressions:

A <erfc< >> < 2.e<ﬂ”&%>2A< pe ) < (112)
Vo uT VL3 Voot
2
.02
ﬁ 0.25¢ < 0.3¢
w+rvT 2
A <erfc <W+W>) <2 EE) A (W) - (113)
NONZE T NONZE
\37? - 8¢ < 10¢
A (W“?T) < <e“w+%) A (e““""%) < (114)
0

TS 9 92¢ < 5.7¢ (115)
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Subsequently, we can use the above results to get bounds for the numerical errors on the
Jacobian entries (Eq. (48)), applying the rules from Subsection S3.4.5 again:

A(Jn) = (116)

1 vt pw + vt Hw
A Zdw [ ae! T2 erfe <) —erfc ( ) + 2)) < 6e,
<2 < NoNZ Vo uT ‘

(117)

and we obtain A (J12) < 78, A (J21) < 189%¢, A (Ja2) < 405¢ and A (1) < 52e. We
also have bounds on the absolute values on J;; and /i (see Lemma 6, Lemma 7, and Lemma 9),
therefore we can propagate the error also through the function that calculates the singular value

(Eq. (55)).

A(S(M,W,I/,T,)\,O&)) = (118)

1
=A <2 (\/(jll + Ja2 = 20012)% + (T — 20711 — J12)* +

V(T — Joo + 2T12)2 + (T2 + Jo1 — 2ﬂ711)2)> <
292e€.

Precision of Implementations. We will show that our computations are correct up to 3 ulps. For
our implementation in GNU C library and the hardware architectures that we used, the precision
of all mathematical functions that we used is at least one ulp. The term “ulp” (acronym for “unit
in the last place”) was coined by W. Kahan in 1960. It is the highest precision (up to some factor
smaller 1), which can be achieved for the given hardware and floating point representation.

Kahan defined ulp as ( , ):

“Ulp(x) is the gap between the two finite floating-point numbers nearest z, even if z
is one of them. (But ulp(NaN) is NaN.)”

Harrison defined ulp as ( s ):

“an ulp in z is the distance between the two closest straddling floating point numbers
a and b, i.e. those with a < = < b and a # b assuming an unbounded exponent

range.”
In the literature we find also slightly different definitions ( , ).
According to ( , ) who refers to ( , ):

“IEEE-754 mandates four standard rounding modes:”



36 S3 Proofs of the Theorems

“Round-to-nearest: 7(x) is the floating-point value closest to x with the usual dis-
tance; if two floating-point value are equally close to x, then 7 () is the one whose
least significant bit is equal to zero.”

“IEEE-754 standardises 5 operations: addition (which we shall note & in order to
distinguish it from the operation over the reals), subtraction (&), multiplication (R),
division (©), and also square root.”

“IEEE-754 specifies em exact rounding [Goldberg, 1991, §1.5]: the result of a floating-
point operation is the same as if the operation were performed on the real numbers

with the given inputs, then rounded according to the rules in the preceding section.

Thus, x @y is defined as 7(z +y), with = and y taken as elements of RU{—o0, +00};

the same applies for the other operators.”

Consequently, the IEEE-754 standard guarantees that addition, subtraction, multiplication, divi-
sion, and squared root is precise up to one ulp.

We have to consider transcendental functions. First the is the exponential function, and then
the complementary error function erfc(z), which can be computed via the error function erf(x).

Intel states ( , ):

“With the Intel486 processor and Intel 387 math coprocessor, the worst- case, tran-
scendental function error is typically 3 or 3.5 ulps, but is some- times as large as 4.5
ulps.”

According to https://www.mirbsd.org/htman/i386/man3/exp.htm and http://man.
openbsd. org/0penBSD- current/man3/exp. 3:

“exp(x), log(x), expml(x) and loglp(z) are accurate to within an ulp”

which is the same for freebsd https://www.freebsd.org/cgi/man.cgi?query=exp&sektion=
3&apropos=0&manpath=freebsd:

“The values of exp(0), expm1(0), exp2(integer), and pow(integer, integer) are exact
provided that they are representable. Otherwise the error in these functions is gener-
ally below one ulp.”

The same holds for “FDLIBM” http://www.netlib.org/fdlibm/readme:

“FDLIBM is intended to provide a reasonably portable (see assumptions below), ref-
erence quality (below one ulp for major functions like sin,cos,exp,log) math library
(libm.a).”

Inhttp://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.
html we find that both exp and erf have an error of 1 ulp while erfc has an error up to 3 ulps de-
pending on the architecture. For the most common architectures as used by us, however, the error
of erfc is 1 ulp.


https://www.mirbsd.org/htman/i386/man3/exp.htm
http://man.openbsd.org/OpenBSD-current/man3/exp.3
http://man.openbsd.org/OpenBSD-current/man3/exp.3
https://www.freebsd.org/cgi/man.cgi?query=exp&sektion=3&apropos=0&manpath=freebsd
https://www.freebsd.org/cgi/man.cgi?query=exp&sektion=3&apropos=0&manpath=freebsd
http://www.netlib.org/fdlibm/readme
http://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
http://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
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We implemented the function in the programming language C. We rely on the GNU C Library
( , ). According to the GNU C Library manual which can be obtained from
http://www.gnu.org/software/libc/manual/pdf/libc.pdf, the errors of the math func-
tions exp, erf, and erfc are not larger than 3 ulps for all architectures ( , , PP-
528). For the architectures ix86, i1386/i686/fpu, and m68k/fpmu68k/m680x0/fpu that we used the
error are at least one ulp ( , , pp- 528).

S3.4.6 Intermediate Lemmata and Proofs

Since we focus on the fixed point (i, v) = (0, 1), we assume for our whole analysis that & = ag;
and A = \g;. Furthermore, we restrict the range of the variables y € [fmin, ftmax] = [—0.1,0.1],
W € [Wmin, Wmax) = [—0.1,0.1], ¥ € [Vmin, Ymax) = [0.8,1.5], and 7 € [Tiin, Tmax) = [0.8, 1.25].

For bounding different partial derivatives we need properties of different functions. We will
bound a the absolute value of a function by computing an upper bound on its maximum and a
lower bound on its minimum. These bounds are computed by upper or lower bounding terms. The
bounds get tighter if we can combine terms to a more complex function and bound this function.
The following lemmata give some properties of functions that we will use in bounding complex
functions.

Lemma 21 (Basic functions). exp(z) is strictly monotonically increasing from 0 at —oo to oo at
oo and has positive curvature.

According to its definition erfc(x) is strictly monotonically decreasing from 2 at —oc to 0 at
0.

Next we introduce a bound on erfc:

Lemma 22 (Erfc bound from Abramowitz).

2" 2"
¢ < erfe(z) < ¢ , (119)
\/Tr(\/m?+2+x) \/Tr(,/x?Jr%er)
forx > 0.
Proof. The statement follows immediately from ( , ) (page 298, for-
mula 7.1.13). ]

These bounds are displayed in figure S3.

. 2 2 . . . .
Lemma 23 (Function e*” erfc(x)). e*” erfc(x) is strictly monotonically decreasing for x > 0 and
has positive curvature (positive 2nd order derivative), that is, the decreasing slowes down.

A graph of the function is displayed in figure

Proof. The derivative of e*” erfc(z) is

de™” erfe(x)
ox

= 2¢" zerfe(z) — (120)

5>


http://www.gnu.org/software/libc/manual/pdf/libc.pdf
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Function

2%exp(-x"2)/(sqrt(pi)*(sart(x2+2)+x))
— 2'exp(-x"2)/(sart(pi) (sqrt(x"2+4/pi)+x))
erfe(x)

> 0.50

22
Figure S3: Graphs of the upper and lower bounds on erfc. The lower bound m (red),
2e”

2
the upper bound —2¢—>—_ (green) and the function erfc(z) (blue) as treated in Lemma 22.
pp NN (green) ()

exp(x"2)*erfc(x)
x*exp(x"2)*erfc(x)

3 i E 1
X X

Figure S4: Graphs of the functions e erfe(x) (left) and ze®” erfe(x) (right) treated in Lemma 23
and Lemma 24, respectively.
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Using Lemma 22, we get

de™” erfe(x)

5 = Qexzxerfc(x) - — (121)

VT

2

2
<
™
i)
4z 2 Tz Tt
VT (, [x? + % + :L‘) e e

Thus e®” erfc(x) is strictly monotonically decreasing for z > 0.

<0

The second order derivative of = erfc(z) is

82"’ erfe(x)
Ox?

Az
VT

= 4 2 erfc(x) + 2" erfc(x) — (122)

Again using Lemma 22 (first inequality), we get

2 ((21}2 +1) e erfe(x) — 3;) > (123)

4 (227 +1) dr

ﬁ(@m) e
4(z2—mx+1)
ﬁ(\/m+x>
4(x2_¢m+1)
ﬁ(\/m+x)
szmﬁ)
ﬁ(\/m+x>

>

For the last inequality we added 1 in the numerator in the square root which is subtracted, that is,
making a larger negative term in the numerator. O

Lemma 24 (Properties of ze®” erfc(z)). The function ze® erfc(z) has the sign of @ and is mono-

. . . 1
tonically increasing to N

Proof. The derivative of ze®” erfc(z) is

2
2e" 22 erfc(x) + e’ erfe(z) — \/—:; . (124)

This derivative is positive since

2e" 22 erfc(x) + e’ erfc(z) — —= = (125)
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2% 2 (202 + 1) o 2((22%+1) —2 (V2 +2+2))

Vi R(VEEaes) VA vr(VaEeata)
2<m2—xm+1>_2(x2—x\/m+l) 2(1’2—$1/$2—|—;12—|—2—|—1)
\/Tr(\/erx) - \/E(\/era:) g \/E(\/erm)

2 (22— VaT+ 207 +1+1) 2<x2—\/<x2+1>2+1)

= =0.
va (VT2 +a) va (VT ¥ +x)

e (227 + 1) erfe(x) —

We apply Lemma 22 to = erfc(;v)e“”?2 and divide the terms of the lemma by z, which gives

2 2 2

< xerfe(zr)e” < . (126)
ﬁ(,/%+1+1> ﬁ(,/$+1+1)
For lim, .~ both the upper and the lower bound go to ﬁ O
Lemma 25 (Function pw). hii(p,w) = pw is monotonically increasing in pw. It has minimal
value t11 = —0.01 and maximal value T1; = 0.01.
Proof. Obvious. O

Lemma 26 (Function v7). hes(v, T) = vT is monotonically increasing in vt and is positive. It
has minimal value too = 0.64 and maximal value Ty = 1.875.

Proof. Obvious. O

Lemma 27 (Function \”/gj;%) hi(p,w,v,7) = \“/‘g'y% is larger than zero and increasing in both

vt and pw. It has minimal value t1 = 0.5568 and maximal value Ty = 0.9734.

Proof. The derivative of the function %i}; with respect to x is
1 pw + T
— = 127
NN L et
20 — (pw+2x) T — pw > 0
2\/5333/2 2\@3@3/2 ’
since z > 0.8 - 0.8 and pw < 0.1-0.1. O

Lemma 28 (Function %4\'/21; ). ho(p,w,v,7) = %% is larger than zero and increasing in

both vt and pw. It has minimal value to = 1.1225 and maximal value To = 1.9417.

pw~2x

Vavz

Q_,u,w—i—2x:4a:—(uw+2x)_2x—,uw 5 0. (128)

Voo 2y/223/2 2v/223/2 24/223/2

Proof. The derivative of the function with respect to x is
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Lemma 29 (Function \/g\%) hs(p,w,v,7) = \é‘jﬁ monotonically decreasing in vt and
monotonically increasing in pw. It has minimal value t3 = —0.0088388 and maximal value
T3 = 0.0088388.

Proof. Obvious. [

2 2
Lemma 30 (Function (\/gjﬁ) ) ha(p,w,v, 1) = (ﬁ%) has a minimum at 0 for = 0 or

w = 0 and has a maximum for the smallest vT and largest |uw| and is larger or equal to zero. It
has minimal value t4 = 0 and maximal value T, = 0.000078126.

Proof. Obvious. O
e /2 o

Lemma 31 (Function N ). N 0 and decreasing in vT.

Proof. Statements follow directly from elementary functions square root and division. 0

. _ " B L
Lemma 32 (Function 2 — erfc ( 7 \/ﬁ)). 2 — erfc ( NN

) > 0 and decreasing in vt and
increasing in pw.

Proof. Statements follow directly from Lemma 21 and erfc. O

Lemma 33 (Function \/g (%;ig%" - \/%)) For A = \o1 and o = oy, \/% (f;;%; — \/O;—T> <
0 and increasing in both vt and pw.

Proof. We consider the function \/% ((a;;/)QM 2 - %), which has the derivative with respect to
T

2 o (o — 1) puw
S 2

This derivative is larger than zero, since

2 a 3(a—1)uw
\[r (2(V7’)3/2 T T 2(ur ) > ~ (130)
2 (Oé . S(afl)uw>

™ vT

2(vr )32 =0
The last inequality follows from o — % > 0 for a = aypy.

We next consider the function \/g ((“*?ij — L) , which has the derivative with respect to
(vr)3/ Nz

NECER

(v1)3/2

X

> 0. (131)
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Lemma 34 (Function \/g <(_1)(a_1)“2w2 4 —otopwtl a\/m-) ). The function

(vr)3/2 Nz
“Da—1)p2w?  —
\/% <( 1)((57_)31/)5 4+ a%wﬂ — ou/VT) < 0 is decreasing in vT and increasing in pw.

Proof. We define the function

— — 2,2 _
2(( D(a—1)p*w n 04+0¢Mw+1_a\/5> (132)

T 23/2 NG

which has as derivative with respect to x:

(133)

225/2 23/2 BN

(3(a — D plw? — z(—a+ apw + 1) — axQ) .

2 (3(@—1)u2w2 —at+auw+1  « ) 7
7T

1
2ma5/?

The derivative of the term 3(a — 1)p%w? — z(—a + auw + 1) — az? with respect to  is —1 +
a— pwa — 2ax < 0, since 2ax > 1.6a. Therefore the term is maximized with the smallest value
for z, which is x = v7 = 0.8 - 0.8. For uw we use for each term the value which gives maximal
contribution. We obtain an upper bound for the term:

3(—0.1-0.1)% (w1 — 1) — (0.8 0.8)%agy — 0.8 - 0.8((—0.1-0.1)arp1 — gy + 1) = —0.243569 .
(134)

Therefore the derivative with respect to z = v is smaller than zero and the original function is
decreasing in v7

We now consider the derivative with respect to © = uw. The derivative with respect to x of
the function

2 (a—1)2? —a+ar+1
(o ) .

is

\/g(ozln' —2(a—1)x) |

(v1)3/2

(136)

Since —2z(—1+ ) +vra > —2-0.01- (=1 + ap1) +0.8-0.8ap1 > 1.0574 > 0, the derivative
is larger than zero. Consequently, the original function is increasing in pw.

The maximal value is obtained with the minimal »7 = 0.8-0.8 and the maximal pyw = 0.1-0.1.
The maximal value is

2 /0.1-0.1ag; —apr +1  0.120.12(—1)(apy — 1) >
2 + —0.8-0.8 = —1.72296 .
- ( V0.8-0.8 (0.8-0.8)3/2 oo

(137)

Therefore the original function is smaller than zero. O
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062— w
Lemma 35 (Function \/g (((1)“ — 3 >). For A = \g1 and o = apy,

vT)3/2 Nz
2 ([P 302\ () und increasing in both v and
T (VT)3/2 \/E anda inc easmg mn bo T an ,Ll/w

Proof. The derivative of the function

2 2 _ 1 2
\/> (@2 D 30> (138)
77 2 Jz
with respect to x is

) 5 2. _ (02 —
\/E(ga _3(a 1)uw>_3(aﬂf (o 1)“w)>o, (139)

223/2 22:5/2 NG

since oz — pw(—1+a?) > a20.8-0.8 —0.1-0.1- (—1+ ad;) > 1.77387
2 2 _ 1 2
\f (@* -1z 3a (140)
T (vT)3/2 VT

2 (a2 -1
\/Z(a)>0. (141)

(vT)3/2

The derivative of the function

with respect to x is

The maximal function value is obtained by maximal v7 = 1.5 - 1.25 and the maximal pw =

. . 9 (0.1:0.1(ad, 1) 302 .
0.1 -0.1. The maximal value is \/;< (1.5_1.25?)13/2 — \/1.5.011.25 = —4.88869. Therefore the
function is negative. ]

2 w 2 w
Lemma 36 (Function \/g (03[\/37)# — 302 VT> ). The function \/g <(a\/l/17)“ — 302 VT) <

0 is decreasing in vt and increasing in pw.

Proof. The derivative of the function

2 (a2 — 1) Hw 9
z VAt 142
- ( 7 30T (142)
with respect to x is
2 _(aQ—l)uw_ 3a? _ —(a2—1)uw—3a2x <0, (143)
T 23/2 2z V2ma3/?

since —302x — pw(—1+a?) < —3a2,0.8-0.8 +0.1-0.1(—1 + a2;) < —5.35764.
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The derivative of the function
2 21
ot (M - 3a2\/w> (144)

with respect to x is

> 0. (145)

The maximal function value is obtained for minimal 7 = 0.8 - 0.8 and the maximal pw =

: 2 _
0.1-0.1. The value is /2 (W ~ 308" 0.80%1) — —5.34347. Thus, the function
is negative. O
L 37 (Funcii (petvr)? o (2t )y Ty . (pwtvr)? fo (motrr 0
emma 37 (Function v7e™ 207 erfc (T\/ﬁ)) e function vre 2zt erfc (Tﬁ) >

is increasing in vT and decreasing in piw.

Proof. The derivative of the function

(ot pw + :z:>
ze 2z erfe 146
( V2V (140

with respect to x is

(pwtz)?
e % (z(z +2) — p*w?) erfc (%%) o —

+ . 147
2x \/%ﬁ (147
This derivative is larger than zero, since
(NW+V7)2 2 9 +v
e 2r (vr(vr +2) — pPw?) erfe (%\/%) o — vr (148)

2ut V27 /uT ”
0.4349 (v7(v7 4 2) — pw?) N
2ut V27 /uT
0.5 (vr(vr +2) — p?w?®)  pw—vr
V2rur NorN
0.5 (v7(v7 + 2) — pPw?) + VuT(pw —vr)
V2muT B
—0.50%w? + pw/vT + 0.5(v7)? — vTUT +uT
V21T B
—0.502w? + pw/oT + (0507 — /oT)? + 0.25(7)2
V2T g

We explain this chain of inequalities:
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wW+VT 2
m The first inequality follows by applying Lemma 23 which says that e (e erfc (%)

is strictly monotonically decreasing. The minimal value that is larger than 0.4349 is taken
on at the maximal values v7 = 1.5 1.25 and pyw = 0.1 - 0.1.

» The second inequality uses %0.4349\/ 21 = 0.545066 > 0.5.
m The equalities are just algebraic reformulations.

» The last inequality follows from —0.5u2w? + pw+/v7 + 0.25(v7)% > 0.25(0.8 - 0.8)? —
0.5-(0.1)2(0.1)2 - 0.1-0.1-1/0.8 - 0.8 = 0.09435 > 0.

Therefore the function is increasing in v7.

Decreasing in pw follows from decreasing of e’ erfc(x) according to Lemma 23. Positivity

follows form the fact that erfc and the exponential function are positive and that v7 > 0. U
L 38 (Functi (HW;F?”T)z f pw+2vT Th t (“w;2”7)2 f pw+20T
emma 38 (Function v7e™ 2vm  erfc ( NN )). e function vre 2 erfc ( ﬁﬁ) >

0 is increasing in vT and decreasing in pw.

Proof. The derivative of the function

(uw+2m)2 Hw + 2ZE>
ze 20 erfc| —— 149
< V2V 2z (149)

is

(uw+21)2 (pw+2z

2
e dr <\/7?e41> (2z(2z + 1) — pPw?) erfc (%) + vV (pw — 235))
2y/mx

(pw+2a)?

