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We give proofs for the results in “A Sharp Error Analysis for the Fused Lasso, with Application to
Approximate Changepoint Screening”. We also provide numerical simulations that support some of
our theoretical results.

A.1 Proofs of Theorem 1 and Corollary 1

We denote by N(r, S, ‖ · ‖) the covering number of a set S in a norm ‖ · ‖, i.e., the smallest number
of ‖ · ‖-balls of radius r needed to cover S. We call logN(r, S, ‖ · ‖) the log covering or entropy
number. Recall that we write ‖ · ‖n = ‖ · ‖2/

√
n for the scaled `2 norm, and that we say a random

variable Z has a sub-Gaussian distribution provided that

E[Z] = 0 and P(|Z| > t) ≤ 2 exp
(
− t2/(2σ2)

)
for t ≥ 0, (A.1)

for some constant σ > 0.

In the proof of Theorem 1, we will rely on the following result from van de Geer (1990) (which is
derived closely from Dudley’s chaining for sub-Gaussian processes).

Theorem A.1 (Theorem 3.3 of van de Geer 1990). Assume that ε = (ε1, . . . , εn) ∈ Rn has i.i.d.
components drawn from a sub-Gaussian distribution, as in (A.1). Consider a set X ⊆ Rn such that
‖x‖n ≤ 1 for all x ∈ X , and let K(·) be a continuous function upper bounding the ‖ · ‖n-entropy of
X , i.e., K(r) ≥ logN(r,X , ‖ · ‖n). Then there are constants C1, C2, C3, C4 > 0 depending only on
σ (the parameter in the underlying sub-Gaussian distribution) such that for all t > C1, with

t > C2

∫ t0

0

√
K(r) dr,

where t0 = inf{r : K(r) ≤ C3t
2}, we have

P
(

sup
x∈X

|ε>x|√
n

> t

)
≤ 2 exp(−C4t

2).

Now we give the proof of Theorem 1.
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Proof of Theorem 1. We define three events that will be critical to our proof, and we will show later
on that each event occurs with high probability:

Ω0 =

{
sup
z∈M

|ε>z|
‖z‖2

≤ γcI
√

(log s0 + log log n)s0 log n

}
, (A.2)

Ω1 =

{
sup
w∈R⊥

|ε>w|
‖D−S0w‖

1/2
1 ‖w‖

1/2
2

≤ γcR(ns0)1/4
}
, (A.3)

Ω2 =

{
sup
δ∈R

|ε>δ|
‖δ‖2

≤ γcS
√
s0

}
, (A.4)

where γ > 1 is parameter free to vary in our analysis, cI , cR > 0 are the constants in Lemmas 2, 3,
and cS > 0 is a constant to be determined below. Focusing on the third event, we will lower bound
its probability by applying Theorem A.1 to X = R∩ {δ : ‖δ‖n ≤ 1}. Note that

logN(r,R∩ {δ : ‖δ‖n ≤ 1}, ‖ · ‖n) ≤ (s0 + 1) log(3/r),

asR is (s0 + 1)-dimensional, and it is well-known that in Rd, the number of balls of radius r that
are needed to cover the unit ball is at most (3/r)d. The quantity t0 in Theorem A.1 may be taken to
be t0 = inf{r : (s0 + 1) log(3/r) ≤ C3C

2
1} = 3 exp(−C3C

2
1/(s0 + 1)). The restrictions on t are

hence t > C1, as well as

t > C2

∫ t0

0

√
(s0 + 1) log(3/r) dr.

But, writing erf(·) for the error function,

C2

∫ t0

0

√
(s0 + 1) log(3/r) dr = (

√
s0 + 1) · 3C2

[
r

√
log

1

r
− 1

2
erf

(√
log

1

r

)]∣∣∣∣t0/3
0

≤ C2
√
s0,

where the constant C2 > 0 is adjusted to be larger, as needed. Let us define cS = max{C1, C2} and
CS = C4. Then we have by Theorem A.1, for t = γcS

√
s0 and any γ > 1,

1−2 exp(−CSγ2c2Ss0) ≤ P
(

sup
δ∈R

|ε>δ|√
n‖δ‖n

≤ γcS
√
s0

)
= P

(
sup
δ∈R

|ε>δ|
‖δ‖2

≤ γcS
√
s0

)
= P(Ω2).

(A.5)
The rest of this proof is divided into subparts for readability.

Basic inequality. The basic inequality in (12) is established by comparing objective values in (3) at
θ̂ and θ0, writing y = θ0 + ε, and rearranging. Using θ̂ − θ0 = P0(θ̂ − θ0) + P1(θ̂ − θ0) = δ̂ + x̂,
and using the fact that δ̂ and x̂ are orthogonal, we have

‖δ̂‖22 + ‖x̂‖22 ≤ 2ε>δ̂ + 2ε>x̂+ 2λ
(
‖Dθ0‖1 − ‖Dθ̂‖1

)
= 2ε>δ̂ + 2ε>x̂+ 2λ

(
‖DS0

θ0‖1 − ‖DS0
θ̂‖1 − ‖D−S0

θ̂‖1
)

≤ 2ε>δ̂ + 2ε>x̂+ 2λ
(
‖DS0(θ0 − θ̂)‖1 − ‖D−S0 θ̂‖1

)
≤ 2ε>δ̂ + 2ε>x̂+ 2λ

(
‖DS0

δ̂‖1 + ‖DS0
x̂‖1 − ‖D−S0

x̂‖1
)

= 2ε>δ̂ + 2λ‖DS0
δ̂‖1︸ ︷︷ ︸

A0

+ 2ε>x̂+ 2λ
(
‖DS0

x̂‖1 − ‖D−S0
x̂‖1
)︸ ︷︷ ︸

B0

,

where in the third line, we used the triangle inequality, and in the fourth, we again used the triangle
inequality and the fact that D−S0

δ̂ = 0.

Bounding A0. Note that

A0 = 2

(
|ε>δ̂|
‖δ̂‖2

+ λ
‖DS0 δ̂‖1
‖δ̂‖2

)
‖δ‖2,

2



and observe

‖DS0
δ̂‖1 =

s0∑
i=1

|δ̂ti+1
− δ̂ti | ≤ 2

s0+1∑
i=1

|δ̂ti | ≤ 2

√√√√(s0 + 1)

s0+1∑
i=1

δ̂2ti

≤ 4

√√√√s0

s0+1∑
i=1

ti − ti−1
Wn

δ̂2ti = 4

√
s0
Wn
‖δ̂‖2.

The second inequality used Cauchy-Schwartz, and the last equality used that δ̂ is piecewise constant
on the blocks B0, . . . , Bs0 , as δ̂ ∈ R = span{1B0

, . . . ,1Bs0
}. Hence, on the event Ω2 in (A.4), we

have

A0 ≤ 2

(
γcS
√
s0 + 4λ

√
s0
Wn

)
‖δ̂‖2 (A.6)

Bounding B0. In the definition of B0, let us expand x̂ = ẑ + ŵ, where ẑ ∈M is the lower inter-
polant to x̂, as defined in Lemma 1, and ŵ = x̂− ẑ is the remainder. Using properties (13) and (14)
from Lemma 1, we arrive at

B0 = 2ε>ẑ + 2ε>ŵ + 2λ
(
‖DS0

ẑ‖1 − ‖D−S0
ẑ‖1 − ‖D−S0

ŵ‖1
)

≤ 2ε>ẑ + 8λ

√
s0
Wn
‖ẑ‖2 + 2ε>ŵ − 2λ‖D−S0

ŵ‖1. (A.7)

On the event Ω0 in (A.2),

ε>ẑ ≤ γcI
√

(log s0 + log log n)s0 log n‖ẑ‖2.
And, on the event Ω1 in (A.3), as P1ŵ ∈ R⊥, ‖D−S0

P1ŵ‖1 = ‖D−S0
ŵ‖1, and ‖P1ŵ‖2 ≤ ‖ŵ‖2,

ε>P1ŵ ≤ γcR(ns0)1/4‖D−S0
ŵ‖1/21 ‖ŵ‖

1/2
2 ,

Also, on the event Ω2 in (A.4), since P0ŵ ∈ R,

ε>P0ŵ ≤ γcS
√
s0‖ŵ‖2.