We only have to determine the sign of /e~ 2= (2z(2z + 1) — p?w?) erfc (”;’7&?) +v/@(pw—

2x) since all other factors are obviously larger than zero.

(150)

This derivative is larger than zero, since

(,u,w+21/7')2 Hw + 2VT

vre  wr (2u7(2v7 + 1) — pPw?) erfe <W> + VT (pw — 2vT) > (151)
0.463979 (2v7(2vT + 1) — pPw?) + VT (uw — 2vt) =

— 0.463979p%w? + pw\/rT 4 1.85592(v7)% 4 0.927958vT — 2uT\/UT =

po (VoT — 0.463979pw) + 0.85592(v7)? + (v — V/or)” — 0.072042107 > 0.

We explain this chain of inequalities:

w vT 2
m The first inequality follows by applying Lemma 23 which says that e (e en) erfc (%)

is strictly monotonically decreasing. The minimal value that is larger than 0.261772 is taken
on at the maximal values v7 = 1.5 - 1.25 and pw = 0.1 - 0.1. 0.261772+/7 > 0.463979.

m The equalities are just algebraic reformulations.
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» The last inequality follows from pw (/7 — 0.463979w)+0.85592(v7)2 —0.0720421v7 >
0.85592-(0.8-0.8)2—0.1-0.1 (v/1.5- 1.25 4 0.1 - 0.1 - 0.463979) —0.0720421-1.5-1.25 >
0.201766.

Therefore the function is increasing in v7.

Decreasing in pw follows from decreasing of er” erfc(x) according to Lemma 23. Positivity
follows from the fact that erfc and the exponential function are positive and that v7 > 0. O

Lemma 39 (Bounds on the Derivatives). The following bounds on the absolute values of the
derivatives of the Jacobian entries J11(p, w, v, T, A, ), Ji2(p, w, v, 7, A, &), Jo1 (i, w, v, T, A, ),
and Jao(p, w, v, T, \, &) with respect to p, w, v, and T hold:

B

521 < 0.0031049101995398316 (152)

OTu1| 1 055872374194189
ow

857“ < 0.031242911235461816
1%

8(9{“ < 0.03749149348255419

85712 < 0.031242911235461816
I

85712 < 0.031242911235461816
W

86{1/12 < 0.21232788238624354

857712 < 0.2124377655377270
85721 < 0.02220441024325437
w

OP1| 1 146955401845684
ow

86‘751 < 0.14983446469110305
aajjl < 0.17980135762932363

< 0.14983446469110305

0J22
o
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02| () 14083446469110305
Ow

8(‘9752 < 1.805740052651535

85722 < 2.396685907216327
=

Proof. For each derivative we compute a lower and an upper bound and take the maximum of
the absolute value. A lower bound is determined by minimizing the single terms of the functions
that represents the derivative. An upper bound is determined by maximizing the single terms
of the functions that represent the derivative. Terms can be combined to larger terms for which
the maximum and the minimum must be known. We apply many previous lemmata which state
properties of functions representing single or combined terms. The more terms are combined, the
tighter the bounds can be made.

Next we go through all the derivatives, where we use Lemma 25, Lemma 26, Lemma 27,
Lemma 28, Lemma 29, Lemma 30, Lemma 21, and Lemma 23 without citing. Furthermore,

we use the bounds on the simple expressions t11,t22, ..., and T} as defined the aforementioned
lemmata:
WTVvT 2 2 _].
We use Lemma 31 and consider the expression ae (pegser) erfc (%:}:) . \/;\/(; ) in
brackets. An upper bound on the maximum of is
\ﬁ (01 — 1)
agrelt erfe(ty) — Y~ = 0.591017 . (153)
T
A lower bound on the minimum is
2 V(a0 = 1)
agrelt erfe(T)) — Y——— = 0.056318.. (154)
V22
Thus, an upper bound on the maximal absolute value is
2(ao1 — 1)
1)\01w2 e [ agre erfe(t;) — Y———— | = 0.0031049101995398316 . (155)
01 VTn
u 8521
. . \/g(oc—l)uw (pwtvr)® T
We use Lemma 31 and consider the expression T—a(uoﬂ—l)e o7 erfc (T\/ﬁ
in brackets.
An upper bound on the maximum is
\/;(0401 — 1)1 2
— ap1(t11 + 1)e' T erfe(1y) = —0.713808 . (156)

Vt2
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A lower bound on the minimum is

2 —
\/;(am Dt1n — a1 (T + 1)e erfe(t;) = —0.99987 . (157)
Vizz

This term is subtracted, and 2 — erfc(z) > 0, therefore we have to use the minimum and the
maximum for the argument of erfc.

Thus, an upper bound on the maximal absolute value is

1 . \/%(0401 — Dt 2
5)\01 —ett \/@ — a01(T11 + 1)6 1 erfc(tl) — (158)
erfc(T3) +2) = 1.055872374194189 .
] 85}1
We consider the term in brackets
(peotvr)? pw + VT 2 ((a—1)pw o)
vT fc | —— — — . 159
ae” 2 erc(\/i\/ﬁ>+ 7r< ()32 = (159)

We apply Lemma 33 for the first sub-term. An upper bound on the maximum is

2 2 [ (ap1 — 1)1y o1
agret erfe(ty) + 1/ — - - = 0.0104167 . (160)

A lower bound on the minimum is

T2 2 ((or —Dtin am
agre i erfe(Th) + \/> - = —0.95153. (161)
01 ( 1) - ( tgég /77522

Thus, an upper bound on the maximal absolute value is

1 2 2 ((aor —Dtin  am
— 201 Tmaxwmaxe™ | agire™ erfe(Th) + \/> — = (162)
o ( R N
0.031242911235461816 .

9J11
" or

We use the results of item % were the brackets are only differently scaled. Thus, an upper

bound on the maximal absolute value is

1 2 2 ((cor — Dt oo
— ) < Wmax€ 7 erfe(T \/7 - = (163
101V maxWmax€ (ame erfe(T1) + 4/ — e N (163)
0.03749149348255419 .
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u 8297;12
Since %L;? = 6(57;1 , an upper bound on the maximal absolute value is
1 2 2 ap1 — 1 t11 Q01
o Z)\01Tmeauxﬁ*-’maxet4 (OC(]IeT1 erfC(TI) + ; << tgéQ ) - \/@ = (164)

0.031242911235461816 .

0J12
Ow

We use the results of item % were the brackets are only differently scaled. Thus, an upper

bound on the maximal absolute value is

1 > 2 ((aor =Dt am
— 2 7 erfe(T Z — = 165
1 01MmaxTmax€ <()é01€ er C( 1) + pu ( t%éz \/@ ( )

0.031242911235461816 .

012
ov
For the second term in brackets, we see that gy 7'§1ineTl2 erfe(T1) = 0.465793 and a1 72, €' erfe(ty) =
1.53644.
We now check different values for
2 [ (=D)(a—1pPu? N Vo +auw —1)  ard/? | (166)
T V52,1 13/2 N

where we maximize or minimize all single terms.

A lower bound on the minimum of this expression is

2 ((—1)(@01 — D)2 w2 s N V/Tmin (@01 + o111 — 1) 04017'1?;1/5x> — a6

s

5/2 3/2 Y e
14 / v/ Tmin Vm/ax Vmin

min

—1.83112.

An upper bound on the maximum of this expression is

2 (—1)(0401 — 1),ufninwgﬁn \/Tmax(am + 0401T11 — 1) O‘OlTi/irzl
+ 7 - = (168)

5/2 /
Vmax+/ Tmax Vin Vimax

s

0.0802158 .

An upper bound on the maximum is

1 2 ((=D(ao — D2 w2 apr!?
g)\olet4 ( — <( )( 2}2 )’umln min 01 min + (169)
T Vmaxm Vmax

X T B 1
V/Tmax (@01 + a01T11 )) T ag 2, et erfc(t1)> = 0.212328.

3/2 max
Vin
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A lower bound on the minimum is

1
g)\()let‘* (oz()lTiineTlQ erfe(Th) + (170)
2 [ (=) (a0 — 1) faxWimax " VTmin(@01 + @o1t11 — 1) 01 T _
W V22 i Vit V/Vanin
—0.179318 .

Thus, an upper bound on the maximal absolute value is

1 2 (((=1)(o01 — 1)pi2, w2, 32
,)\01€t4 \/7 ( )(ag}2 )/’Lmlnwmln _ Q01 Tyin + 171)
8 i Vmax+/ Tmax Vmax
max + T —1
v/ Tmax (01 e )> +ag 72, et erfc(t1)> — 0.21232788238624354 .
Vinin
n aaij
We use Lemma 34 to obtain an upper bound on the maximum of the expression of the
lemma:
2 /0.12-0.12(=1) (a1 — 1) (0.1-0.1)apr — o1 +1
— —v0.8-0.8ap1 + = —1.72296 .
\[r < (0.8 -0.8)3/2 ot V03038
(172)

We use Lemma 34 to obtain an lower bound on the minimum of the expression of the lemma:

\F <0~12 OO0 =) g5, 4 (201 0Dao — a0+ 1) — —2.2302
s

(1.5-1.25)3/2 V1.5-1.25
(173)
WTVT 2
Next we apply Lemma 37 for the expression v7e (o) erfc (\%j}:) . We use Lemma 37
to obtain an upper bound on the maximum of this expression:
(1.5:1.25-0.1-0.1)2 1.5-1.25—-0.1-0.1
1.5-1.25¢ 215125  qq erfc = 1.37381. 174
o ( V2y/15-1.25 > (7
We use Lemma 37 to obtain an lower bound on the minimum of this expression:
(0.8-0.840.1.0.1)2 .1-0.1
0.8-0.8¢" 20505 ag; erfe <0 8-08+0.1-0 > — 0.620462 . (175)
v21/0.8-0.8

Hw+vT

7 \/ﬁ) An upper bound on this expres-

WTVvT 2
Next we apply Lemma 23 for 2ce 7 erfc <
sion is
0.8-0.8—-0.1-0.1
v2/0.8-0.8

(0.8-0.8—0.1-0.1)2
2¢e 20.8-0.8 o erfe

> = 1.96664 . (176)
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A lower bound on this expression is

1.5-1.25+0.1-0.1
V2v1.5-1.25

(1.5-1.2540.1-0.1)2
2¢e 2.1.5-1.25 o erfe

) = 1.4556 .

aa77)

The sum of the minimal values of the terms is —2.23019+0.62046+1.45560 = —0.154133.
The sum of the maximal values of the terms is —1.72295 + 1.37380 + 1.96664 = 1.61749.

Thus, an upper bound on the maximal absolute value is

1 (111+T99)% tiy+ T
~Aore™ (a01T226 2Tz erfc ( U 22) +

8 V2T
2 (o1 — DTE  —ao +apiTin + 1
2a01€'t erfe(t - 11 -
apre't erfe(ty) + - ( t3/2 + Tos

a01V/t22)) = 0.2124377655377270 .

0J21
n 5

An upper bound on the maximum is
AGLWE ax (04(2)1€T12 (—e_T4) erfe(Ty) + 20%1@@ el erfe(ty) —
erfc(T3) +2) = 0.0222044 .

A upper bound on the absolute minimum is
A1 Whax (04(2)1675% (—e ™) erfe(t) + 204(2)16T22 el erfe(Ty) —
erfe(ts) +2) = 0.00894889 .

Thus, an upper bound on the maximal absolute value is

A1 Whax (04(2)1€T12 (—e ™) exfe(Th) + 20&%1€t§€t4 erfc(te) —

erfe(Ts) +2) = 0.02220441024325437 .

9J21
" oo

An upper bound on the maximum is

)\%1 <a01 (2T11 + 1) 26 —ta erfc(tg) + 2T11 — el"fC(Tg))

oy (tin + 1)e” (— ) erfe(Th) + \/> Tooe™ 4) = 1.14696 .

A lower bound on the minimum is
)\31 <agl(T11 + l)et% (—e_t“) erfc(t1) +

ad (2t + e T3 e~ Ts erfc(Ty) 4 2t11(2 — erfe(T3))+

(178)

(179)

(180)

(181)

(182)

(183)
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2
\/>\/t226T4> = —0.359403 .
e

Thus, an upper bound on the maximal absolute value is

Aoy (04(2)1(2T11 + 1)et%e_t4 erfc(te) + 2711 (2 — erfe(T3)) + (184)

2
a2, (tiy + 1)e™? (—e ™) erfe(Ty) + \[r \/TQQe—M) — 1.146955401845684 .

9J21
" ov

An upper bound on the maximum is

1
EAngmaxwmaXe_t“ (04(2)1 (—STE) erfe(Ty) + 4aglet% erfe(ty) + (185)
2(=1) (agy — 1) 0149834
VI ' '
A lower bound on the minimum is
1
QAngmaxwmaxe_t‘* (a31 (—et?) erfc(ty) + a3 e erfe(Ty) + (186)
2(=1) (agy — 1)
= —0.0351035 .
V22
Thus, an upper bound on the maximal absolute value is
1
iAngmaxwmaxe_t“ (0431 (—ETE) erfe(Ty) + 40[%1€t% erfc(t2) + (187)
2(=1) (agy — 1)
= 0.14983446469110305 .
VI
u 8‘6731

An upper bound on the maximum is

1
§A§1ymaxwmaxe_t4 (Ol(2)1 (*GT%)) erfe(Th) + 40%1(3tg erfe(ta) + (188)
2(-1) (e — 1) 0179801
Va2 ' .

A lower bound on the minimum is

1
5)‘31Vmaxwmax67t4 <O‘31 (—@ﬁ) erfe(t) + 4ag; €™ erfe(Ty) + (189)
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V2D (0F -1
T (06 =) 0.0421242 .

V2
Thus, an upper bound on the maximal absolute value is
1
iAglumanmaXe*t‘* (0431 (—6T12) erfc(Ty1) + 4aglet% erfc(te) + (190)
V2D (03 - 1)
= 0.17980135762932363 .
VI
[ 88‘732
We use the fact that %52 = %. Thus, an upper bound on the maximal absolute value is
1
§>\§lrmaxwmaxe—t4 (a31 (—ele ) erfe(Ty) + 403 e’ erfe(ty) + (191)
V2D (a3 - 1)
= 0.14983446469110305 .
1o
u 85752

An upper bound on the maximum is

%)\(Q)lumameaXe_t“ (0431 (—CTE) erfe(Th) + 404%16tg erfc(te) + (192)
%(—1) (af1 — 1)  0.149834
N . :
A lower bound on the minimum is
é)\glumaxrmaxe_t“ (0431 (—et%> erfe(ty) + 404316T22 erfe(Th) + (193)
G A ~0.0351035
N : :
Thus, an upper bound on the maximal absolute value is
%z\%lumameaXe_t“ (0481 (—GTIQ) erfc(Ty) + 404%1€t§ erfc(te) + (194)
i(_i;%gl _ 1) = 0.14983446469110305 .
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2_
We apply Lemma 35 to the expression % (W — %) Using Lemma 35, an

upper bound on the maximum is

1

1)\(2)17}%&}(6%4 (a%l <—eT12) erfe(T1) + 804%16% erfc(te) + (195)
2 (lon = DT 30, ) _ gy
@ T232/ 2 Vs . '

Using Lemma 35, a lower bound on the minimum is

1
1)‘(2)17'1%1%6%4 (a%l <—et%) erfc(t1) + 804%16T22 erfc(Ty) + (196)

2 (lobi Dt 306, ) _ ) g5y
o

Thus, an upper bound on the maximal absolute value is

1
— Z)\%lﬁiaxe_t“ (0631 (-6{%) erfe(ty) + 80&316T22 erfc(Ty) + (197)

2 (o —1)tn _3ady ) _ 1.805740052651535 .
AT e

0J22
. or

2_
We apply Lemma 36 to the expression \/% <(a\/yl7)“w —3a? 1/7'> .

. (peotvr)? n
We apply Lemma 37 to the expression vre™ 207 erfc ( \M/U% \/I%> We apply Lemma 38 to
(,u,w+2u7')2
. UT pw—+2vT
the expression vre™ 2 erfc (7\/5 N )

We combine the results of these lemmata to obtain an upper bound on the maximum:

1 (Ty1+t29)2 Ti1 + too
¥ <—a2 toge Tie 22 erfe ( + 198

(t11+2T32)” t11 + 2T
80‘(%1T226_t4e omyy erfc <M> —

V2y/T
QagleTlge_T“ erfc(Ty) + 405(2)1€t%€_t4 erfc(te) + 2(2 — erfe(73)) +

2 g (o6 —1)Tn 2
— ——— —3ap Vi = 2.39669 .
\[re ( Vim

‘We combine the results of these lemmata to obtain an lower bound on the minimum:

1 (T11+2t22)2 Tll =+ 2t22
=Y (80431t226_T4e 22 erfc (
4 V2y/t22

(t11+T90)2 t11 + T
— e — 11 22
0‘%1T22€ tag™ 2T erfc< —

V2yT

(199)
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Qaglet%e *erfe(ty) + 4a01eT T erfe(Ty) +

2(2 — erfe(ts)) + \/zet‘l (W - 3a01\/§>> = —1.17154.

Thus, an upper bound on the maximal absolute value is

1 _ (T11+t92)? T11 + 99
¥ <—a2t e Tie 2z erfc ( ) + 200
4 01 01 22 \/7\/5 ( )

(t11+2To0)?
L <t1\>§ + 2TT22> B
VvV 122

205(2)1€T12€7T4 erfe(T7) + 404316@6*154 erfc(te) + 2(2 — erfe(13)) +

80431T226_

2 —T4 (O{Ol ) Tll 2
z A0 T 30\t = 2.396685907216327 .
. ( N4z o1V

O]

Lemma 40 (Derivatives of the Mapping). We assume o = a1 and A = Ag1. We restrict the range

of the variables to the domain 1 € [—0.1,0.1], w € [-0.1,0.1], v € [0.8,1.5], and T € [0.8,1.25].
The derivative %ﬂ(u, w, V, T, \, ) has the sign of w.
The derivative 8@,&(”, w, v, T, A, @) is positive.
The derlvatlve ( W, w, v, T, \, ) has the sign of w.
The derivative -2 5 E(p,w, v, T, \, @) is positive.

Proof. n —u(u,w U, Ty A\, @)

(2 — erfe(z) > 0 according to Lemma 21 and e®” erfe(x) is also larger than zero according
to Lemma 23. Consequently, has %ﬂ(u, w, v, T, \, «) the sign of w.

o ~

(W, v, TN @)
Lemma 23 says e” erfc(x) is decreasing in ,\%74\7; The first term (negative) is increasing
in vT since it is proportional to minus one over the squared root of v7.

We obtain a lower bound by setting %j’% =1L 5’/15?20112(5) L for the e erfc(z) term. The

1.5-1.254-0.1.-0.1

term in brackets is larger than e< V2V1.5-1.25 ) o erfc <1f’/%ji2011221> —1/ 7T0‘82.0,8 (o1 —
1) = 0.056 Consequently, the function is larger than zero.

u %g(ﬁb?w’ V? 7—7 )\7 a)

We consider the sub-function

2 2
\/7\/1/7' ( l\tffm) erfc (W) —e(‘:/;\/Zﬁ) erfc (W)) . (201)
2\/vT 2\/vT
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We set ¢ = v7 and y = pw and obtain

\/Zf - <e(}2+55)2 erfe <\x/§+\/y§> C(EL) e (%;;/iﬁ)) . (202)

The derivative of this sub-function with respect to y is

o? <e‘2’”*” (20 +y) erfe (252 - 5 (2 4 y) erfc ( }%))

= (203)
x
(217“'9)2 . (:l:+y)2 N
ﬂa2\/§ e 2¢  (z+y) erfc(\/{}f;) B e T (zty) er&(\/;;g)
V2z NN
> 0.
T

The inequality follows from Lemma 24, which states that ze* erfc(z) is monotonically
increasing in z. Therefore the sub-function is increasing in y.