Hence, on Ω0 ∩ Ω1 ∩ Ω2, combining the last three displays with (A.7),

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0
Wn

)
‖ẑ‖2 + 2γcS

√
s0‖ŵ‖2 +

2γcR(ns0)1/4‖D−S0
ŵ‖1/21 ‖ŵ‖

1/2
2 − 2λ‖D−S0

ŵ‖1. (A.8)

Consider the first case in which γcR(ns0)1/4‖D−S0ŵ‖
1/2
1 ‖ŵ‖

1/2
2 ≥ λ‖D−S0ŵ‖1. Then

‖D−S0ŵ‖1 ≤
(
γcR
λ

)2√
ns0‖ŵ‖2,

and from (A.8), on the event Ω0 ∩ Ω1 ∩ Ω2,

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0
Wn

+ γcS
√
s0 +

γ2c2R
√
ns0

λ

)
‖x̂‖2. (A.9)

where we have used (15). In the case γcR(ns0)1/4‖D−S0
ŵ‖1/21 ‖ŵ‖

1/2
2 < λ‖D−S0

ŵ‖1, we have
from (A.8), on the event Ω0 ∩ Ω1 ∩ Ω2,

B0 ≤ 2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0
Wn

+ γcS
√
s0

)
‖x̂‖2.

Therefore, the bound (A.9) always holds on the event Ω0 ∩ Ω1 ∩ Ω2.

Putting it all together. Combining (A.6) and (A.9), we see that on Ω0 ∩ Ω1 ∩ Ω2,

‖δ̂‖22 + ‖x̂‖22 ≤ 2

(
γcS
√
s0 + 4λ

√
s0
Wn

)
‖δ̂‖2 +

2

(
γcI
√

(log s0 + log log n)s0 log n+ 4λ

√
s0
Wn

+ γcS
√
s0 +

γ2c2R
√
ns0

λ

)
‖x̂‖2.

3



Denote the right-hand side by A1‖δ̂‖2 +B1‖x̂‖2. Using the simple inequality 2ab ≤ a2 + b2, twice,
we have on Ω0 ∩ Ω1 ∩ Ω2,

‖δ̂‖22 + ‖x̂‖22 ≤
A2

1

2
+
‖δ̂‖22

2
+
B2

1

2
+
‖x̂‖22

2
.

Recalling that ‖δ̂‖22 + ‖x̂‖22 = ‖θ̂ − θ0‖22, this implies that on the event Ω0 ∩ Ω1 ∩ Ω2, there exists a
constant c > 0, such that for large enough n, and any γ > 1,

‖θ̂ − θ0‖22 ≤ γ4cs0

(
(log s0 + log log n) log n+

λ2

Wn
+

n

λ2

)
, (A.10)

on the event Ω0 ∩ Ω1 ∩ Ω2. Furthermore, using the union bound along with Lemmas 2, 3, and (A.5),
we find that

P
(
(Ω0 ∩ Ω1 ∩ Ω2)c

)
≤ 2 exp

(
− CIγ2c2I(log s0 + log log n)

)
+

2 exp(−CRγ2c2R
√
s0) + 2 exp(−CSγ2c2Ss0) ≤ exp(−Cγ2),

for an appropriately defined constant C > 0. Optimizing the bound in (A.10) to choose the tuning
parameter λ yields λ = (nWn)1/4. Plugging this in gives the final result.

Next we give the proof of Corollary 1.

Proof of Corollary 1. Define the random variable

Z =
‖θ̂ − θ0‖22

cs0((log s0 + log log n) log n+
√
n/Wn)

,

which we know has the tail bound P(Z > z) ≤ exp(−C
√
z) for z > 1, and observe that

E(Z) =

∫ ∞
0

P(Z > z) dz ≤ 1 +

∫ ∞
1

exp(−C
√
z) dz.

The right-hand side is a finite constant, and this gives the result

E‖θ̂ − θ0‖2n ≤ c
s0
n

(
(log s0 + log log n) log n+

√
n

Wn

)
,

where the constant c > 0 is adjusted to be larger, as needed.

A.2 Proofs of Lemma 1, Lemma 2, Lemma 3, and (A.17)

Proof of Lemma 1. We give an explicit construction of a lower interpolant z ∈ M to x, given the
changepoints 0 = t0 < . . . < ts0+1 = n. We will use the notation a+ = max{0, a} for the positive
part of a. For i = 0, . . . , s0, define z(i+) ∈ Rti+1−ti by setting g+i = sign(xti) and

z
(i+)
j = g+i ·min

{
(g+i xti+1)+, . . . , (g

+
i xti+j)+

}
, j = 1, . . . , ti+1 − ti.

Similarly, define z(i−) ∈ Rti+1−ti by setting g−i = sign(xti+1−1) and

z
(i−)
j = g−i ·min

{
(g−i xti+j)+, . . . , (g

−
i xti+1

)+

}
, j = 1, . . . , ti+1 − ti.

Note that z(i+)
1 = xti+1 and z(i−)ti+1−ti = xti+1 ; also, {|z(i+)

j |}ti+1−ti
j=1 is a nonincreasing sequence,

and {|z(i−)j |}ti+1−ti
j=1 is nondecreasing. Furthermore,

sign
(
z
(i+)
1

)
· sign

(
z
(i+)
j

)
≥ 0 and sign

(
z
(i−)
ti+1−ti

)
· sign

(
z
(i−)
j

)
≥ 0, j = 1, . . . , ti+1 − ti.

Lastly, notice that there exists a point j′ ∈ 1, . . . , ti+1 − ti − 1 (not necessarily unique) such that

min
k∈{1,...,ti+1−ti}

∣∣z(i+)
k

∣∣ =
∣∣z(i+)
j′+1

∣∣ =
∣∣z(i+)
j

∣∣, j = j′ + 1, . . . , ti+1 − ti, (A.11)

min
k∈{1,...,ti+1−ti}

∣∣z(i−)k

∣∣ =
∣∣z(i−)j′

∣∣ =
∣∣z(i−)j

∣∣, j = 1, . . . , j′. (A.12)
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We define zti+j = z
(i+)
j for j = 1, . . . , j′, and zti+j = z

(i−)
j for j = j′ + 1, . . . , ti+1 − ti. Letting

t′i = ti + j′ and repeating this process for i = 0, . . . , s0, we have constructed z ∈M.

We now verify the claimed properties for the constructed lower interpolant z. For i = 0, . . . , s0, and
any j = 1, . . . , ti+1 − ti, we have

sign(z
(i+)
j ) · sign(xti+j) ≥ 0, (A.13)

|z(i+)
j | ≤ |xti+j |, (A.14)

Further, for any j = 1, . . . , ti+1 − ti − 1,

sign
(

(Dz(i+))j

)
· sign

(
(Dx)ti+j

)
≥ 0, (A.15)∣∣∣(Dz(i+))j

∣∣∣ ≤ ∣∣(Dx)ti+j
∣∣. (A.16)

To see why (A.15) holds, note that the properties sign(Dz(i+))j ∈ {−1, 0}, (Dz(i+))j < 0 imply
(D(g+i x)+)ti+j < 0. To see why (A.16) holds, if (Dz(i+))j 6= 0, then we know that

|z(i+)
j+1 − z

(i+)
j | ≤

∣∣∣min
{

(g+i xti+j+1)+, (g
+
i xti+j)+

}
− (g+i xti+j)+

∣∣∣ ≤ |xti+j+1 − xti+j |,

where we used the observation that |min{a, b} − b| ≥ |min{a, b, c} −min{b, c}|.
It can be shown by nearly equivalent steps that z(i−), z both satisfy properties analogous to (A.13)–
(A.16). Using (A.13) and (A.14) on z gives (15). Using (A.15) and (A.16) on z gives (13) (note that
if sign(a) = sign(b) and |a| > |b|, then |a| = |b|+|a−b|). Because zti+1 = xti+1 and zti+1

= xti+1

for all i = 0, . . . , s0, we have the equality in (14) (as Dtiz = zti+1 − zti = xti+1 − xti = Dtix).

Finally, for each i = 0, . . . , s0, define t′′i = t′i if |zt′i | ≥ |zt′i+1| and t′′i = t′i + 1 otherwise. Observe
that by (A.11) and (A.12), it holds that |zt′′i | = minj=1,...,ti+1−ti |zti+j |. The inequality in (14) is
finally established by the following chain of inequalities:

‖DS0z‖1 =

s0∑
i=1

|zti+1 − zti | ≤
s0∑
i=1

|zti+1|+ |zti |

=

s0∑
i=1

(
|zti+1| − |zt′′i |

)
+
(
|zti | − |zt′′i−1

|
)

+ |zt′′i−1
|+ |zt′′i |

≤ ‖D−S0
z‖1 + 2

s0∑
i=0

|zt′′i | ≤ ‖D−S0
z‖1 + 4

√
s0
Wn
‖z‖2,

where in the second inequality, we used |a| − |c| ≤ |a − c| ≤ |a − b| + |b − c|, and in the last
inequality, we used the above property of zt′′i and

s0∑
i=0

|zt′′i | ≤ 2
√
s0

√√√√ s0∑
i=0

|zt′′i |
2 ≤ 2

√√√√s0

s0∑
i=0

ti+1 − ti
Wn

z2t′′i
≤ 2

√
s0
Wn
‖z‖2.