The derivative of this sub-function with respect to x is

(2x+y)2 (33+U)2

Va2 (ezx' (422 — y?) erfe (\2/%75) —e 2 (x—y)(z+y)erfc (\g:%)) — V2 (a? —1) 232

2\/mx?
(204)

The sub-function is increasing in x, since the derivative is larger than zero:

Vma? (e (aey)” (422 — y?) erfc (j%%) - 6(2;5)2 (x —y)(z +y)erfc (fg:z/’g)) — V2232 (a? - 1)

2\/ma?
(205)
(20—y) (2a-+9)2 _ eyt — V222 (a2 — 1)
V(e e) (/e
2\/mr? -
(20—y)(22+y)2(V2Vz) (z—y)(z+v)2(V2v7) 3/2 (2
_ — /2 -1
( N CPmwmY ey s BV (Y (PR vazt® (of =)
2/mx? B
(2z—y)(2z+y)2 (z—y)(z+y)2 — (a2 _ 1)
v ( myWW) - VA(atrr et
NN =
(2z—y)(22+y)2 _ (z—y)(z+y)2 o (az _ 1)
VT 2x+y+\/ (2z+y) +2(2x+y)+1) \/F(x+y+\/(x+y)2+0-782-2(x+y)+0-7822)

NNk

=
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2 (2z—y)(2z+y)2 _ (z—y)(z+y)2 _ 2_q
vra (ﬁ(2x+y+\/(2m+y+l)2) ﬁ<x+y+\/(x+y+0.782)2>> z (o )

NoNCESIE

(2z—y) (224y)2 (z—y)(z+y)2 2
Vra® (f(z 20+y)+1) ﬁ(g(z+y)+o.782)) —z(a®—1)

\[ \/;xs/z
\/7?042 <(2(z+y)+0782)(2x—y)(2x+y)2 (m—y)(w+y)(2(2m+y)+1)2>

N Vi
(2(2z +y) + 1)(2(z + y) + 0.782)v/2/7x3/2
Vvra? (—z (a® — 1) (222 4+ y) +1)(2(z + y) +0.782))
(2(2z +y) + 1)(2(x + y) + 0.782)v/2/7x3/2
822 + (12y + 2.68657)x2 + (y(4y — 6.41452) — 1.40745)x + 1.22072y>
(222 +y) + 1)(2(z + y) + 0.782)v/2/7a3/2
822 + (2.68657 — 120.01)22 + (0.01(—6.41452 — 40.01) — 1.40745)x + 1.22072(0.0)?
(2(2z +y) + 1)(2(x +y) + 0.782)y/2/73/2
822 +2.56657x — 1.472 B
(222 +y) + 1)(2(x +y) + 0.782)vV2/mV/z
822 + 2.56657x — 1.472
(2(2z +y) + 1)(2(z + y) + 0.782)V2/7/Z
8(z + 0.618374)(z — 0.297553) -
(2(2z +y) + 1)(2(z +y) + 0.782)v2/T\/x

We explain this chain of inequalities:

e First inequality: We applied Lemma 22 two times.
e Equalities factor out v/2+/z and reformulate.
e Second inequality part 1: we applied

0<2y= 2z +y)l+dz+1<2c+y)?+22c+y)+1=2c+y+1)2.
(206)

e Second inequality part 2: we show that for a = % (\ / M - 13) following
holds: 8% — (a? + 2a(z + y)) > 0. We have 252 — (a% + 2a(z +y)) = £—2a > 0

and (%87';” — (a* + 2a(x +y)) = —2a > 0. Therefore the minimum is at border for

minimal x and maximal y:

2
- 20 T 20 ™

(207)

Thus
8x

> @+l ty). (208)

for a = g5 (/2L — 13) > 0,782,
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e Equalities only solve square root and factor out the resulting terms (2(2z + y) + 1)
and (2(z +y) + 0.782).

o We set a = a1 and multiplied out. Thereafter we also factored out x in the numerator.
Finally a quadratic equations was solved.

The sub-function has its minimal value for minimal x and minimal y z = v7 = 0.8 - 0.8 =
0.64 and y = pw = —0.1- 0.1 = —0.01. We further minimize the function

plw? w 0.012 0.01
wr | 2 — erf > —0.0le2064 | 2 —erfc | ———— . 209
o (2t () ) > o (2 e (25 ) ) e

We compute the minimum of the term in brackets of 8%5 (L w, v, 7, A, @):

pw? Hw
we 2vr | 2 — erfc + 210
5 (2o () 210

2 2
agl (— (e(%jﬁ) erfc <’uw + W) — e<ux/5+¢zﬁ> erfc (Mw + 2VT>>> +
\/5\/1/7' \/5\/1/7'
2
[ﬁ >
T
2

_ 2 _ 2
o2, (_ (e(ogﬁ) ot (0.64 — 0.01) ()’ (2 -0.64 — 0.01>)) -

Vv21/0.64 V21/0.64
0.012 0.01 2
0.0lez061 2 — erfc [ ——— —i—\/0.64\/7 = 0.0923765 .
( <\/§\/0.64)> T

Therefore the term in brackets is larger than zero.
Thus, %é(u, w, v, T, A, &) has the sign of w.
. %g(u7 w,V, T, >\7 a)

‘We look at the sub-term

204y |2 2 zty )
2e<ﬁﬁ) erfc ( $+y> — e(\/ﬁﬁ> erfc (WJ) : (211)
V2 V2V
We obtain a chain of inequalities:
2x+ 2 2 T+ ?
26<\/§in) erfc( x—i—y) —e(\/Wyf) erfc<x+y> > (212)
V2ya V2
2.2 2

i C R R I X (CRRT)

2v/2 2 _ 1
VoV <\/(2x+y)2+4‘”2x+y v (x+y)2+8ﬂ”+x+y>
NG
2 _ 1
2\/5\/5 <\/(2x+y)2+2(2:p+y)+1+2m+y \/(9C+y)2+0.782~2(x+y)+0.7822+x+y>

NG

>
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2\f\f ( 2x+y )+1 2(x+y)1+0.782) _
VT
(2v2vz) (2(2(z +y) +0.782) — 22z +y) + 1))
VT((2(x +y) +0.782)(2(2z + y) + 1))
(2v2yz) (2y +0.782 -2 — 1)
VT((2(x +y) +0.782)(2(2z + y) + 1))

> 0.

We explain this chain of inequalities:

o First inequality: We applied Lemma 22 two times.
e Equalities factor out v/2/x and reformulate.
e Second inequality part 1: we applied

0<2y= 204y’ +4e+1<e+y)°?+22c+y)+1=_2z+y+1)%.
(213)

e Second inequality part 2: we show that for a = % (w / w — 13) following
holds: 3% — (a? 4 2a(x +y)) > 0. We have 0 8z _ (a*+2a(z+y)) =2-2a>0

or m

and (fy Sﬂx — (a2 + 2a(z + y)) = —2a < 0. Therefore the minimum is at border for

minimal x and maximal y:

2
-0.64 2 1204 1 1 1204 1
8-0.6 N M_lg (0.64+0.01) + [ — w_lg - 0.
T 20 T 20 T

(214)

Thus

5 5 @420 ty). (215)

fora = g5 (/2EE192 — 13) > 0,782,

e Equalities only solve square root and factor out the resulting terms (2(2z + y) + 1)
and (2(z 4+ y) 4 0.782).

We know that (2 — erfc(z) > 0 according to Lemma 21. For the sub-term we derived

(352)" ot <2w+y) (%) <+y>
2e\v2ve \f\f e\v2vz/ erfc \@\/ZE > 0. (216)

Consequently, both terms in the brackets of —.{ (p,w, v, 7, A, @) are larger than zero. There-
fore -2 5 €(p,w, v, T, A, @) is larger than zero.

O]
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Figure S5: The graph of function /i for low variances 2 = v7 for pw = 0.01, where x € [0, 3], is
displayed in yellow. Lower and upper bounds based on the Abramowitz bounds (Lemma 22) are
displayed in green and blue, respectively.

Lemma 41 (Mean at low variance). The mapping of the mean i (Eq. (5))

1
A, w, v, 7, A\, ) = 5)\ <—(a + pw) erfe ( ) + 217)

Hw
f\/VT
vt + vt
ael“T 2 erfe (W> \/>\/V7'e T 4 2uw
NoNTZ a

in the domain —0.1 < p < —0.1, —0.1 < w < —0.1, and 0.02 < v7 < 0.5 is bounded by

| (g, w, v, 7, Ao, o) | < 0.289324 (218)
and

lim |ﬂ(u,w,y, T, )\01,0[01)‘ = )\,uw. (219)

v—0

We can consider /i with given pw as a function in x = v7. We show the graph of this function
at the maximal pw = 0.01 in the interval = € [0, 1] in Figure S5.

Proof. Since [1 is strictly monotonically increasing with pw

A, w,v, T\, @) < (220)
i(0.1,0.1, 0,7, A, a) <

1 .01 vr 1
A | —(a+0.01) erfc <OO> + 015 erfe (0 0L+ VT) \/> vTe - +2-0.01
2 Voot NoN

1 0.05 0.02 4+ 0.01 0.01
—A e 2 T00h 0 erfe () ap1 + 0.01) erfc ( )
270 < o1 V2/0.02 (a0 V2v/0.02

< 0.21857,

where we have used the monotonicity of the terms in v7.

Similary, we can use the monotonicity of the terms in v7 to show that

[L(/.L,w,l/, T,)\,Oé) = (221)

+001 2)
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(0.1, 0.1, v, 7, \, ) >
— 0.289324,

such that || < 0.289324 at low variances.

Furthermore, when (v7) — 0, the terms with the arguments of the complementary error
functions erfc and the exponential function go to infinity, therefore these three terms converge to
zero. Hence, the remaining terms are only 2uw - %/\. O

Lemma 42 (Bounds on derivates of i in 27). The derivatives of the function i(p, w, v, T, A1, Qo1
(Eq. (5)) with respect to pi,w, v, T in the domain Q~ = {p,w,v,7| —0.1 < p < 0.1,-0.1 <
w < 0.1,0.056 < v £ 0.24,0.8 < 7 < 1.25} can be bounded as follows:

;Mﬂ’ <0.14 (222)
0 .

0
— 1 0.52
8yu‘ <

0
— 0.11.
87”‘ <

Proof. The expression

0 . 1 — (ue)? ()2 ()2 pw (potvr)? pw + 1/7’))

—i=Ji1 = - dwe 2vr | 2e wr —e 2vr erfc 4+ ae 2vr  erfc | ———

out M T2 < <\/§\/W) (\/5\/1/7
(223)

2 (pwtvr)?

. (hw) . .
contains the terms e 2= erfc ( \é‘jﬁ) ande” v erfc ( \’j“;&%) which are monotonically de-

creasing in their arguments (Lemma 23). We can therefore obtain their minima and maximal at
the minimal and maximal arguments. Since the first term has a negative sign in the expression,
both terms reach their maximal value at yw = —0.01, v = 0.05, and 7 = 0.8.
En
au“
1
5w ‘ (2 — 008535587 o166 (0.0353553) + ael-106066% opfe (0.106066)) ( <

< (224)

0.133

Since, [ is symmetric in y and w, these bounds also hold for the derivate to w.

We use the argumentation that the term with the error function is monotonically decreasing
(Lemma 23) again for the expression

J .
Ao =Ji2 = (225)
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Figure S6: The graph of the function h(z) = ?(0.1, —0.1,z, 1, A\o1, ag1) is displayed. It has a
local maximum at z = v7 ~ 0.187342 and h(x) ~ 0.00451457 in the domain x € [0, 1].

1 2w2 wtvr)2 2
= e~ s [ a5 erfe <W> —(a—1)y/— | <
4 ﬁﬁ TUT

1
’4)\7 (]1.1072 — 2.68593|) < 0.52.

(pwtvr)?

We have used that the term 1.1072 < agie” 2zvr  erfc (%) < 1.49042 and the term
0.942286 < (o — 1)/ -2 < 2.68593.

Since fi is symmetric in v and 7, we only have to chance outermost term E)\T’ to &)\u‘ to

obtain the estimate ’%ﬂ‘ < 0.11.

O

Lemma 43 (Tight bound on /i2 in Q7). The function ji>(p, w, v, T, Aot1, ao1) (Eq. (5)) is bounded
by

|77*| < 0.005 (226)

(227)

in the domain Q~ = {p,w,v, 7| —0.1 < <0.1,-0.1 <w <0.1,0.05 < v < 0.24,0.8 <
T < 1.25}.

We visualize the function /i at its maximal uv = —0.01 and for = v in the form h(x) =
f2(0.1,—0.1,x, 1, A1, o1 ) in Figure S6.

Proof. We use a similar strategy to the one we have used to show the bound on the singular value
(Lemmata 10, 11, and 12), where we evaluted the function on a grid and used bounds on the
derivatives together with the mean value theorem. Here we have

‘/]2(/-1/7“])1/) T, )\0170401) _/]2(”+AM7M+AW7V+AV)T+AT7 )\0170401)‘ < (228)

9 ,
Al + | At

o,
Aw| + ’ayu

5,
Av] + 'aTu

9
B
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We use Lemma 42 and Lemma 41, to obtain

0 0
— 2 =23 |=p| < 2-0.289324 - 0.14 = 0.08101072 (229)
ou ou
0 2 - 0 .
2" il - A < 2-0.289324 - 0.14 = 0.08101072
;V ‘ ’ < 2-0.289324 - 0.52 = 0.30089696
68 ‘ ’ < 2-0.289324 - 0.11 = 0.06365128
-

We evaluated the function /i in a grid G of Q~ with Ay = 0.001498041, Aw = 0.001498041,
Av = 0.0004033190, and A7 = 0.0019065994 using a computer and obtained the maximal value
max (f1)2 = 0.00451457, therefore the maximal value of fi? is bounded by

~\2
ma < 230
(u,w,u,TiieQ* (M) ( )
0.00451457 4+ 0.001498041 - 0.08101072 + 0.001498041 - 0.08101072+
0.0004033190 - 0.30089696 + 0.0019065994 - 0.06365128 < 0.005. (231)

Furthermore we used error propagation to estimate the numerical error on the function evalu-
ation. Using the error propagation rules derived in Subsection S3.4.5, we found that the numerical
error is smaller than 10~!3 in the worst case. O

Lemma 44 (Main subfunction). For 1.2 < x < 20 and —0.1 < y < 0.1,
the function

(@+y)? T +y (a+y)? 2x +y

e 2 erfc(\@ﬁ)% 2 erfe (ff) (232)

is smaller than zero, is strictly monotonically increasing in x, and strictly monotonically decreas-
ing in y for the minimal x = 12/10 = 1.2.

Proof. We first consider the derivative of sub-function Eq. (90) with respect to x. The derivative
of the function

(@+u)? T4y > (2z+y)? <2x + y)
e 2z erfc| —=) —2¢ 2= erfc| —= 233
<\/§\/;E V2 (233)

with respect to x is

Jr (e(z;rg)z (& — y)(o 4 y) eric (\g:%> B 26(21;;)2 (42% — y?) erfc ( )) +V2/x (3 — y)
2y/ma? -
(234)

(a+y)?

VT <e % (z—y)(x+y)erfc ( 2ty

- 2
> _ g (2x 4+ y)(2z — y) erfc (%)) + 2z (3 — y)
2\/ma?

o
9
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(z+y)2 = (21+y)2 T
e 2z (z—y)(z+y) erfc(\/;\}%) 2e 2z (2x+y)(2x—y)erfc(\2/§f/%)

VT Vi Vi + Bz —y)
22 /T2

We consider the numerator

T 2 z 2 = _J
e Rese (x —y)(z +y)erfc (%) 25 (22 +y) (22 — y) erfe (\2/;%) L3 )
T NeNe: YeNe S

(235)
For bounding this value, we use the approximation
2911
e’ erfc(z) ~ : (236)
V(2911 — 1)z + Vmz? 4 2.9112
from ( ). We start with an error analysis of this approximation. According
to ( ) (Figure 1), the approximation error is positive in the range [0.7, 3.2].

This range contains all possible arguments of erfc that we consider. Numerically we maximized
and minimized the approximation error of the whole expression

(z+y)?

z+y (2a+y)? 2z+y
Bla.y) e 2o (z—vy)(z+y)erfc (ﬁﬁ) 2¢ 22 (22 —y)(2z + y) erfc (ﬁﬁ)
z,y) = — -

NoNz NN

(237)

2911(z —y)(z + y)

2
(Vave) (W yr () - 29112)

2.2.911(2z — y)(2z + y)
VA(2.911-1)(2z+y) 20ty )2
(V2va) ( UGt \/7r (i) +2.9112>

We numerically determined 0.0113556 < E(z,y) < 0.0169551 for 1.2 < x < 20 and —0.1 <
y < 0.1. We used different numerical optimization techniques like gradient based constraint BFGS
algorithms and non-gradient-based Nelder-Mead methods with different start points. Therefore
our approximation is smaller than the function that we approximate. We subtract an additional
safety gap of 0.0131259 from our approximation to ensure that the inequality via the approxima-
tion holds true. With this safety gap the inequality would hold true even for negative x, where the
approximation error becomes negative and the safety gap would compensate. Of course, the safety
gap of 0.0131259 is not necessary for our analysis but may help or future investigations.
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We have the sequences of inequalities using the approximation of ( ):

(z+y)?

B3z —y) +

T )2
e = (z—y)(z+y)erfe < Lry ) 2¢ 25 (22 — y)(2x + y) erfc < 2oty

V2 V2

2.911(z — y)(z +y)

Bz —y) +

22z —y)(2x + y)2.911

: -
x (2.911-1)y/7(z+y)
<V;<ﬁﬁﬂ +29“2+wwgy>(vi¢@

V7 — 0.0131259 =

VoW

2
(\/5\/5) (\/W(QJHZJ) +9209112 + (2~911\})§$(2x+y)>

(V2y/22.911) (z — y) (2 +y)

(Bx —y) +
Y ((\/77(33+y)

2(2z — y)(2z + y) (V2y/22.911)

212.291122 + (2.911 — 1)(z + y)ﬁ) (V2y/7)

(V2y/7) <\/ﬂ'(2x +y)2 +2-2.9112x + (2.911 — 1)(2x + y)ﬁ)

) VvV —0.0131259 =

(z —y)(z+y)

(3z — y) + 2.911
(2.911

22z — y)(2z + y)

_1)(x+y)+\/(x+y)2+%

(2911 — 1)(2z +y) + \/

(3z —y) +2.911

2-2.9112
(20 + y)2 + 229U0%

) —0.0131259 >

(z —y)(z+y) B
2
(2911 = 1)(z +y) + \/(29,112) + (@ 4 y)? 4 229002 22.011%
202z — ) (2
2z —y)@r 1Y) —0.0131259 =
(22 + y)? + 22911%

(2911 — 1)(2z +y) + \/

(z —y)(xz+y)

3z —y) +2.911
(2.911

22z — y)(2z + v)

—1)(a;+y)+\/(x+y+2-97112>2

(2911 — 1)(2z +y) + \/

2-2.9112
(20 +y)? + 2290

) —0.0131259 =
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. ; .
291Uz +9) + 255 (2,011 - 1)(20 +y) + 1/ (20 +y)? + 22800
(z—y)+y) 2(2z — y)(2z + y)2.911
(32 —y) + (z +y) + 2901 - — —0.0131259 =
VT (2011 - )20 +y) + /(20 +y)? + 22002
2.911
(e - (i + 220 e ) 4
2.911 2.2.9112
((x +y) + W) (3x —y — 0.0131259) ((2.911 -2z +y)+ \/(295 +y)2 + 7T$> +

(z —y)(z +y) ((2.911—1)(2x+y)+\/(2x+y)2+2-2.9112x)>

s

-1
(((x +y)+ 2in> <(2.911 -2z +vy) + \/(2x +y)? + 22311%» =

(((m — )@+ y) + 3z — y — 0.0131259)(z + y + 0.9266)) (\/(295 )% + 5.39467x + 3.8222 + 1.911y) -

(239)
5.822(2x — y)(z 4+ y + 0.9266) (2 + y))
-1
2911 229112z
(((w +y) + W) ((2.911 -1)(2z+y) + \/(295 +y)?+ W)) > 0.
We explain this sequence of inequalities:
» First inequality: The approximation of ( ) and then subtracting a

safety gap (which would not be necessary for the current analysis).
= Equalities: The factor v/2+/ is factored out and canceled.

m Second inequality: adds a positive term in the first root to obtain a binomial form. The term
containing the root is positive and the root is in the denominator, therefore the whole term
becomes smaller.

m Equalities: solve for the term and factor out.

= Bringing all terms to the denominator ((z + y) + 221) <(2.911 - 12z +y)+ \/(256 +y)? + 2297312:”>

K
» Equalities: Multiplying out and expanding terms.

m Last inequality > 0 is proofed in the following sequence of inequalities.

We look at the numerator of the last expression of Eq. (238), which we show to be positive in
order to show > 0 in Eq. (238). The numerator is

(z — y)(z +y) + B3z — y — 0.0131259)(z + y + 0.9266)) <\/(2x )% + 5.39467x + 3.8221 + 1.911y) -
(240)
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5.822(2x — y)(z 4+ y + 0.9266) (2z + y) =

—5.822(2x — y)(x +y + 0.9266) (2 + y) + (3.8222 + 1.911y)((x — y)(z + y)+

(3z —y — 0.0131259)(x + y + 0.9266)) + ((z — y)(z + y)+

(3z —y — 0.0131259) (x + y + 0.9266))/ (22 + )2 + 5.39467z =

—8.02% + (42% + 2zy + 2.76667z — 2y* — 0.939726y — 0.0121625) \/ (2 + y)? + 5.394672—
8.02%y — 11.004422 + 2.0zy? + 1.69548zy — 0.0464849z + 2.0y> + 3.59885y> — 0.0232425y =
— 8.02% + (42% + 2zy + 2.76667x — 2y* — 0.939726y — 0.0121625) v/ (2 + y)? + 5.394672—
8.0z%y — 11.0044z2 + 2.02y> + 1.69548zy — 0.04648492 + 2.0y° + 3.59885y — 0.0232425y .

The factor in front of the root is positive. If the term, that does not contain the root, was positive,
then the whole expression would be positive and we would have proofed that the numerator is
positive. Therefore we consider the case that the term, that does not contain the root, is negative.
The term that contains the root must be larger than the other term in absolute values.

— (—8.02° — 8.02%y — 11.00442” + 2.7y* + 1.69548zy — 0.0464849z + 2.y* + 3.59885y% — 0.0232425y) <
(241)

(422 + 23y + 2.766672 — 2y* — 0.939726y — 0.0121625) /(27 + y)? + 5.39467x .

Therefore the squares of the root term have to be larger than the square of the other term to show
> 01in Eq. (238). Thus, we have the inequality:

(—8.07% — 8.02%y — 11.00442* + 2.7y* + 1.69548zy — 0.0464849z + 2.y> + 3.59885y° — 0.0232425y)2 <
(242)

(422 4 2zy + 2.76667x — 2y — 0.939726y — 0.0121625)” ((22 + y)* + 5.39467x) .

This is equivalent to

0 < (422 + 2wy + 276667z — 2> — 0.939726y — 0.0121625)° ((22 + y)? + 5.39467x) —
(243)

(—8.02% — 8.02%y — 11.00442 + 2.0y> + 1.69548xy — 0.0464849z + 2.0y> + 3.59885y — 0.0232425y)° =
— 1.22272° + 40.10062%y + 27.7897z* + 41.017623y? + 64.579923y + 39.47622> + 10.94222%y> —
13.543z2y? — 28.8455x%y — 0.36462522 + 0.611352zy* + 6.83183xy° + 5.46393x1y°+

0.1217462y + 0.000798008z — 10.6365y° — 11.927y* + 0.190151y> — 0.000392287y .

We obtain the inequalities:

— 1.22272° 4 40.1006z1y + 27.7897x* + 41.017623y? + 64.579923y + 39.47622° + 10.94222%1> —
(244)

13.5432%y% — 28.84552%y — 0.36462522 + 0.6113522y* + 6.83183zy> + 5.46393xy>+
0.1217462y + 0.000798008z — 10.6365y° — 11.927y* + 0.190151y> — 0.000392287y> =
— 1.22272° + 27.7897z* + 41.017623y% + 39.47622° — 13.54322y> — 0.3646252%+

y (40.10062* + 64.57992° + 10.94222%y* — 28.845527 + 6.83183xy? + 0.1217467 —
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10.6365y* + 0.190151y?) + 0.611352zy" + 5.46393zy” + 0.000798008z — 11.927y* — 0.000392287y* >
— 1222725 + 27.7897x" + 41.0176 - (0.0)%2 4 39.476223 — 13.543 - (0.1)%22 — 0.3646252° —
0.1- (40.1006z* + 64.57992% + 10.9422 - (0.1)%2? — 28.84552% + 6.83183 - (0.1)?x + 0.121746x +
10.6365 - (0.1)* +0.190151 - (0.1)%) +
0.611352 - (0.0)*x + 5.46393 - (0.0)%z + 0.000798008z — 11.927 - (0.1)* — 0.000392287 - (0.1)? =
—1.222725 + 23.77962% + (20 + 13.0182)2> + 2.373552% — 0.0182084x — 0.000194074 >
—1.222725 + 24.77962% + 13.01822° 4 2.373552% — 0.0182084x — 0.000194074 >
13.01822° 4 2.373552%2 — 0.0182084x — 0.000194074 > 0.
We used 24.7796 - (20)* — 1.2227 - (20)° = 52090.9 > 0 and = < 20. We have proofed the last
inequality > 0 of Eq. (238).
Consequently the derivative is always positive independent of y, thus
e(z;;,)? erfc ( Tty > — 26% erfc <2x + y) (245)
Vaa V3V

is strictly monotonically increasing in x.

The main subfunction is smaller than zero. Next we show that the sub-function Eq. (90) is
smaller than zero. We consider the limit:

x 2 T 2 2
lim e(gg) erfc<x+y> — 26(2 e erfc< x—i—y) =0 (246)

The limit follows from Lemma 22. Since the function is monotonic increasing in z, it has to
approach 0 from below. Thus,

x 2 x 2 2
e( 2 erfc<x+y> —26(2 2 erfc( :c—l—y) (247)
V2Vz V2

is smaller than zero.

Behavior of the main subfunction with respect to y at minimal x. We now consider the
derivative of sub-function Eq. (90) with respect to y. We proofed that sub-function Eq. (90) is
strictly monotonically increasing independent of y. In the proof of Theorem 16, we need the min-
imum of sub-function Eq. (90). Therefore we are only interested in the derivative of sub-function
Eq. (90) with respect to y for the minimum x = 12/10 = 1.2

Consequently, we insert the minimum z = 12/10 = 1.2 into the sub-function Eq. (90). The
main terms become

T+y _ y+1.2 . Yy +V1~2 _ oy + 6 (248)

Veyr o Vevi2zoo Vavizo o v2o 2ViB

and

2z +y y+12-2 Y — oy + 12
V2\/x V2v1.2 V2V1.2 2¢/15 (249)
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Sub-function Eq. (90) becomes:

=\ 2
12 2
e\V2V 10 erfc

2

\/12 Y 4+/2 12)
/12
—2e<ﬁ 1 B erfc Y +2 10

10

’ 12 *
V2y/15

The derivative of this function with respect to y is

(250)

VBT (040 (5y 4+ 6) erfe (1) — 20w OrH12° (5 4 12) exfe (2H2) ) + 30
. (251)

2v/15 2v/15
6157
We again will use the approximation of ( )
2911
e erfe(z) = (252)

V(2911 — 1)z +Vr22 429112

Therefore we first perform an error analysis. We estimated the maximum and minimum of

2-2.911(5 12 2.911(by + 6

V157 (5y +12) 2 _ (5y + 6) : 304

V7(2.911-1)(5y+12) 5y+12 9 V/7(2.911-1)(5y+6) 5y+6 2

ol +\/7r<2\/ﬁ> +2.911 L +\/7r<2\/ﬁ> +2.911
(253)
1 oy +6 1 2 oy + 12
157 (e610 (5y+6)* (59, + 6) erfe () — 2e50 OV 127 (54 4 12) erfc ( )) +30.

v (5y + 6) Wik (5y +12) Wit
We obtained for the maximal absolute error the value 0.163052. We added an approximation error
of 0.2 to the approximation of the derivative. Since we want to show that the approximation upper
bounds the true expression, the addition of the approximation error is required here. We get a
sequence of inequalities:

1 oy +6 1 2 oy + 12
V157 <6610(5y+6)2 5y + 6) erfe < ) — 250 OV HID7 (59 4 12) exfc < )) +30 <

(5y +6) Wit (by +12) Wit
(254)
2911(5y + 6 2-2.911(5 12

V151 (5y +6) : B (5y +12) : N

V7(2.911-1)(5y+6) 5y+6 9 V/7(2.911-1)(5y+12) 5y+12 2

e +\/7r(2m) +2.911 L +\/7r(2\/ﬁ) +2.911
30+0.2 =
(30-2.911)(5y + 6) 2(30-2.911)(5y + 12) n

2 2
(2.911 = 1)(5y + 6) + \/(5y +6)2 4 (&ﬁf”l) (2.911 — 1)(5y + 12) + \/(5y +12)2 + (72\/173%9”)
30+02 =
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2
(M+W)QML4WyH%+(@+uy+cﬁ$?m>

2
(2911 = 1)(5y + 6) + 4| (5y +6)” + <2\/ﬁﬁ2911> _

2
24/15-2.911
2-30-2.911(5y +12) | (2.911 — 1)(5y + 6) + 4| (by + 6)% + (f)
T

2
2/15 - 2.911
2.911 - 30(5y + 6) | (2.911 — 1)(5y + 12) + 4| (5y + 12)2 + (T)
T

2
(2.911 — 1)(5y + 6) + 4 | (5y + 6)2 + (2\/@\/%2911>

-1

2y/15-2.911 ?
(2911 — 1)(by + 12) + 4| (by + 12)2 + () <0
NZS
We explain this sequence of inequalities.
m First inequality: The approximation of ( ) and then adding the error

bound to ensure that the approximation is larger than the true value.
= First equality: The factor 24/15 and 24/ are factored out and canceled.

m Second equality: Bringing all terms to the denominator

2
2@2.911) 055)

(2911 —1)(by + 6) + 4| (By +6)2 + ( NG

2v/15-2.911 ?
2.911 — 1)(5y + 12 By +12)2 4 [ ==
( )5y +12) + | (5y + >—%< N )
» Last inequality < O is proofed in the following sequence of inequalities.

We look at the numerator of the last term in Eq. (254). We have to proof that this numerator is
smaller than zero in order to proof the last inequality of Eq. (254). The numerator is

2
(0.2430) | (2.911 — 1)(5y + 12) 4 | (5y + 12)2 + (m/ﬁ\/;sm) (256)
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2
24/15 - 2.911 B
VT

(2.911 — 1)(5y + 6) + 4 | (5y + 6)2 + (

2
2v/15-2.911
NG

2.30-2.911(5y + 12) | (2.911 — 1)(5y + 6) + | (5y + 6)2 + (

2
2015 .2.911)

2.911-30(5y + 6) | (2.911 — 1)(5y + 12) + | (5y + 12)2 + ( 7

We now compute upper bounds for this numerator:

2
215 - 2.911) 057)

(0.2 4 30) | (2.911 = 1)(5y + 12) + 4| (5y + 12)2 + < NG

2
2+/15-2.911 B
Jr

(2911 = 1)(5y +6) + 4| (By + 6)% + (

2
24/15 - 2.911
Nz

2-30-2.911(5y + 12) [ (2.911 — 1)(5y + 6) + (5y—|—6)2—|—<

2
2v/15-2.911 B
e N

— 1414.99y2 — 584.739+/ (5y + 6)2 + 161.84y + 725.211+/(5y + 12)2 + 161.84y—

5093.97y — 1403.37+/(5y + 6)2 + 161.84 + 30.21/(5y + 6)2 + 161.84+/(5y + 12)2 + 161.84+

870.253/(5y + 12)2 + 161.84 — 4075.17 <

— 1414.99y° — 584.739+/(5y + 6)2 4 161.84y + 725.211+/(5y + 12)2 + 161.84y—

5093.97y — 1403.37y/(6 + 5 - (—0.1))2 + 161.84 + 30.24/(6 + 5 - 0.1)2 + 161.84+/(12 + 5 - 0.1)2 + 161.84+
870.253+/(12 4 5 - 0.1)2 4 161.84 — 4075.17 =

— 1414.99y — 584.739+/(5y + 6)2 + 161.84y + 725.211+/(5y + 12)2 + 161.84y — 5093.97y — 309.691 <

y (—584.739\/(53/ T 6)2 1 161.84 4+ 725.2111/(5y + 12)2 + 161.84 — 5093.97) ~309.691 <

2.911-30(5y + 6) | (2.911 — 1)(5y + 12) + 4| (5y + 12)2 + (

~0.1 (725.211\/(12 +5-(—0.1))2 + 161.84 — 584.739y/(6 + 5 - 0.1)% + 161.84 — 5093.97) —309.691 =
— 208.604 .

For the first inequality we choose ¥ in the roots, so that positive terms maximally increase and
negative terms maximally decrease. The second inequality just removed the y? term which is
always negative, therefore increased the expression. For the last inequality, the term in brackets is
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negative for all settings of y. Therefore we make the brackets as negative as possible and make the
whole term positive by multiplying with y = —0.1.

Consequently
(@+y)? (22+y)? 2
et erfc<x+y)—2622tcy erfc<x+y> (258)
V2y/x V2/x
is strictly monotonically decreasing in y for the minimal z = 1.2. O

Lemma 45 (Main subfunction below). For 0.007 < z < 0.875 and —0.01 < y < 0.01, the
function

- 2 T 2 2
e( 2 erfc<x+y> —26(2 =2 erfc( x—l—y) (259)
V2T V2y/x

smaller than zero, is strictly monotonically increasing in x and strictly monotonically increasing
in y for the minimal x = 0.007 = 0.00875- 0.8, x = 0.56 = 0.7 - 0.8, z = 0.128 = 0.16 - 0.8,
and x = 0.216 = 0.24 - 0.9 (lower bound of 0.9 on 7).

Proof. We first consider the derivative of sub-function Eq. (100) with respect to x. The derivative
of the function

e( ;?cﬁ erfc (j;}) — 2e e 2+a:y) erfc <\j{/§) (260)
x T
with respect to x is
x 2 - 2
VLS <e( 2 (x —y)(z+y)erfc (%%) _9e55Y (42? — y?) erfc (\2/%7%)) +V2y/x(3z — y)
2\/ma? -
(261)
(z+y)? z+y (2z+y)? 2z+y
Vrle = (x—y)(zr+y)erfc (\/5\/5) —2e¢ 22 (24 y)(2z —y)erfc (\/5\/5) +V2/x(3z — y)
2\/mr? -
(21)° (2244)?
ﬁ e;rg(x—y)\;%—l—y) crfc<f§+\5/5> B 2e o (2z+y)(2z—y) crfc(?/g;\r/yi) n (333 _ y)
20T eNE
V22/7 /T2
We consider the numerator
(@+y)? Tty (2z+y)? 274y
/e e = (az—y)(x—ky)erfc(\/iﬁ) - 2e 2 (2x+y)(2x—y)erfc(\/§ﬁ) fGo—y),
V2V V2y/z
(262)
For bounding this value, we use the approximation
2911
e erfe(z) ~ ) (263)

V(2911 — 1)z +Vrz2 429112
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from ( ). We start with an error analysis of this approximation. According
to ( ) (Figure 1), the approximation error is both positive and negative
in the range [0.175, 1.33]. This range contains all possible arguments of erfc that we consider in
this subsection. Numerically we maximized and minimized the approximation error of the whole
expression

Z41 2 €z .1/2
. e( = (x —y)(z+y)erfc (%) 26%(2"” —y)(2z +y) erfc (%T/%)
(264)

2.911(z — y)(x + y)

2
(VavE) (W oy () 2'9”2>

2.2.911(2z — y)(2z + y)

— T T 2
(V2yz) <ﬁ(2'9$%2 oy \/TF (&) + 2.9112>

We numerically determined —0.000228141 < FE(z,y) < 0.00495688 for 0.08 < = < 0.875
and —0.01 < y < 0.01. We used different numerical optimization techniques like gradient based
constraint BFGS algorithms and non-gradient-based Nelder-Mead methods with different start
points. Therefore our approximation is smaller than the function that we approximate.

We use an error gap of —0.0003 to countermand the error due to the approximation. We have

the sequences of inequalities using the approximation of ( ):
EEE (5~ y) (@ + y) enfe ( vty ) 2¢ 5 (9 — ) (2 + ) exe ( 20+ )
(32— y) + I LN V>

V2 V2

(32— )+ 2.911(x — y)(z +y) B

2
z+ (2.911-1)y/7(z+y)
<\/“ (ﬁf/%) +2.9112 + \/My) (V2y/x)

22z —y)(2x + y)2.911

vV —0.0003 =
2

2z+y 9 | (2911-1)/7(2z+y)

(V2y/7) <\/7T(\/§\/5) +2.9112 + N >
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(32 —y) + (V2y/22.911) (& — y)(z + y) B
<\/7r(w +y)2+2-2.91122 4 (2.911 — 1)(z + y)ﬁ) (V2y7)
2(2z — y)(2z + y) (V2y/22.911)
(V2y7) <\/7T(2:B +y)2 +2-2.911%2z + (2.911 — 1)(2z + y)ﬁ)

(3z —y) +2.911 ( (z —y)(z+y) B
(2911~ 1)(z +y) +/(« +)? + 2202

Vv —0.0003 =

2022 — y)(2
Go —4)(% +9) —0.0003
(2.911 — 1)(2z +y) + \/(295 L2 4 22910

(3 —y) +2.911 (z—y)@+y)
2
(2911 = 1)(z +y) + \/(29;12> +(z+y)?+ 2:29011% | 22.911%

220 —y)Cr+y) — | —0.0003 =
(2.911 — 1)(2z + ) + \/(2;C L y)2 4 22010

(3z —y) +2.911 (z —y)(z+y) -
(2.911 = 1)(z 4+ y) + \/(x+y+ %)

220 =) ) ~0.0003 =
(2911~ 1)(22 +y) + /(20 +y)? + 229002

(z —y)(= +y) 22z —y)(2x + y) ) 00003 —

(3x —y) +2.911 PXSHE 911 — :
2911(z +y) + (2.911 — 1)(2z + y) + \/(21‘ +y)2+ 2.2.%31 z

)(x+y 202z — y) (22 + y)2.911
) O11 — 1)(22 +y) + /(20 + )2 + 22900%
)96 ) 2(2z — y)(2z 4 y)2.911
y) + 250 (2911—1)(2x+y )+ /(20 +y)? + 22001%

12
< 2z —y 2911< )2 +y) +

((g; +y) + 2?:1) (3z — y — 0.0003) ((2.911 -2z +y) + \/(295 )2+ 2- 2.311295) N

(z —y)(z+y) <(2.911 ~1)(2z+y) + \/(Qx e Y 2.911295))

(B —y) + —0.0003 =

Y
Y

—i— |

<
—~

(x
(
Bz =y)+ E —0.0003 =

8|8
+ |

™
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-1
(((:c +y)+ 2?:1> ((2911 -2z +y)+ \/(Qx gy 2200 2'7?11233)) =

<—8:1:3 — 8%y + 422/ (2 + y)? + 5.39467x — 10.95542° + 2zy* — 2y°\/ (22 + )2 + 5.39467z +

1.76901zy + 2xy+/ (2x + y)? + 5.39467x + 2.7795x+/ (2x + )2 + 5.39467x —
0.9269y/(2x + )2 + 5.394672 — 0.00027798+/(2x + y)2 + 5.394672 — 0.00106244x +
2y® + 3.62336y> — 0.00053122y)

-1
(((w +y)+ 297TH> ((2-911 — 12z +y)+ \/(2x g 2290 2'31129”)) =

<—8x3 + (42® + 22y + 2.77952 — 2y® — 0.9269y — 0.00027798) /(2z + y)2 + 5.39467x —
822y — 10.955422 + 2xy? + 1.76901zy — 0.00106244x + 2y> + 3.62336y> — 0.00053122y)

-1
(404220 (o s+ las s Z2EEE) ) s

We explain this sequence of inequalities:

» First inequality: The approximation of ( ) and then subtracting an
error gap of 0.0003.