This completes the proof.

Proof of Lemma 2. We consider ε ∈ Rn, an i.i.d. sub-Gaussian vector as referred to in the statement
of the lemma, and arbitrary z ∈M. In this proof, we will also consider E(t) and Z(t), real-valued
functions over [0, n], constructed so that E(t) = εdte for all t (i.e., E(t) is a step function), Z(t) = zt
for t = 1, . . . , n, and Z(t) is continuously differentiable and monotone over (ti, t

′
i] and (t′i, ti+1] for

i = 0, . . . , s0. These functions will also satisfy the boundary conditions E(0) = ε1 and Z(0) = z1.

Let F (t) =
∫ t
0
E(u) du. As ε is random, E(t) and F (t) are also random. It can be shown that there

exists constants cI , CI > 0 such that for any γ > 1,

P

(
|F (t)− F (ti)|√

|t− ti|
≤ γcI

√
log s0 + log log n, for t ∈ (ti, ti+1], i = 0, . . . , s0

)
≥ 1− 2 exp

(
− CIγ2c2I(log s0 + log log n)

)
. (A.17)
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So as not to distract from the main flow of ideas, we now proceed to prove Lemma 2, and we provide
a proof of (A.17) later. Let Ω3 denote the event in consideration on the left-hand side of (A.17). By
integration by parts,∫ t′i

ti

E(t)Z(t) dt = Z(t′i)(F (t′i)− F (ti))−
∫ t′i

ti

Z ′(t)(F (t)− F (ti)) dt

where Z ′(t) = d
dtZ(t). Thus, on the event Ω3,∣∣∣∣∣

∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣ ≤ γcI√log s0 + log log n

(
|Z(t′i)|

√
t′i − ti +

∣∣∣∣∣
∫ t′i

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣
)
,

(A.18)
since Z ′ does not change sign within the intervals (ti, t

′
i], (t

′
i, ti+1] (as z ∈M). For n large enough,

we can upper bound the last term in (A.18) as follows∣∣∣∣∣
∫ t′i

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣+

∣∣∣∣∣
∫ t′i

ti+n−1

Z ′(t)
√
t− ti dt

∣∣∣∣∣ . (A.19)

Using integration by parts and the triangle inequality on the second term in (A.19),∣∣∣∣∣
∫ t′i

ti+n−1

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤ |Z(t′i)|
√
t′i − ti+

∣∣∣∣Z(ti + n−1)√
n

∣∣∣∣+ 1

2

∣∣∣∣∣
∫ t′i

ti+n−1

Z(t)√
t− ti

dt

∣∣∣∣∣ . (A.20)

By Cauchy-Schwartz on the last term in (A.20),∣∣∣∣∣
∫ t′i

ti+n−1

Z(t)√
t− ti

dt

∣∣∣∣∣ ≤
(∫ t′i

ti+n−1

Z(t)2 dt

)1/2(∫ t′i

ti+n−1

1

t− ti
dt

)1/2

≤

(∫ t′i

ti+n−1

Z(t)2 dt

)1/2√
2 log n. (A.21)

Now examining the first term in (A.19),∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t)
√
t− ti dt

∣∣∣∣∣ ≤ n−1/2
∣∣∣∣∣
∫ ti+n

−1

ti

Z ′(t) dt

∣∣∣∣∣ =
|Z(ti + n−1)− Z(ti)|√

n
.