» Equalities: The factor v/24/ is factored out and canceled.

m Second inequality: adds a positive term in the first root to obtain a binomial form. The term
containing the root is positive and the root is in the denominator, therefore the whole term
becomes smaller.

» Equalities: solve for the term and factor out.

» Bringing all terms to the denominator ((z + y) 4+ 224) <(2.911 - 12z +y) + \/(233 +y)2 + 229;11%)

m Equalities: Multiplying out and expanding terms.

m Last inequality > 0 is proofed in the following sequence of inequalities.

We look at the numerator of the last expression of Eq. (265), which we show to be positive in
order to show > 0 in Eq. (265). The numerator is

— 82% + (427 + 2zy + 2.7795z — 2y* — 0.9269y — 0.00027798) v/ (27 + y)? + 5.39467z —
(266)

822y — 10.95542% + 2242 + 1.76901zy — 0.00106244z + 2u° + 3.62336y% — 0.00053122y .
The factor 422 + 2xy + 2.7795x — 2y? — 0.9269y — 0.00027798 in front of the root is positive:

472 4 22y + 2.7795z — 2y% — 0.9269y — 0.00027798 > (267)
—2y% +0.007 - 2y — 0.9269y + 4 - 0.007% + 2.7795 - 0.007 — 0.00027798 =
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—2y% — 0.9129y + 2.77942 = —2(y + 1.42897)(y — 0.972523) > 0.

If the term that does not contain the root would be positive, then everything is positive and we
have proofed the the numerator is positive. Therefore we consider the case that the term that does
not contain the root is negative. The term that contains the root must be larger than the other term
in absolute values.

— (—82% — 8z%y — 10.95542” + 2zy* + 1.76901xy — 0.00106244z + 2y° + 3.62336y> — 0.00053122y) <
(268)

(422 + 23y + 2.77952 — 2y — 0.9269y — 0.00027798) /(2 + y)2 + 5.39467x .

Therefore the squares of the root term have to be larger than the square of the other term to show
> 0 in Eq. (265). Thus, we have the inequality:

(—82° — 82y — 10.955422 + 22y + 1.7690 12y — 0.00106244x + 2y + 3.623361> — 0.00053122y)” <

(269)
(422 + 2wy + 2.77952 — 2° — 0.9269y — 0.00027798)” (22 + y)? + 5.39467x) .
This is equivalent to
0 < (422 + 2wy + 2.77952 — 2y — 0.9269y — 0.00027798)* (22 + y)° + 5.39467) —
(270)

(—82° — 822y — 10.955422 + 22y + 1.7690 12y — 0.00106244x + 2y + 3.62336> — 0.00053122y)” =
z - 4.168614250 - 1077 — 122.049216091 - 107 — 0.02794562°+

43.0875x1y + 30.8113xz" + 43.108423y% + 68.989x3y + 41.6357> + 10.79282%y® — 13.17262%y*—
27.8148z%y — 0.00833715x% 4 0.0139728zy* + 5.47537xy>+

4.65089zy? + 0.002779162y — 10.7858y° — 12.2664y* + 0.00436492y° .

We obtain the inequalities:

z - 4.168614250 - 1077 — 422.049216091 - 10~7 — 0.02794562°+ (271)

43.0875x1y + 30.8113x% + 43.108423y? + 68.989x3y + 41.6357> + 10.79282%y% —

13.17262%y% — 27.8148z2%y — 0.00833715x°+

0.0139728zy* + 5.47537zy> + 4.65089zy> + 0.002779162y — 10.7858y° — 12.2664y* + 0.00436492y> >
- 4.168614250 - 1077 — (0.01)%2.049216091 - 10~7 — 0.02794562°+

0.0 - 43.08752* + 30.8113z* + 43.1084(0.0)%2® 4 0.0 - 68.989z3 + 41.63572°+

10.7928(0.0)32% — 13.1726(0.01)%2% — 27.8148(0.01)x2 — 0.008337152%+

0.0139728(0.0)*z 4 5.47537(0.0)3x + 4.65089(0.0)%z+

0.0 - 0.002779162 — 10.7858(0.01)° — 12.2664(0.01)* 4+ 0.00436492(0.0)% =

- 4.168614250 - 1077 — 1.237626189 - 10~ 7 — 0.02794562° + 30.8113z% + 41.63572° — 0.287802z2 >

(0.287802z)z*
0.007 N

3
- ( 5 507) 1.237626189 - 1077 + 30.8113z% — (0.875) - 0.02794562* + 41.6357> —
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30.7869z* + 0.1602952° > 0.

We used 2 > 0.007 and = < 0.875 (reducing the negative z*-term to a z>-term). We have proofed
the last inequality > 0 of Eq. (265).

Consequently the derivative is always positive independent of y, thus

(@+y)? ( T4y > (2zty)? (2x + y)
e 22 erfc| —= ] —2e 22 erfc (272)
V2yz V2

is strictly monotonically increasing in x.

Next we show that the sub-function Eq. (100) is smaller than zero. We consider the limit:

lim e( 2 erfc <x—|—y> — 26(2 = erfc < x—i—y) =0 (273)

The limit follows from Lemma 22. Since the function is monotonic increasing in x, it has to
approach 0 from below. Thus,

(z+y)2 T4y (2z+y)? 2+ vy

e 2 erfc <\/§\/5> —2 2 erfc ( f\[) (274)

is smaller than zero.

We now consider the derivative of sub-function Eq. (100) with respect to y. We proofed
that sub-function Eq. (100) is strictly monotonically increasing independent of y. In the proof
of Theorem 3, we need the minimum of sub-function Eq. (100). First, we are interested in the
derivative of sub-function Eq. (100) with respect to y for the minimum x = 0.007 = 7/1000.

Consequently, we insert the minimum x = 0.007 = 7/1000 into the sub-function Eq. (100):

< . Nm%m)z [
VAV ) e y_ 4+ vl (275)
V2 1000
2
#4’_\/5 7>
2¢e <\f 1000 1000 erfc | ——— + f 100 =
\[ 1000
2
eoooy +y+ 3005 erfc <1000y i 7> — 2e . erfc <500y i 7> .
20v/35 10435
The derivative of this function with respect to y is
2
<1000y . 1) T S <1000y + 7) (276)
7 20/3

1 (s00y+7)2 500y + 7> /5

—4e 3500 (500y + 7)erfc | ——— | + 204/ — >

7 (500y ) ( 1035 i

(1 1000 (—0.01)> 001y S0 (7 +1000 + ( 0.01)) -

7 20\/
1 0012 1
e (T 4500 0.01) erfe (7 o090 490, /2 > 556
7
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For the first inequality, we use Lemma 24. Lemma 24 says that the function ze®’ erfc(x) has the
sign of x and is monotonically increasing to ﬁ Consequently, we inserted the maximal y = 0.01
to make the negative term more negative and the minimal y = —0.01 to make the positive term
less positive.

Consequently

(z+1)? T4y (uty)? 2z 4y

e 2 erfc(\@ﬁ) —2e 2= erfc <\/§\/5> 277)

is strictly monotonically increasing in y for the minimal x = 0.007.

Next, we consider z = 0.7 - 0.8 = 0.56, which is the maximal » = 0.7 and minimal 7 = 0.8.
We insert the minimum 2z = 0.56 = 56/100 into the sub-function Eq. (100):

() (o i
AV ) erfe Y v i 278)
56
V24105
2
NNE Ak 56) 56
2e<‘/§ 100 ) erfe L%—\/i 100
56
vV2/106
The derivative with respect to y is:
sy VT
5e<2 7t ) (25\—% + 77) erfc (;—yﬁ + g)
- (279)
VT
(57y+u)2 5 247 5 27
10e\2v7 = 5 (Ty7+?> erfc (Ty’?_FT) 5
+ >
VT VT
V7 _0.01-5 2
5e< 5 "oyt ) (g _ 0501-75> orfe (T? _ 050175>
VT
2
106(%”%;:%5) <u+ 0.01 5) orfe <u+ 0.01 5)
S T 0 000746
VT VT ‘ .

For the first inequality we applied Lemma 24 which states that the function ze®” erfc(x) is mono-
tonically increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term

more negative and the minimal y = —0.01 to make the positive term less positive.
Consequently
(@+y)? (22+y)? 2
e erfc<x+y>—2eg2+zj erfc<x+y) (280)
NONG V2T

is strictly monotonically increasing in y for z = 0.56.
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Next, we consider x = 0.16 - 0.8 = 0.128, which is the minimal 7 = 0.8. We insert the
minimum z = 0.128 = 128/1000 into the sub-function Eq. (100):

+V 1102080 )2 128
(f e erfe [ —f— 4 Y20 _ (281)
V2, /128 V2

1000

< 112080> 2
\/— 0
V 1000 erfc
\f 128 100
\/ 1000
2
612??; +y+ 155 erfc (1253/ + 16> — 26<12i%?);52) erfc (125y + 32> .
20+/10 2010

The derivative with respect to y is:

121;

1 125y + 16
— (e 5yt s (125y + 16) erfe <> — 282
16 ( (125y + 16) 20v/10 (2582)

(125y+32)2 125y + 32 10
Q¢ 4000 125y + 32)erfc | —F—— | + 204/ — | >

(125y ) ( 20/10 ) 7r>
1 0,014 8. 4 125(=0.01)% 16 + 125(—0.01)
16 + 125(—0.01))e 00125+ 32 erfc< > -

16 <( (=0.01)) 20+/10

& o1)? 32 + 1250.01 10
2¢ a0 (32 + 1250.01) erfe <+> 1204/ | > 0.4468 .

204/10 7r

For the first inequality we applied Lemma 24 which states that the function ze®” erfc(x) is mono-
tonically increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term

more negative and the minimal y = —0.01 to make the positive term less positive.
Consequently
(z+y)? T+y (2z+y)? 2 +y
e 2= erfc < > —2e 2= erfc < ) (283)

is strictly monotonically increasing in y for x = 0.128.

Next, we consider x = 0.24 - 0.9 = 0.216, which is the minimal 7 = 0.9 (here we consider
0.9 as lower bound for 7). We insert the minimum z = 0.216 = 216/1000 into the sub-function
Eq. (100):

( y 1201060>2 /216
—+ £
AV ) erfe Y + \}%00 — (284)
216
V24 /b0

2
Y 216
2e<‘/§ %&O%Jrﬂ 1000) erfc
\[ 216 100
\/ 1000
(125y+27)2 125y + 27 (125y+54)2 125y + 54

e om0 erfc[ ————— | —2¢ om0  erfc | —F——
( 15v/30 ) < 15v/30 )
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The derivative with respect to y is:

1 (125y+27)2 125y + 27
— (e om0 (125y + 27) erfec | ——— | — 285
o ( (125y +27) < 5730 > (285)

(125y+54)2 125y + 54 30
2¢ o0 (125y +54)erfc | ————=— ) + 154/ — | >
(125y ) < 15+4/30 > ™ )

—0.01)2 B
% ((27+ 125(—0.01))e om0 erfe (27+ 125( 0-01)> ~

15v/30
o2 54 + 1250.01 30
2¢ 555 (54 + 1250.01) erfe (*) +15\/> ) > 0.211288.
15v/30 &

For the first inequality we applied Lemma 24 which states that the function ze®” erfc(x) is mono-
tonically increasing. Consequently, we inserted the maximal y = 0.01 to make the negative term

more negative and the minimal y = —0.01 to make the positive term less positive.
Consequently
(@+y)? (22+y)? 2
e erfc<m+y>—2622+wy erfc<x+y) (286)
V2yz V2V
is strictly monotonically increasing in y for x = 0.216. O

Lemma 46 (Monotone Derivative). For A = Ag1, « = «q1 and the domain —0.1 < p < 0.1,
—0.1 <w <£0.1,0.00875 < v < 0.7, and 0.8 < 7 < 1.25. We are interested of the derivative of

2 wr\2 )
() ate () 0l are (BE2UT)) L )
\VVUT VT

The derivative of the equation above with respect to

m v is larger than zero;
» 7 is smaller than zero for maximal v = 0.7, v = 0.16, and v = 0.24 (with 0.9 < 7);

m y = pw is larger than zero for v = 0.00875 - 0.8 = 0.007, v7 = 0.7 - 0.8 = 0.56,
v =0.16 - 0.8 = 0.128, and v = 0.24 - 0.9 = 0.216.

Proof. We consider the domain: —0.1 < ¢ < 0.1, —0.1 < w < 0.1, 0.00875 < v £ 0.7, and
0.8 <7 <1.25.

We use Lemma 17 to determine the derivatives. Consequently, the derivative of

wwHvT 2 (w—+2-vT 2 .
T <e(l\/5ﬁ> erfc (%jﬁ) — 2@(H\5\/F ) erfc <'Mi};2m->> (283)
vT \VUT

with respect to v is larger than zero, which follows directly from Lemma 17 using the chain rule.

Consequently, the derivative of

wtvT 2 w+2-vT 2 2 .
. <e(“¢w) erfc <W> 2 erte (W» (289)
VT vT
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with respect to y = pw is larger than zero for v7 = 0.00875 - 0.8 = 0.007, v7 = 0.7 - 0.8 = 0.56,
v7 =0.16-0.8 = 0.128, and v7 = 0.24-0.9 = 0.216, which also follows directly from Lemma 17.

We now consider the derivative with respect to 7, which is not trivial since 7 is a factor of the
whole expression. The sub-expression should be maximized as it appears with negative sign in the
mapping for v.

First, we consider the function for the largest v = 0.7 and the largest y = pw = 0.01 for
determining the derivative with respect to 7.

The expression becomes

<7r+1>2

10 " 100 7o 1

T-T T0 T00

7| e\V?VT5 /) erfc | 19100 | _ (290)

V2,/ 5

<2.7-T+1>2

10t 10 2.7.T+ 1
7 a0
2e vz ﬁ erfc 10 100

The derivative with respect to 7 is

(707+1)2 707 +1
e 1a000r (7007(7-7+20) —1)erfc | ——— | — 291
<ﬁ( (7007(7 - 7 +20) — 1) (20 ?5\5) 1)

(1407+1)2 1407 + 1
2¢ 1a000r (28007 (7 -7+ 5) — 1) erfc | ——— + 20v35(2107 — 1 7'>
(8007 +5) = Vst L) )+ 20VBB(2107 1)

(14000y/7r) ™" .

We are considering only the numerator and use again the approximation of

( ). The error analysis on the whole numerator gives an approximation error 97 < E <
186. Therefore we add 200 to the numerator when we use the approximation
( ). We obtain the inequalities:

(707+1)2 70T + 1
e 1000 (7007(7-7+20)—1)erfc | ——— | — 292
7 (5 (1007(7 7+ 20) - et ] ?m) 292)

(1407+1)2 1407 +1
2¢ 14000 (28007(7-7+5) — 1)erfc | ——— + 20v35(2107 — 1)v/7 <
@007 +5) = Vst (L) )+ 20vBB210r ~ 1)

2.911(7007(7 - 7 + 20) — 1)

VT 5 -
V7 (2.911-1)(707+1) 70741 2
20/35y/7 + \/77 (20\/£ﬁ) +2.911

2-2.911(28007(7 - 7+ 5) — 1)

V(2.911—1)(1407+1) 140741 |2 2
w0vEyE T \/7r (20\@%) 291

+20v35(2107 — 1)4/7 +200 =
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Y= ( (7007(7 - 7+ 20) — 1) (20 - v/35 - 2.911,/7) B
(2,911 — 1)(707 + 1) + \/(20 - 2.911V/35,/7)° + 7 (707 + 1)
2(28007(7 -7+ 5) — 1) (20 /35 - 2.9114/7) ) N
V(2911 — 1)(1407 + 1) + \/ 20 /35 - 2.911/7)° + w(1407 + 1)2
5(2107 — 1) \F+200) -

(
<<2of (2107 — 1)v/7 + 200) (ﬁ(z.gn —1)(T0r +1) + \/(20 /35 2.911%)2 + (707 + 1)2>

(ﬁ(2.911 —1)(1407 + 1) + \/(20 /35 2.911\5)2 + (1407 + 1)2> +
2.911 - 20v/35y/7(7007(7 - 7 + 20) — 1)y/7
(f (2.911 — 1)(1407 + 1) + \/(20 -V/35 - 2.911\5)2 + (1407 + 1)2> -

V220 -v/35-2.911(28007(7 - 7+ 5) — 1)

N (f(z 911 — 1)(707 + 1) + \/(20 /35 2.911ﬁ>2 + (707 + 1)2>>

((f (2.911 — 1)(707 + 1) + \/(20\/£- 2.911 - ﬁ)Q + (707 + 1)2>

~1
(ﬁ(2.911 ~1)(1407 + 1) + \/(20\/% 2.911 - \E)Q + (1407 + 1)2>> .

After applying the approximation of ( ) and adding 200, we first factored
out 20v/35,/7. Then we brought all terms to the same denominator.

‘We now consider the numerator:

(20\/5(2107 VT H 200) (ﬁ(z.gn ~1)(70r + 1) + \/(20 V35 2.911\5)2 + (707 + 1)2>

(293)

(ﬁr(2.911 —1)(1407 + 1) + \/(20 /35 2.911\5)2 + (1407 + 1)2> +
2.911 - 20v/35\/7(7007(7 - T + 20) — 1)/

(ﬁr(2.911 —1)(1407 + 1) + \/(20 V35 2.911\5)2 + (1407 + 1)2> -
V7220 -v/35-2.911(28007(7 - 7 + 5) — 1)/

<\/7r(2.911 —1)(707 + 1) + \/(20 V35 2.911ﬁ)2 + (707 + 1)2> -
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—1.70658 x 107/7(707 + 1)2 + 11863577/ 2+

4200v/35+/7 (707 + 1)2 4 1186357+/7 (1407 + 1)2 + 118635772 +

8.60302 x 10%\/7 (1407 + 1)2 + 11863577%/2 — 2.89498 x 1077%/2 —

1.21486 x 107\/7 (707 + 1)2 4 118635772 + 8.8828 x 10%\/7 (1407 + 1)2 + 11863577/ —
2.43651 x 1077°/2 — 1.46191 x 10°77/2 + 2.24868 x 10772 + 94840.5/7 (707 + 1) 4 11863577 +
47420.24/7(1407 + 1)2 + 11863577 + 4818607 + 710.3541/7 +

820.213+y/7/7 (707 4 1)2 4 1186357 + 677.432+/7 (707 + 1) + 1186357 —

1011.27v/7+/m (1407 + 1)2 4 1186357 —

20V/35v/T/m (707 + 1)2 4 1186357 /7 (1407 + 1)2 + 1186357 +

200+/70(707 + 1)2 + 1186357 /7 (1407 + 1)2 4 1186357 +

677.432/7(1407 + 1)2 + 1186357 + 2294.57 =

— 2.89498 x 1077%/2 — 2.43651 x 1077%/? — 1.46191 x 10°77/2 +

<—1.70658 % 10773/2 — 1.21486 x 1077%/2 + 94840.57 + 820.213/7 + 677.432)

V(707 4+ 1)2 4 1186357 +
<8.60302 x 10073/2 4 8.8828 x 1097%/2 4 47420.27 — 1011.27/7 + 677.432>

V/7(1407 4 1)2 + 1186357 +
(4200\/3573/2 —20V/35/T + 200) /(707 + 1)2 4 1186357 /7 (1407 + 1)2 + 1186357 +

2.24868 x 10777 + 481860.7 + 710.354+/T + 2294.57 <
— 2.89498 x 10773/2 — 2.43651 x 1077%/2 — 1.46191 x 10°77/%+

(—1.70658 % 10773/2 — 1.21486 x 10775/2 + 820.213v/1.25 + 1.25 - 94840.5 + 677.432)

V(707 +1)2 + 1186357+
(8.60302 x 10%73/2 1 8.8828 x 10°7%/2 — 1011.27v/0.8 + 1.25 - 47420.2 + 677.432)

V/7(1407 4 1)2 + 1186357+
(4200\/3573/ 2 20V35y/7 + 200)
/(707 + 1)2 + 1186357+/7(1407 + 1)2 + 1186357+

2.24868 x 10772 + 710.354v/1.25 + 1.25 - 481860. 4 2294.57 =
—2.89498 x 107732 — 2.43651 x 1077%/2 — 1.46191 x 10°77/2+

(—1.70658 % 1077%/2 — 1.21486 x 10775/2 + 120145.) V(707 + 1)2 + 1186357+

(8.60302 x 1097%/2 4+ 8.8828 x 1067°/2 + 59048.2) V/7(1407 4 1)2 + 1186357+

(4200\/3573/2 — 20V/35\/T + 200) V(707 4+ 1)2 4 1186357/ (1407 + 1) + 1186357+
2.24868 x 10772 + 605413 =



84 S3 Proofs of the Theorems

— 2.89498 x 107732 — 2.43651 x 1077%/% — 1.46191 x 10%77/%+
<8.60302 x 10673/2 4 8.8828 x 10%7°/2 + 59048.2> /196007 (7 + 1.94093) (7 + 0.0000262866)+

<—1.70658 x 10773/2 — 1.21486 x 10775/2 + 120145.) /49007 (7 + 7.73521) (1 + 0.0000263835)+

<4200\/35r3/ 2 _ 90v/35y/7 + 200)

/196007 (7 + 1.94093) (7 + 0.0000262866)+/49007 (T + 7.73521) (7 4 0.0000263835)+
2.24868 x 10772 4 605413 <
—2.89498 x 10773/2 — 243651 x 1077°/2 — 1.46191 x 10°77/2+

(8.60302 x 10673/2 4+ 8.8828 x 107°/2 + 59048.2> /196007 (7 + 1.94093)7+

<—1.70658 x 10773/2 — 1.21486 x 1077°/2 + 120145.) \/490071.00003 (7 + 7.73521) 7+

(4200\/%73/ 2 - 20V35/7 + 200) 1/1960071.00003(7 + 1.94093)7

\/490071.00003 (7 4 7.73521)7+
2.24868 x 10772 + 605413 =
—2.89498 x 10773/2 — 243651 x 1077°/2 — 1.46191 x 10°77/2+

<—3.64296 x 10573/2 £ 7.65021 x 1037%/2 + 6.15772 x 1067)

VT + 1.94093/7 + 7.73521 + 2.24868 x 10772+
(2.20425 x 10773 + 2.13482 x 1072 4 1.46527 x 107/7) /7 + 1.94093+
(—1.5073 x 10973 — 2.11738 x 10972 + 1.49066 x 107\/7) v/7 + 7.73521 + 605413 <

V1.25 + 1.94093/1.25 + 7.73521 (—3.64296 % 10%73/2 1 7.65021 x 1037%/2 + 6.15772 x 1067) +

V1.25 + 1.94093 (2.20425 x 10977 + 2.13482 x 10772 + 1.46527 x 107\/T) +

V0.8 +7.73521 (—1.5073 x 1077% — 2.11738 x 1072 4 1.49066 x 10"/7) —

2.89498 x 107732 — 2.43651 x 1077°/2 — 1.46191 x 10°77/% + 2.24868 x 10772 + 605413 =
— 4.84561 x 10773/ + 4.07198 x 10°7%/2 — 1.46191 x 10977/%—

4.66103 x 1087% — 2.34999 x 10772+

3.29718 x 1077 4 6.97241 x 107/T + 605413 <

6054137%/2
0.83/2
4.07198 x 10°7%/2 — 1.46191 x 10°77/2—
3.29718 x 107/77  6.97241 x 1077/
V0.8 " 0.8 -

73/2 (—4.66103 x 10873/2 — 1.46191 x 10772 — 2.34999 x 10°\/7+

— 4.84561 x 1077324+

4.66103 x 10873 — 2.34999 x 10°7% +

4.07198 x 10°7 + 7.64087 x 107) <
7.64087 x 107/
V0.8

r3/2 (—4.66103 x 1037%/2 — 1.46191 x 10972 +
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2.34999 x 10%y/7 + 4.07198 x 10°7) =
72 (—1.46191 x 1097%/2 + 4.07198 x 109/ — 4.66103 x 10%7 — 2.26457 x 109) <

<—2.26457 % 10 4 4.07198 x 10°v/0.8 — 4.66103 x 10%0.8 — 1.46191 x 1090.83/2> 2 =
— 414199 x 10’72 < 0.

First we expanded the term (multiplied it out). The we put the terms multiplied by the same
square root into brackets. The next inequality sign stems from inserting the maximal value of 1.25
for 7 for some positive terms and value of 0.8 for negative terms. These terms are then expanded at
the =-sign. The next equality factors the terms under the squared root. We decreased the negative
term by setting 7 = 7 + 0.0000263835 under the root. We increased positive terms by setting
7 + 0.000026286 = 1.000037 and 7 + 0.000026383 = 1.000037 under the root for positive
terms. The positive terms are increase, since w = 1.00003, thus 7 4+ 0.000026286 <
7 + 0.000026383 < 1.000037. For the next inequality we decreased negative terms by inserting
7 = 0.8 and increased positive terms by inserting 7 = 1.25. The next equality expands the terms.
We use upper bound of 1.25 and lower bound of 0.8 to obtain terms with corresponding exponents
of 7.

For the last <-sign we used the function
—1.46191 x 10°7%/2 4+ 4.07198 x 10°/7 — 4.66103 x 10°7 — 2.26457 x 10° (294)

The derivative of this function is

2.03599 x 10

— 4.661 108 295
G 66103 x 10 (295)

—2.19286 x 10%/7 +

and the second order derivative is
1.01799 x 10°  1.09643 x 10?
73/2 VT

The derivative at 0.8 is smaller than zero:

< 0. (296)

2.03599 x 107
— 219286 x 10°V/0.8 — 4.66103 x 105 4 22202 X 20 _ (297)

V0.8
—1.51154 x 108 < 0.

Since the second order derivative is negative, the derivative decreases with increasing 7. Therefore
the derivative is negative for all values of 7 that we consider, that is, the function Eq. (294) is
strictly monotonically decreasing. The maximum of the function Eq. (294) is therefore at 0.8. We
inserted 0.8 to obtain the maximum.

Consequently, the derivative of

wHvT 2 w+2-vT 2 2 .
T <e(7/§ﬁ) erfc <'Ij7;_w> — 26(“\/5\/; ) erfc (W)) (298)
NIz VT

with respect to 7 is smaller than zero for maximal v = 0.7.
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Next, we consider the function for the largest v = 0.16 and the largest y = pw = 0.01 for
determining the derivative with respect to 7.

The expression becomes

167'+ 1 2
e 167 4 _L
T
e\ VeV ) erfe | 100 100

" — (299)
-
V2105
2 167’+ 1 2
( T m) 2 167 + 1
2¢\ V2V 1% ) erfe | 100 100
16
V2105
The derivative with respect to 7 is
(167+1)2 167 +1
m | e 8200r (1287(2-7+425) —l)erfc| ——— | — 300
(v (55 sz 29) - yerte (722 ) 300

32-74+1

2¢ S (1287 (8 + 25) — 1) erk <
e 32007 T(OT — eric | ——————
40v/2/T

(3200v/77) .

)) + 40V2(487 — 1)\5)

We are considering only the numerator and use again the approximation of

( ). The error analysis on the whole numerator gives an approximation error 1.1 < E < 12.
Therefore we add 20 to the numerator when we use the approximation of
( ). We obtain the inequalities:

(1674+1)2 167+ 1
| e 32000 (1287(2-7+25) — Derfc | ——— | — 301
v (e 128 ) 1) <MV%F> Gon)
32-7+1

26 G (1987 (87 + 25) — 1) exf (
e 32007 T(8T — 1Derfc | ————
40V/2/T

>) +40V2(487 — 1)/7 <

V= 2.911(1287(2 - 7+ 25) — 1)

V7(2.911-1)(1674+1) 16741 )2 2
ONCN I \/” (40\/5ﬁ> +2.911

2-2.911(1287(87 + 25) — 1)

VEROU-1)(E27+1) | \/7r ( 32741 )2 129112

40v2/T 40V2/T
+40V2(487 — 1)/7 +20 =

Y- (1287(2- 7+ 25) — 1) (40v/22.911/7)
V(2.911 — 1)(167 + 1) + \/(40ﬂ2.911ﬁ)2 + (167 + 1)2
2(1287(87 + 25) — 1) (40v/22.911,/7)
V(2911 —1)(32- 7 + 1) + \/(40\@2.911\5)2 + (327 +1)2

_l’_
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40V2(487 — 1)\/T +20 =
((40\/5(487 )T 20) (ﬁ(2.911 —1)(167 + 1) + \/(40\/52.911\5)2 + (167 + 1)2>

(ﬁ(2.911 —1)(32- 7+ 1)+ \/(40\/52.911f) 4+ (327 4+ 1) ) 4+
2.911 - 40vV2/7(1287(2 - 7 + 25) — 1)\/7
(ﬁ(2.911 —1)(32- 7+ 1)+ \/(4OJ§2.911\E) + (327 +1) )

2¢/m40v/22.911(1287 (87 + 25) — 1)

N (ﬁ(z.gn —1)(167 + 1) + \/<40\@2.911ﬁ)2 m(167 + 1) >>

((ﬁ(zgll )32 T+1)+ \/(40\/52.911\%)2 73274 1) )

-1
(ﬁ(2.911 —1)B32-T+1)+ \/(40\/52.911ﬁ>2 Y (32 T+ 1)2>> .

After applying the approximation of ( ) and adding 20, we first factored
out 401/2,/7. Then we brought all terms to the same denominator.

We now consider the numerator:

(40\@(487 — )T+ 20) (ﬁ(2.911 —1)(167 + 1) + \/(40\/52.911\5)2 + (167 + 1)2>
(302)

(ﬁ(2.911 —1)32-T+1)+ \/(40\/52.911ﬁ>2 Y (32 T+ 1)2> +
2.911 - 40V/2/7(1287(2 - 7 + 25) — 1)/

(ﬁ(2.911 —1)(32- 7+ 1)+ \/(40\/52.911ﬁ>2 F (327 + 1)2> -
2¢/m40V/22.911(1287 (87 + 25) — 1)\/7

(ﬁ(2.911 —1)(167 + 1) + \/(40\/52.911\5)2 + (167 + 1)2> -

— 1.86491 x 10°/7(167 + 1)2 + 27116.577°/ 2+

1920v2+/7(167 + 1)2 + 27116.57/7(32 - 7 + 1) + 27116.577°/ >+
9401211/7(32 - 7 + 1)2 + 27116.577%/% — 3.16357 x 10%7%/2—
303446/7 (167 + 1)2 + 27116.577°/2 + 221873/7(32 - 7 + 1)2 + 27116.577°/2 — 6085887°/2—
8.34635 x 10977/ 4 117482.72 + 2167.78 /7 (167 + 1)2 + 27116.577+
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1083.89+/7(32 - 7 4 1)2 4 27116.577+

11013.97 + 339.614/7 + 392.137y/7+/7 (167 + 1)2 + 27116.57+
67.7432+/m(167 4 1)2 + 27116.57 — 483.478y/7/7(32 - 7 + 1)2 + 27116.57—
40V 2y/T/7(167 4+ 1)2 + 27116.57/7(32 - 7 + 1)2 + 27116.57+

201/7(167 + 1)2 + 27116.57/7(32 - 7 + 1)2 + 27116.57+

67.7432/7(32 - 7 + 1)2 4+ 27116.57 + 229.457 =

—3.16357 x 1073/ — 6085887%/% — 8.34635 x 1077/ +

(—1.86491 x 1067%/2 — 30344675/2 + 2167.787 + 392.137/7 + 67.7432)

V(167 + 1)2 4 27116.57+
(94012173/2 + 22187375/ 4+ 1083.897 — 483.478\/T + 67.7432)

V(327 4 1)2 + 27116.57+
(1920[273/2 — 40V2/T + 20) V(167 + 1)2 + 27116.57/7(32 - 7 + 1)2 + 27116.57+

117482.7% 4+ 11013.97 + 339.614+/7 + 229.457 <
—3.16357 x 10573/2 — 6085887°/2 — 8.34635 x 10%77/%+

(—1.86491 % 10973/2 — 30344672 + 392.137v/1.25 + 1.252167.78 -+ 67.7432)

V(167 + 1)2 4+ 27116.57+
(94012173/2 +22187379/2 — 483.478v/0.8 + 1.251083.89 + 67.7432)

V(327 +1)2 4 27116.57+

(1920\/573/2 — 40v2/T + 20) V(167 + 1)2 + 27116.5m/7(32 - 7 + 1)2 1 2711657+
117482.7% 4 339.614v/1.25 + 1.2511013.9 + 229.457 =

— 3.16357 x 10°7%/2 — 6085887°/% — 8.34635 x 10%77/2+

(—1.86491 x 10073/2 — 3034467°/% + 3215.89) V(167 + 1)2 4 27116.57+

(94012173/2 +2218737%/2 + 990.171) V(327 +1)2 + 27116.57+

(1920\/573/2 —40V2VT + 20) V(167 + 1)2 4 27116.57y/7(32 - 7 + 1)2 + 27116.57+
11748272 4 14376.6 =
— 3.16357 x 10573/2 — 6085887°/% — 8.34635 x 10°77/2 4

(94012173/2 +2218737°/% + 990.171) /10247 (7 + 8.49155) (7 + 0.000115004) +

<—1.86491 x 10973/2 — 3034467°/2 + 3215.89) /2567 (1 + 33.8415) (7 + 0.000115428) +

(1920@#)/ 2 _40V2yT + 20) /10247 (7 + 8.49155) (T + 0.000115004)

/2567 (7 + 33.8415) (7 + 0.000115428)+
117482.72 + 14376.6 <
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— 3.16357 x 10573/2 — 6085887°/% — 8.34635 x 10677/2+

(94012173/2 +2218737°/% + 990.171) v/102471.00014 (7 + 8.49155) 7+

(1920[273/2 —40V2/T + 20) V/25671.00014(7 + 33.8415)7+/102471.00014(7 + 8.49155)7+

<—1.86491 x 10973/2 — 3034467°/2 + 3215.89) /2567 (T + 33.8415)7+

117482.7% + 14376.6 =
—3.16357 x 10%73/2 — 6085887%/% — 8.34635 x 10°77/2+

(—9100373/2 1+ 4.36814 x 10°75/2 4 32174.47) VT + 8.49155v/7 + 33.8415 + 117482.72+

(1.25852 x 1077% + 5.33261 x 1077 4 56165.11/7) /7 + 8.49155+
(—8.60549 x 1097 — 5.28876 x 1077% + 91200.4+/7) V7 + 33.8415 + 14376.6 <

V1.25 + 8.49155v/1.25 + 33.8415 (—9100373/2 1+ 4.36814 x 1075/2 ¢ 32174.47) +

V1.25 + 8.49155 (1.25852 x 1077% + 5.33261 x 10"7* 4 56165.1\/7) +
V0.8 + 33.8415 (—8.60549 x 10°7% — 5.28876 x 10772 + 91200.4y/7) —
3.16357 x 1097%/2 — 6085887°/2 — 8.34635 x 10077/2 4 117482.7% + 14376.6 =
— 4.84613 x 10%73/2 +-8.01543 x 1077°/2 — 8.34635 x 10577/2—

1.13691 x 10773 — 1.44725 x 10372+

594875.7 + 7T12078./7 + 14376.6 <

14376.67%/2
0.83/2
8.01543 x 1077°/% — 8.34635 x 10°77/2—
594875.\/TT  T12078.7/T
V0.8 0.8 -
— 31311 - 10573/2 — 1.44725 - 10872 + 8.01543 - 1077°/2 — 1.13691 - 10773 —

8.34635 - 10977/2 <

— 4.84613 x 10%73/2 4

1.13691 x 10773 — 1.44725 x 10372 +

8.01543 x 107/1.257°/2
N
8.34635 x 10%77/2 — 1.13691 x 1077% — 1.44725 x 10872 =
—3.1311 x 105732 — 8.34635 x 10577/2 — 1.13691 x 1077° — 5.51094 x 107722 < 0.

—3.1311 x 1073/2 +

First we expanded the term (multiplied it out). The we put the terms multiplied by the same
square root into brackets. The next inequality sign stems from inserting the maximal value of
1.25 for 7 for some positive terms and value of 0.8 for negative terms. These terms are then
expanded at the =-sign. The next equality factors the terms under the squared root. We decreased
the negative term by setting 7 = 7 + 0.00011542 under the root. We increased positive terms by
setting 7 +0.00011542 = 1.000147 and 7+ 0.000115004 = 1.000147 under the root for positive
terms. The positive terms are increase, since W < 1.000142, thus 7 + 0.000115004 <
7 4 0.00011542 < 1.000147. For the next inequality we decreased negative terms by inserting
7 = 0.8 and increased positive terms by inserting 7 = 1.25. The next equality expands the terms.
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90

We use upper bound of 1.25 and lower bound of 0.8 to obtain terms with corresponding exponents

of 7.
Consequently, the derivative of

wHvT 2 w+2-vT 2 2
T <e(’\l/§\/ﬁ) erfc <,uw+l/7'> — 2€(M\/§\/ﬁ> erfc (W)) (303)

Ve

with respect to 7 is smaller than zero for maximal v = 0.16.
Next, we consider the function for the largest v = 0.24 and the largest y = pw = 0.01 for
determining the derivative with respect to 7. However we assume 0.9 < 7, in order to restrict the

domain of 7.
The expression becomes

<24T+ )2
100 " 100 24T+
24
T|e 6/ erfe | 100100 ) (304)

f 24T

5

2 24T+7 2
100 100 2 24T +
2e erfc M

f 24T

The derivative with respect to 7 is

(ﬁ <e o (102 - 7 (37 4 25) — 1) erfe < 24\7;\;) (305)
) erfc (ﬁ;;;)) +40V3(72 - 7 — 1)\5)

(48741)2
2e” 48007 (192 . 7'(12 T+ 25) —1

(4800y/77) "

We are considering only the numerator and use again the approximation of
( ). The error analysis on the whole numerator gives an approximation error 14 < E < 32

Therefore we add 32 to the numerator when we use the approximation of

( ). We obtain the inequalities:
24 1
T ) - (306)

T (e@;;w (192 - 7(37 + 25) — 1) erfe (
40v/3\/T

ry1)2 487 + 1
2¢ “a0r (192 - 7(12 - 7 + 25) — 1) erfe ( 8\}+\F>)+40\/§(72-T—1)ﬁ <

2.911(192 - 7(37 +25) — 1)

VT 5
V(2.911-1)(2474+1) 24741 2
NENG + \/” (40\/§ﬁ) +2.911

2.2.911(192 - 7(12 - 7 + 25) — 1) N

VA(2.911—1)(48741) g1 )2
nn +\/7r<4w§ﬁ) +2.9112
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A0V3(72- T — 1)/T+32 =
JF ( (192 - 7(37 + 25) — 1) (40v/32.911/7) B
V(2911 — 1)(247 + 1) + \/(40\/32.911\5)2 + (247 + 1)2
2(192- 7(12- 7 +25) — 1) (40v/32.911,/7) ) N
V(2911 — 1)(487 + 1) + \/(40\/§2.911ﬁ)2 + (487 + 1)
A0V3(T2 - T — DT + 32 =

((40\/5(72 DWW+ 32) (ﬁ(z.gu 1247 +1) + \/(40¢§2.911ﬁ)2 4247 + 1)2>

(ﬁ(2.911 —1)(487+ 1) + \/(40\/32.911\5)2 4 (48T + 1)2> +
2.911 - 40v/3y/7(192 - 7(37 4 25) — 1)v/7
(ﬁ(z.gu —1)(487+ 1) + \/(40\/52.911\5)2 4 (48T + 1)2> -
2¢/m40v/32.911(192 - 7(12 - 7 4 25) — 1)

JT (ﬁ(z.gll 1247+ 1) + \/<40\/§2.911ﬁ)2 + (247 + 1)2>>

((ﬁ(zgu — 1247+ 1) + \/(40\/§2.911ﬁ)2 +m(24r + 1)2>

—1
(ﬁ(2.911 —1)(487 + 1) + \/(40\/32.911\5)2 4 (48T + 1)2>> .

After applying the approximation of ( ) and adding 200, we first factored
out 40/3+/7. Then we brought all terms to the same denominator.

‘We now consider the numerator:

(40\/5(72 -+ 32) (ﬁ(2.911 —1)(247 + 1) + \/(40\/52.911ﬁ>2 4 (247 + 1)2>
(307)

(ﬁr(2.911 ~1)(48r + 1 \/ 40v/32. 911\F) + (487 + 1)2) +
2.911 - 40v/3v/7(192 - 7(37 4 25) — 1)/7

(ﬁr(2.911 ~1)(487 + 1 \/(40\f2 911\F) + (487 + 1)2> .
2v/m40v/32.911(192 - 7(12 - 7 + 25) — 1)\/7

(ﬁ(2.911 —1)(24r +1) + \/(40\/32.911\5)2 + (247 + 1)2> -
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— 3.42607 x 10°/7(247 + 1)2 + 40674.877%/ 2+

28803/ (247 + 1)2 + 40674.87+/7 (487 + 1)2 + 40674.877/ 2+

1.72711 x 106/7 (487 + 1)2 + 40674.877%/% — 5.81185 x 10°73/2 —
836198+/7(247 + 1)2 4 40674.877%/2 + 6114101/ (487 + 1)2 + 40674.877°/2 —
1.67707 x 1057°/2 —

3.44998 x 10777/ + 422935.7% 4 5202.68+/7 (247 + 1)2 + 40674.877+
2601.34/7(487 + 1)2 + 40674.877 +

26433.47 4 415.94y/T + 480.268y/7/7(247 + 1)2 + 40674.87 +

108.389/ (247 + 1)2 4 40674.87 — 592.138+/7+/7 (487 + 1)2 4 40674.87—
40V3/T\/T (247 4+ 1)2 4 40674.87/7 (487 + 1)2 + 40674.87 +

32/m(247 + 1)2 + 40674.87+/7 (487 + 1)2 + 40674.87 +

108.389+/m (487 + 1)2 + 40674.87 + 367.131 =

— 5.81185 x 10°73/2 — 1.67707 x 10°7°/2 — 3.44998 x 10777/%+

(—3.42607 x 10673/2 — 83619875/2 + 5202.687 + 480.268+/T + 108.389)

V(247 4+ 1)2 4 40674.87+
(1.72711 x 1097%/2 4+ 6114107°/2 + 2601.347 — 592.138+y/7 + 108.389)

/(487 + 1)2 4 40674.87+
(2880\/§7’3/ 2 40V3T + 32) V(2471 4 1)2 4 40674.87/7 (487 + 1)2 + 40674.87+

422935.72 + 26433.47 + 415.94,/7 + 367.131 <
— 5.81185 x 10°7%/2 — 1.67707 x 1057°/2 — 3.44998 x 10777/%+

<73.42607 x 10973/2 — 8361987°/2 + 480.268v/1.25 + 1.255202.68 + 108.389)

V(24T + 1)2 4 40674.87+
(1.72711 x 10673/2 1 6114107°/2 — 592.138/0.9 + 1.252601.34 + 108.389)

/(487 4+ 1)2 4 40674.87+
(2880\/573/ 2 40V3\T + 32) V(2471 4 1)2 4 40674.87/7 (487 + 1)2 + 40674.87+

42293572 + 415.94v/1.25 + 1.2526433.4 + 367.131 =
— 5.81185 x 10%73/2 — 1.67707 x 10°7°/2 — 3.44998 x 10777/%+

<—3.42607 x 10573/2 — 8361987°/2 + 7148.69) V(24 + 1)2 + 40674 87+

(1.72711 x 1097%/2 4+ 6114107°/2 + 2798.31) /(48T + 1)2 + 40674.87+

(2880\/373/2 — 40V3\/T + 32) V(2471 4+ 1)2 4 40674.87/7 (487 + 1)2 + 40674.87+
4229357% + 33874 =
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— 5.81185 x 10673/2 — 1.67707 x 10°7°/2 — 3.44998 x 10777/ +
(1.72711 x 1067%/2 4 611410752 + 2798.31) /23047 (7 + 5.66103) (7 + 0.0000766694)+

<—3.42607 x 109732 — 8361987°/2 + 7148.69) /5767 (T + 22.561) (T + 0.0000769518)+

<2880\/§T?’/ 2 _ 40V3yT + 32) /23047 (7 + 5.66103) (7 + 0.0000766694)

/5767 (T + 22.561) (7 + 0.0000769518)+
42293572 4 33874 <
— 5.8118510%73/2 — 1.67707 x 1057%/2 — 3.44998 x 10777/%+

(1.72711 x 105732 4 61141075/2 + 2798.31) /230471.0001(7 + 5.66103)7+

(2880\/573/ 2 _ 40V3 /T + 32) V/230471.0001( + 5.66103)7+/57671.0001( + 22.561)7+

(—3.42607 x 10973/2 — 8361987°/2 + 7148.69)

/5767 (T + 22.561) 7+
4229357% + 33874. =
— 5.8118510°7%/2 — 1.67707 x 10%7°/2 — 3.44998 x 10777/%+

(—250764.73/2 4 1.8055 x 10775/2 + 115823.7')

VT + 5.66103v/T + 22.561 + 422935.72+

(5.20199 x 1077% + 1.46946 x 10%72 + 238086.1/7) v/7 + 5.66103+

(—3.55709 x 1077 — 1.45741 x 10%7% + 304097.,/7) V/7 + 22.561 + 33874. <
V1.25 +5.66103v/1.25 + 22.561 (—250764.73/2 +1.8055 x 10772 + 115823.7‘) +

V1.25 +5.66103 (5.20199 x 10777 + 1.46946 x 10%7% + 238086.y/7) +

V0.9 +22.561 (—3.55709 x 10773 — 1.45741 x 10°7? + 304097./7) —

5.8118510%73/2 — 1.67707 x 10°7°/2 — 3.44998 x 10777/2 + 422935.7% + 33874. <

33874.7%/2
0.93/2

3.5539 x 10772 — 3.19193 x 10%72 +

—9.02866 x 10573/ 4+ 2.29933 x 10%7°/2 — 3.44998 x 10777/%—

1.48578 x 108\/71 N 2.09884 x 107/7

V0.9 0.9
— 5.09079 x 10°73/2 1+ 2.29933 x 1087%/2—

3.44998 x 10777/2 — 3.5539 x 1077° — 3.19193 x 10872 <

2.29933 x 103y/1.257°5/2
\/,7_
3.5539 x 10773 — 3.19193 x 10872 =

— 5.09079 x 10%73/2 — 3.44998 x 10777/2 — 3.5539 x 10773 — 6.21197 x 10’72 < 0.

— 3.44998 x 10777/2

— 5.09079 x 10%73/2 +

First we expanded the term (multiplied it out). The we put the terms multiplied by the same
square root into brackets. The next inequality sign stems from inserting the maximal value of
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1.25 for 7 for some positive terms and value of 0.9 for negative terms. These terms are then
expanded at the =-sign. The next equality factors the terms under the squared root. We decreased
the negative term by setting 7 = 7 4 0.0000769518 under the root. We increased positive terms
by setting 7 + 0.0000769518 = 1.00009627 and 7 + 0.0000766694 = 1.00009627 under the
root for positive terms. The positive terms are increase, since w < 1.0000962, thus
7 4 0.0000766694 < 7 + 0.0000769518 < 1.00009627. For the next inequality we decreased
negative terms by inserting 7 = 0.9 and increased positive terms by inserting 7 = 1.25. The next
equality expands the terms. We use upper bound of 1.25 and lower bound of 0.9 to obtain terms
with corresponding exponents of 7.

Consequently, the derivative of

wwtvT 2 w+2-vT 2 .
T <e(l\/§\/ﬁ> erfc <'L\L;%\—;Z-> — 26(M\/§\/F ) erfe <,Uzbj/‘g57m'>> (308)
vT vt

with respect to 7 is smaller than zero for maximal v = 0.24 and the domain 0.9 < 7 < 1.25. [

Lemma 47. In the domain —0.01 < y < 0.01 and 0.64 < x < 1.875, the function f(x,y) =

e2(2Ut0) orfe <f/ﬂ) has a global maximum at y = 0.64 and x = —0.01 and a global minimum

aty = 1.875 and x = 0.01.

Proof. f(x,y) = e3(20+2) orfe (%) is strictly monotonically decreasing in z, since its deriva-
tive with respect to x is negative:

2 - 2
6_% (ﬁx3/26< ;LD erfc( zty ) + \f( ))
2/mx3/?
z 2
— \/777$3/2€(‘ o erfc<

<0

f\F)“ﬂ 7)<

>+xf( z) <

(z+y)?
Vrrtte 2 erfc(

21,3/2

NNz
+yV2 — V2 <

-ty (z+y)? | 4
\/5\/5 + 2x + T

2.0.643/2
+0.01v2 — 0.64v2 = —0.334658 < 0. (309)
0.01+0.64 (0.0140.64)2 L4
V21/0.64 2-0.64 P

The two last inqualities come from applying Abramowitz bounds 22 and from the fact that the
22°/ + yv/2 — /2 does not change monotonicity in the domain and

+\/ t)? |

hence the max1mum must be found at the border. For x = 0.64 that maximizes the function
f(z,y) is monotonically in y, because its derivative w.r.t. y at = = 0.64 is

expression

eY (1.37713erfc(0.883883y + 0.565685) — 1.373496—0'78125(“0-64)2) <0

= (1.37713 erfc(0.883883y + 0.565685) — 1.373496—0-78125<y+0~64>2) <0
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(1.37713 erfe(0.883883y + 0.565685) — 1.373496—078125(“0'64)2) <

(1.37713 erfc(0.883883 - —0.01 + 0.565685) — 1.373496*0-78125@01”64)2) -

0.5935272325870631 — 0.987354705867739 < 0. (310)
Therefore, the values y = 0.64 and x = —0.01 give a global maximum of the function f(z,y) in
the domain —0.01 < y < 0.01 and 0.64 < x < 1.875 and the values y = 1.875 and z = 0.01
give the global minimum. O

S4 Additional information on experiments

In this section, we report the hyperparameters that were considered for each method and data set
and give details on the processing of the data sets.

S4.1 121 UCI Machine Learning Repository data sets: Hyperparameters

For the UCI data sets, the best hyperparameter setting was determined by a grid-search over all
hyperparameter combinations using 15% of the training data as validation set. The early stopping
parameter was determined on the smoothed learning curves of 100 epochs of the validation set.
Smoothing was done using moving averages of 10 consecutive values. We tested “rectangular”
and “conic” layers — rectangular layers have constant number of hidden units in each layer, conic
layers start with the given number of hidden units in the first layer and then decrease the number
of hidden units to the size of the output layer according to the geometric progession. If multiple
hyperparameters provided identical performance on the validation set, we preferred settings with
a higher number of layers, lower learning rates and higher dropout rates. All methods had the
chance to adjust their hyperparameters to the data set at hand.

Table S1: Hyperparameters considered for self-normalizing networks in the UCI data sets.

Hyperparameter Considered values

Number of hidden units {1024, 512, 256}
Number of hidden layers {2, 3, 4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Dropout rate {0.05, 0}

Layer form {rectangular, conic}
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Table S2: Hyperparameters considered for ReLU networks with MS initialization in the UCI data

sets.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate

Dropout rate

Layer form

{1024, 512, 256}
{2,3,4,8,16,32}
{0.01, 0.1, 1}

{0.5, 0}
{rectangular, conic}

Table S3: Hyperparameters considered for batch normalized networks in the UCI data sets.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Layer form

{1024, 512, 256}
{2,3,4,8,16, 32}
{0.01,0.1, 1}
{Batchnorm}
{rectangular, conic}

Table S4: Hyperparameters considered for weight normalized networks in the UCI data sets.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Layer form

{1024, 512, 256}
{2,3,4,8, 16, 32}
{0.01,0.1, 1}

{ Weightnorm }
{rectangular, conic}

Table S5: Hyperparameters considered for layer normalized networks in the UCI data sets.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Layer form

{1024, 512, 256}
{2,3,4,8,16, 32}
{0.01,0.1, 1}
{Layernorm}
{rectangular, conic}
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Table S6: Hyperparameters considered for Highway networks in the UCI data sets.

Hyperparameter Considered values
Number of hidden layers {2, 3,4, 8, 16, 32}
Learning rate {0.01, 0.1, 1}
Dropout rate {0, 0.5}

Table S7: Hyperparameters considered for Residual networks in the UCI data sets.

Hyperparameter Considered values
Number of blocks {2,3,4,8,16}
Number of neurons per blocks {1024, 512, 256}
Block form {rectangular, diavolo}
Bottleneck {25%, 50%}
Learning rate {0.01, 0.1, 1}

S4.2 121 UCI Machine Learning Repository data sets: detailed results

Methods compared. We used data sets and preprocessing scripts by
( ) for data preparation and defining training and test sets. With several flaws in the method
comparison( , ) that we avoided, the authors compared 179 machine learn-
ing methods of 17 groups in their experiments. The method groups were defined by

( ) as follows: Support Vector Machines, RandomForest, Multivariate adaptive
regression splines (MARS), Boosting, Rule-based, logistic and multinomial regression, Discrim-
inant Analysis (DA), Bagging, Nearest Neighbour, DecisionTree, other Ensembles, Neural Net-
works, Bayesian, Other Methods, generalized linear models (GLM), Partial least squares and prin-
cipal component regression (PLSR), and Stacking. However, many of methods assigned to those
groups were merely different implementations of the same method. Therefore, we selected one
representative of each of the 17 groups for method comparison. The representative method was
chosen as the group’s method with the median performance across all tasks. Finally, we included
17 other machine learning methods of ( ), and 6 FNNs, BatchNorm,
WeightNorm, LayerNorm, Highway, Residual and MSR Ainit networks, and self-normalizing neu-
ral networks (SNNs) giving a total of 24 compared methods.

Results of FNN methods for all 121 data sets. The results of the compared FNN methods can
be found in Table S8.

Small and large data sets. We assigned each of the 121 UCI data sets into the group “large
datasets” or “small datasets” if the had more than 1,000 data points or less, respectively. We
expected that Deep Learning methods require large data sets to competitive to other machine
learning methods. This resulted in 75 small and 46 large data sets.
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Table S8: Comparison of FNN methods on all 121 UCI data sets.. The table reports the accuracy
of FNN methods at each individual task of the 121 UCI data sets. The first column gives the
name of the data set, the second the number of training data points NN, the third the number
of features M and the consecutive columns the accuracy values of self-normalizing networks
(SNNs), ReLU networks without normalization and with MSRA initialization (MS), Highway
networks (HW), Residual Networks (ResNet), networks with batch normalization (BN), weight
normalization (WN), and layer normalization (LN).

dataset N M  SNN MS HW ResNet BN WN LN

abalone 4177 9 0.6657 0.6284 0.6427 0.6466 0.6303 0.6351 0.6178
acute-inflammation 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9000
acute-nephritis 120 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
adult 48842 15 0.8476 0.8487 0.8453 0.8484 0.8499 0.8453 0.8517
annealing 898 32 0.7600 0.7300 0.3600 0.2600 0.1200 0.6500 0.5000
arrhythmia 452 263 0.6549 0.6372 0.6283 0.6460 0.5929 0.6018 0.5752
audiology-std 196 60 0.8000 0.6800 0.7200 0.8000 0.6400 0.7200 0.8000
balance-scale 625 5 09231 09231 09103 0.9167 0.9231 0.9551 0.9872
balloons 16 5 1.0000 0.5000 0.2500 1.0000 1.0000 0.0000 0.7500
bank 4521 17 0.8903 0.8876 0.8885 0.8796 0.8823 0.8850 0.8920
blood 748 5 0.7701 0.7754 0.7968 0.8021 0.7647 0.7594 0.7112
breast-cancer 286 10 0.7183 0.6901 0.7465 0.7465 0.7324 0.6197 0.6620
breast-cancer-wisc 699 10 09714 09714 09771 09714 09829 0.9657 0.9714
breast-cancer-wisc-diag 569 31 09789 0.9718 09789 0.9507 0.9789 09718 0.9648
breast-cancer-wisc-prog 198 34 0.6735 0.7347 0.8367 0.8163 0.7755 0.8367 0.7959
breast-tissue 106 10 0.7308 0.4615 0.6154 0.4231 0.4615 0.5385 0.5769
car 1728 7 0.9838 09861 09560 0.9282 0.9606 0.9769 0.9907
cardiotocography-10clases 2126 22 0.8399 0.8418 0.8456 0.8173 0.7910 0.8606 0.8362
cardiotocography-3clases 2126 22 09153 0.8964 09171 09021 0.9096 0.8945 0.9021
chess-krvk 28056 7 0.8805 0.8606 0.5255 0.8543 0.8781 0.7673 0.8938
chess-krvkp 3196 37 09912 0.9900 0.9900 09912 0.9862 0.9912 0.9875
congressional-voting 435 17 0.6147 0.6055 0.5872 0.5963 0.5872 0.5872 0.5780
conn-bench-sonar-mines-rocks 208 61 0.7885 0.8269 0.8462 0.8077 0.7115 0.8269 0.6731
conn-bench-vowel-deterding 990 12 09957 09935 0.9784 0.9935 0.9610 0.9524 0.9935
connect-4 67557 43 0.8807 0.8831 0.8599 0.8716 0.8729 0.8833 0.8856
contrac 1473 10 0.5190 0.5136 0.5054 0.5136  0.4538 0.4755 0.4592
credit-approval 690 16 0.8430 0.8430 0.8547 0.8430 0.8721 0.9070 0.8547
cylinder-bands 512 36 0.7266 0.7656 0.7969 0.7734  0.7500 0.7578 0.7578
dermatology 366 35 09231 09121 09780 0.9231 0.9341 09451 0.9451
echocardiogram 131 11 0.8182 0.8485 0.6061 0.8485 0.8485 0.7879 0.8182
ecoli 336 8 0.8929 0.8333 0.8690 0.8214 0.8214 0.8452 0.8571
energy-yl 768 9 0.9583 09583 0.8802 0.8177 0.8646 0.9010 0.9479
energy-y2 768 9 09063 0.8958 0.9010 0.8750 0.8750 0.8906 0.8802
fertility 100 10 0.9200 0.8800 0.8800 0.8400 0.6800 0.6800 0.8800
flags 194 29 0.4583 04583 04375 03750 04167 0.4167 0.3542
glass 214 10 0.7358 0.6038 0.6415 0.6415 0.5849 0.6792 0.6981
haberman-survival 306 4 0.7368 0.7237 0.6447 0.6842 0.7368 0.7500 0.6842
hayes-roth 160 4 0.6786 0.4643 0.7857 0.7143 0.7500 0.5714 0.8929
heart-cleveland 303 14 0.6184 0.6053 0.6316 0.5658 0.5789 0.5658 0.5789
heart-hungarian 294 13 0.7945 0.8356 0.7945 0.8082 0.8493 0.7534 0.8493
heart-switzerland 123 13 03548 0.3871 0.5806 0.3226 0.3871 0.2581 0.5161
heart-va 200 13 03600 0.2600 0.4000 0.2600 0.2800 0.2200 0.2400
hepatitis 155 20 0.7692 0.7692 0.6667 0.7692 0.8718 0.8462 0.7436
hill-valley 1212 101 0.5248 0.5116 0.5000 0.5396  0.5050 0.4934 0.5050
horse-colic 368 26 0.8088 0.8529 0.7794 0.8088 0.8529 0.7059 0.7941

ilpd-indian-liver 583 10 0.6986 0.6644 0.6781 0.6712 0.5959 0.6918 0.6986
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image-segmentation 2310 19 09114 0909 09024 0.8919 0.8481 0.8938 0.8838
ionosphere 351 34 0.8864 0.9091 09432 0.9545 09432 09318 0.9432
iris 150 5 09730 09189 0.8378 0.9730 0.9189 1.0000 0.9730
led-display 1000 8 0.7640 0.7200 0.7040 0.7160 0.6280 0.6920 0.6480
lenses 24 5 0.6667 1.0000 1.0000 0.6667 0.8333 0.8333 0.6667
letter 20000 17 09726 09712 0.8984 09762 0.9796 0.9580 0.9742
libras 360 91 0.7889 0.8667 0.8222 0.7111 0.7444 0.8000 0.8333
low-res-spect 531 101 0.8571 0.8496 0.9023 0.8647 0.8571 0.8872 0.8947
lung-cancer 32 57 0.6250 0.3750 0.1250 0.2500 0.5000 0.5000  0.2500
lymphography 148 19 09189 0.7297 0.7297 0.6757 0.7568 0.7568 0.7838
magic 19020 11 08692 0.8629 0.8673 0.8723 0.8713 0.8690 0.8620
mammographic 961 6 0.8250 0.8083 0.7917 0.7833 0.8167 0.8292 0.8208
miniboone 130064 51 09307 0.9250 0.9270 0.9254 0.9262 0.9272 0.9313
molec-biol-promoter 106 58 0.8462 0.7692 0.6923 0.7692 0.7692 0.6923 0.4615
molec-biol-splice 3190 61 09009 0.8482 0.8833 0.8557 0.8519 0.8494 0.8607
monks-1 556 7 0.7523 0.6551 0.5833 0.7546 0.9074 0.5000 0.7014
monks-2 601 7 05926 0.6343 0.6389 0.6273 0.3287 0.6644 0.5162
monks-3 554 7 0.6042 0.7454 0.5880 0.5833 0.5278 0.5231 0.6991
mushroom 8124 22 1.0000 1.0000 1.0000 1.0000 0.9990 0.9995 0.9995
musk-1 476 167 0.8739 0.8655 0.8992 0.8739 0.8235 0.8992 0.8992
musk-2 6598 167 09891 0.9945 09915 0.9964 0.9982 0.9927 0.9951
nursery 12960 9 09978 0.9988 1.0000 0.9994 0.9994 0.9966 0.9966
oocytes_merluccius_nucleus_4d 1022 42 0.8235 0.8196 0.7176 0.8000 0.8078 0.8078 0.7686
oocytes_merluccius_states_2f 1022 26 0.9529 0.9490 0.9490 0.9373 0.9333 0.9020 0.9412
oocytes_trisopterus_nucleus_2f 912 26 0.7982 0.8728 0.8289 0.7719 0.7456  0.7939  0.8202
oocytes_trisopterus_states_5b 912 33 09342 09430 0.9342 0.8947 0.8947 0.9254 0.8991
optical 5620 63 09711 09666 09644 0.9627 09716 0.9638 0.9755
ozone 2536 73 09700 0.9732 09716 0.9669 0.9669 0.9748 0.9716
page-blocks 5473 11 09583 09708 0.9656 0.9605 0.9613 0.9730 0.9708
parkinsons 195 23 0.8980 09184 0.8367 09184 0.8571 0.8163 0.8571
pendigits 10992 17 09706 0.9714 09671 09708 0.9734 0.9620 0.9657
pima 768 9 0.7552 0.7656 0.7188 0.7135 0.7188 0.6979  0.6927
pittsburg-bridges-MATERIAL 106 8 0.8846 0.8462 0.9231 09231 0.8846 0.8077 0.9231
pittsburg-bridges-REL-L 103 8 0.6923 0.7692 0.6923 0.8462 0.7692 0.6538 0.7308
pittsburg-bridges-SPAN 92 8 0.6957 0.5217 0.5652 0.5652 0.5652 0.6522 0.6087
pittsburg-bridges-T-OR-D 102 8 0.8400 0.8800 0.8800 0.8800 0.8800 0.8800 0.8800
pittsburg-bridges-TYPE 105 8 0.6538 0.6538 0.5385 0.6538 0.1154 0.4615 0.6538
planning 182 13 0.6889 0.6667 0.6000 0.7111 0.6222 0.6444 0.6889
plant-margin 1600 65 0.8125 0.8125 0.8375 0.7975 0.7600 0.8175 0.8425
plant-shape 1600 65 0.7275 0.6350 0.6325 0.5150 0.2850 0.6575 0.6775
plant-texture 1599 65 0.8125 0.7900 0.7900 0.8000 0.8200 0.8175 0.8350
post-operative 90 9 07273 0.7273 0.5909 0.7273 0.5909 0.5455 0.7727
primary-tumor 330 18 0.5244 0.5000 04512 03902 0.5122 0.5000 0.4512
ringnorm 7400 21 09751 09843 0.9692 09811 0.9843 09719 0.9827
seeds 210 8 0.8846 0.8654 0.9423 0.8654 0.8654 0.8846 0.8846
semeion 1593 257 09196 0.9296 0.9447 09146 0.9372 0.9322 0.9447
soybean 683 36 0.8511 0.8723 0.8617 0.8670 0.8883 0.8537 0.8484
spambase 4601 58 09409 0.9461 09435 0.9461 09426 0.9504 0.9513
spect 265 23 0.6398 0.6183 0.6022 0.6667 0.6344 0.6398 0.6720
spectf 267 45 04973 0.6043 0.8930 0.7005 0.2299 0.4545 0.5561
statlog-australian-credit 690 15 0.5988 0.6802 0.6802 0.6395 0.6802 0.6860 0.6279
statlog-german-credit 1000 25 0.7560 0.7280 0.7760 0.7720 0.7520 0.7400 0.7400
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statlog-heart 270 14 09254 0.8358 0.7761 0.8657 0.7910 0.8657 0.7910
statlog-image 2310 19 09549 0.9757 09584 0.9584 0.9671 0.9515 0.9757
statlog-landsat 6435 37 09100 0.9075 09110 0.9055 0.9040 0.8925 0.9040
statlog-shuttle 58000 10 09990 0.9983 0.9977 0.9992 0.9988 0.9988 0.9987
statlog-vehicle 846 19 0.8009 0.8294 0.7962 0.7583 0.7583 0.8009 0.7915
steel-plates 1941 28 0.7835 0.7567 0.7608 0.7629 0.7031 0.7856 0.7588
synthetic-control 600 61 09867 0.9800 0.9867 0.9600 0.9733 0.9867 0.9733
teaching 151 6 05000 0.6053 0.5263 0.5526 0.5000 0.3158 0.6316
thyroid 7200 22 09816 0.9770 09708 0.9799 0.9778 0.9807 0.9752
tic-tac-toe 958 10 0.9665 0.9833 0.9749 0.9623 0.9833 0.9707 0.9791
titanic 2201 4 0.7836 0.7909 0.7927 0.7727 0.7800 0.7818 0.7891
trains 10 30 NA NA NA NA 0.5000  0.5000  1.0000
twonorm 7400 21 09805 09778 0.9708 0.9735 0.9757 0.9730 0.9724

vertebral-column-2clases 310 7 0.8312 0.8701 0.8571 0.8312 0.8312 0.6623 0.8442
vertebral-column-3clases 310 7 0.8312 0.8052 0.7922 0.7532 0.7792 0.7403 0.8312

wall-following 5456 25 09098 09076 0.9230 0.9223 0.9333 0.9274 0.9128
waveform 5000 22 0.8480 0.8312 0.8320 0.8360 0.8360 0.8376 0.8448
waveform-noise 5000 41 0.8608 0.8328 0.8696 0.8584 0.8480 0.8640 0.8504
wine 178 14 09773 09318 09091 09773 09773 09773 0.9773
wine-quality-red 1599 12 0.6300 0.6250 0.5625 0.6150 0.5450 0.5575 0.6100
wine-quality-white 4898 12 0.6373 0.6479 0.5564 0.6307 0.5335 0.5482 0.6544
yeast 1484 9 0.6307 0.6173 0.6065 0.5499 0.4906 0.5876 0.6092
Z00 101 17 0.9200 1.0000 0.8800 1.0000 0.7200 0.9600 0.9600

Results. The results of the method comparison are given in Tables S9 and S10 for small and
large data sets, respectively. On small data sets, SVMs performed best followed by RandomForest
and SNNs. On large data sets, SNNs are the best method followed by SVMs and Random Forest.
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Table S9: UCI comparison reporting the average rank of a method on 75 classification task of
the UCI machine learning repository with less than 1000 data points. For each dataset, the 24
compared methods, were ranked by their accuracy and the ranks were averaged across the tasks.
The first column gives the method group, the second the method, the third the average rank , and
the last the p-value of a paired Wilcoxon test whether the difference to the best performing method
is significant. SNNs are ranked third having been outperformed by Random Forests and SVMs.

methodGroup method avg. rank  p-value
SVM LibSVM_weka 9.3

RandomForest RRFglobal_caret 9.6 2.5e-01
SNN SNN 9.6 3.8e-01
LMR SimpleLogistic_weka 9.9 1.5e-01
NeuralNetworks Ivq_caret 10.1  1.0e-01
MARS gcvEarth_caret 10.7 3.6e-02
MSRAInit MSRAInit 11.0  4.0e-02
LayerNorm LayerNorm 11.3  7.2e-02
Highway Highway 11.5 8.9e-03
DiscriminantAnalysis mda_R 11.8 2.6e-03
Boosting LogitBoost_weka 11.9 2.4e-02
Bagging ctreeBag_R 12.1 1.8e-03
ResNet ResNet 123 3.5e-03
BatchNorm BatchNorm 12.6  4.9e-04
Rule-based JRip_caret 129 1.7e-04
WeightNorm WeightNorm 13.0 8.3e-05
DecisionTree rpart2_caret 13.6  7.0e-04
OtherEnsembles Dagging_weka 13.9 3.0e-05
Nearest Neighbour NNge_weka 14.0 7.7e-04
OtherMethods pam_caret 142 1.5e-04
PLSR simpls_R 14.3  4.6e-05
Bayesian NaiveBayes_weka 14.6 1.2e-04
GLM bayesglm_caret 15.0 1.6e-06
Stacking Stacking_weka 209 2.2e-12
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Table S10: UCI comparison reporting the average rank of a method on 46 classification task of
the UCI machine learning repository with more than 1000 data points. For each dataset, the 24
compared methods, were ranked by their accuracy and the ranks were averaged across the tasks.
The first column gives the method group, the second the method, the third the average rank , and
the last the p-value of a paired Wilcoxon test whether the difference to the best performing method
is significant. SNNs are ranked first having outperformed diverse machine learning methods and

other FNNs.

methodGroup method avg. rank  p-value
SNN SNN 5.8

SVM LibSVM_weka 6.1 5.8e-01
RandomForest RRFglobal_caret 6.6 2.1e-01
MSRAInit MSRAInit 7.1 4.5e-03
LayerNorm LayerNorm 7.2 7.1e-02
Highway Highway 7.9 1.7e-03
ResNet ResNet 84 1.7e-04
WeightNorm WeightNorm 8.7 5.5e-04
BatchNorm BatchNorm 9.7 1.8e-04
MARS gcvEarth_caret 9.9 8.2e-05
Boosting LogitBoost_weka 12.1 2.2e-07
LMR SimpleLogistic_weka 12.4  3.8e-09
Rule-based JRip_caret 12.4  9.0e-08
Bagging ctreeBag_R 13.5 1.6e-05
DiscriminantAnalysis mda_R 139 1.4e-10
Nearest Neighbour NNge_weka 14.1 1.6e-10
DecisionTree rpart2_caret 155 2.3e-08
OtherEnsembles Dagging_weka 16.1 4.4e-12
NeuralNetworks lvq_caret 16.3 1.6e-12
Bayesian NaiveBayes_weka 179 1.6e-12
OtherMethods pam_caret 18.3 2.8e-14
GLM bayesglm_caret 18.7 1.5e-11
PLSR simpls_R 19.0 3.4e-11
Stacking Stacking_weka 22.5 2.8e-14
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S4.3 Tox21 challenge data set: Hyperparameters

For the Tox21 data set, the best hyperparameter setting was determined by a grid-search over
all hyperparameter combinations using the validation set defined by the challenge winners (

, ). The hyperparameter space was chosen to be similar to the hyperparameters that
were tested by ( ). The early stopping parameter was determined on the smoothed
learning curves of 100 epochs of the validation set. Smoothing was done using moving averages
of 10 consecutive values. We tested “rectangular” and “conic” layers — rectangular layers have
constant number of hidden units in each layer, conic layers start with the given number of hidden
units in the first layer and then decrease the number of hidden units to the size of the output layer
according to the geometric progession. All methods had the chance to adjust their hyperparameters
to the data set at hand.

Table S11: Hyperparameters considered for self-normalizing networks in the Tox21 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate

Dropout rate

Layer form

L2 regularization parameter

{1024, 2048}
{2,3,4,6,8,16,32}

{0.01, 0.05, 0.1}

{0.05, 0.10}
{rectangular, conic}
{0.001,0.0001,0.00001}

Table S12: Hyperparameters considered for ReLLU networks with MS initialization in the Tox21

data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate

Dropout rate

Layer form

L2 regularization parameter

{1024, 2048}
{2,3,4,6,8,16,32}

{0.01, 0.05, 0.1}
{0.5,0}

{rectangular, conic}
{0.001,0.0001,0.00001}
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Table S13: Hyperparameters considered for batch normalized networks in the Tox21 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Layer form

L2 regularization parameter

{1024, 2048}
{2,3,4,6,8, 16, 32}
{0.01, 0.05, 0.1}
{Batchnorm}
{rectangular, conic}
{0.001,0.0001,0.00001}

Table S14: Hyperparameters considered for weight normalized networks in the Tox21 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Dropout rate

Layer form

L2 regularization parameter

{1024, 2048}
{2,3,4,6,8, 16, 32}
{0.01, 0.05, 0.1}
{Weightnorm}

{0, 0.5}

{rectangular, conic}
{0.001,0.0001,0.00001}

Table S15: Hyperparameters considered for layer normalized networks in the Tox21 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Dropout rate

Layer form

L2 regularization parameter

{1024, 2048}
{2,3,4,6,8, 16,32}
{0.01, 0.05, 0.1}
{Layernorm}

{0,0.5}

{rectangular, conic}
{0.001,0.0001,0.00001}

Table S16: Hyperparameters considered for Highway networks in the Tox21 data set.

Hyperparameter

Considered values

Number of hidden layers
Learning rate

Dropout rate

L2 regularization parameter

{2,3,4,6,8, 16,32}
{0.01, 0.05, 0.1}

{0, 0.5}
{0.001,0.0001,0.00001 }
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Figure S7: Distribution of network inputs of an SNN for the Tox21 data set. The plots show the
distribution of network inputs z of the second layer of a typical Tox21 network. The red curves
display a kernel density estimator of the network inputs and the black curve is the density of a
standard normal distribution. Left panel: At initialization time before learning. The distribution
of network inputs is close to a standard normal distribution. Right panel: After 40 epochs of
learning. The distributions of network inputs is close to a normal distribution.

Table S17: Hyperparameters considered for Residual networks in the Tox21 data set.

Hyperparameter Considered values
Number of blocks {2,3,4,6, 8, 16}
Number of neurons per blocks {1024, 2048}

Block form {rectangular, diavolo}
Bottleneck {25%, 50%}
Learning rate {0.01, 0.05, 0.1}

L2 regularization parameter {0.001,0.0001,0.00001}

Distribution of network inputs. We empirically checked the assumption that the distribution
of network inputs can well be approximated by a normal distribution. To this end, we investigated
the density of the network inputs before and during learning and found that these density are close

to normal distributions (see Figure S7).
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S4.4 HTRU?2 data set: Hyperparameters

For the HTRU?2 data set, the best hyperparameter setting was determined by a grid-search over all
hyperparameter combinations using one of the 9 non-testing folds as validation fold in a nested
cross-validation procedure. Concretely, if M was the testing fold, we used M — 1 as validation
fold, and for M = 1 we used fold 10 for validation. The early stopping parameter was determined
on the smoothed learning curves of 100 epochs of the validation set. Smoothing was done using
moving averages of 10 consecutive values. We tested “rectangular” and “conic” layers — rectan-
gular layers have constant number of hidden units in each layer, conic layers start with the given
number of hidden units in the first layer and then decrease the number of hidden units to the size
of the output layer according to the geometric progession. All methods had the chance to adjust
their hyperparameters to the data set at hand.

Table S18: Hyperparameters considered for self-normalizing networks on the HTRU?2 data set.

Hyperparameter Considered values
Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}
Learning rate {0.1,0.01, 1}
Dropout rate {0,0.05}

Layer form {rectangular, conic}

Table S19: Hyperparameters considered for ReLU networks with Microsoft initialization on the
HTRU?2 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate

Dropout rate

Layer form

{256, 512, 1024}

{2, 4,8, 16,32}
{0.1,0.01, 1}
{0,0.5}

{rectangular, conic}

Table S20: Hyperparameters considered for BatchNorm networks on the HTRU?2 data set.

Hyperparameter

Considered values

Number of hidden units
Number of hidden layers
Learning rate
Normalization

Layer form

{256, 512, 1024}
{2,4,8,16,32}
{0.1,0.01, 1}
{Batchnorm}
{rectangular, conic}
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Table S21: Hyperparameters considered for WeightNorm networks on the HTRU?2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}

Learning rate {0.1,0.01, 1}
Normalization { Weightnorm}
Layer form {rectangular, conic}

Table S22: Hyperparameters considered for LayerNorm networks on the HTRU?2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of hidden layers {2, 4, 8, 16, 32}

Learning rate {0.1,0.01, 1}
Normalization {Layernorm}
Layer form {rectangular, conic}

Table S23: Hyperparameters considered for Highway networks on the HTRU?2 data set.

Hyperparameter Considered values
Number of Hidden Layers {2, 4, 8, 16, 32}
Learning rate {0.1,0.01, 1}
Dropout rate {0,0.5}

Table S24: Hyperparameters considered for Residual networks on the HTRU?2 data set.

Hyperparameter Considered values

Number of hidden units {256, 512, 1024}
Number of residual blocks {2, 3, 4, 8, 16}
Learning rate {0.1,0.01, 1}

Block form {rectangular, diavolo}
Bottleneck {0.25, 0.5}
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In this section we report bounds on previously discussed expressions as determined by numerical

methods (min and max have been computed).
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