But because we only require Z to be piecewise monotonic and continuously differentiable then we
are at liberty to make Z(ti + n−1) = Z(ti), forcing this term to be 0. In order to bound Z(t′i), notice
that because |Z(t)| is non-increasing over the interval (ti, t

′
i] we have that

Z(t′i)
2|t′i − ti| ≤

∫ t′i

ti

Z(t)2 dt. (A.22)

Combining (A.18)–(A.22), we have that on the event Ω3,∣∣∣∣∣
∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣ ≤ αn
(

2 +

√
log n

2

)(∫ t′i

ti

Z(t)2 dt

)1/2

+ αn
|Z(ti)|√

n
. (A.23)

where we have abbreviated αn = γcI
√

log s0 + log log n. Through nearly identical steps we can
show that on the event Ω3,∣∣∣∣∣

∫ ti+1

t′i

E(t)Z(t) dt

∣∣∣∣∣ ≤ αn
(

2 +

√
log n

2

)(∫ ti+1

t′i

Z(t)2 dt

)1/2

+ αn
|Z(ti+1)|√

n
. (A.24)

Therefore∣∣∣∣∫ n

0

E(t)Z(t) dt

∣∣∣∣ ≤ s0∑
i=0

(∣∣∣∣∣
∫ t′i

ti

E(t)Z(t) dt

∣∣∣∣∣+

∣∣∣∣∣
∫ ti+1

t′i

E(t)Z(t) dt

∣∣∣∣∣
)

≤ αn
√

2s0 + 2

(
2 +

√
log n

2

)(∫ n

0

Z(t)2 dt

)1/2

+ 2αn
‖z‖1√
n
, (A.25)
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where in the second line we used (A.23), (A.24), and the Cauchy-Schwartz inequality. Because we
can choose Z(t) to be arbitrarily close to zdte over all t, we can make the integral (

∫ n
0
Z(t)2 dt)1/2

arbitrarily close to ‖z‖2 and likewise we can make
∫ n
0
E(t)Z(t) dt arbitrarily close to ε>z. Further-

more, because ‖z‖1 ≤
√
n‖z‖2, the first term in (A.25) dominates. Hence on the event Ω3, we have

established that
|ε>z| ≤ γcI

√
(log s0 + log log n)s0 log n‖z‖2,

where the constant cI is adjusted to be larger, as needed. Noting that the event Ω3 does not depend
on z, the result follows.

Proof of claim (A.17). We will construct a covering for V = ∪s0i=0Vi, where for each i = 0, . . . , s0,

Vi =

{√
n

|A|
1A : A = {ti, . . . , t}, t = ti + 1, . . . , n

}
∪{√

n

|A|
1A : A = {t, . . . , ti}, t = 1, . . . , ti − 1

}
.

Our scaling is such that, for any a =
√
n/|A|1A, whereA ⊆ {1, . . . , n}, we have ‖a‖n = 1. Further,

for any other b =
√
n/|B|1B , where B ⊆ {1, . . . , n}, we have

‖a− b‖2n =
|A ∩B|

(
√
|A| −

√
|B|)2

+
|A \B|
|A|

+
|B \A|
|B|

= 2

(
1− |A ∩B|√

|A||B|

)
. (A.26)

We first construct a covering for each set Vi, i = 0, . . . , s0, and we restrict our attention to a radius
0 < r <

√
2. Let α = d(1− r2/2)−2e, and consider the set

Ci =

{√
n

|A|
1A : A =

{
ti, . . . ,min{ti + αj , n}

}
, j = 1, . . . , dlog n/ logαe

}
∪{√

n

|A|
1A : A =

{
max{ti − αj , 1}, . . . , ti

}
, j = 1, . . . , dlog n/ logαe

}
.

Here, the set Ci has at most 2dlog n/ logαe ≤ 4 log n/ logα elements, and by (A.26), balls of radius
r around elements in Ci cover the set Vi. This establishes that

N(r,Vi, ‖ · ‖n) ≤ −2 log n

log(1− r2/2)
. (A.27)

For a radius 0 < r <
√

2, the covering number for V = ∪s0i=0Vi can be obtained by simply taking a
union of the covers in (A.27) over i = 0, . . . , s0, giving

N(r,V, ‖ · ‖n) ≤
s0∑
i=0

N(r,Vi, ‖ · ‖n) ≤ 2(s0 + 1)

(
− log n

log(1− r2/2)

)
. (A.28)

Using (A.26) once more, the diameter of the set V is
√

2, hence if r ≥ 1/
√

2, then we need only 1
ball to cover V . Combining this fact with (A.28), we obtain

N(r,V, ‖ · ‖n) ≤

2(s0 + 1)

(
− log n

log(1− r2/2)

)
if 0 < r < 1/

√
2

1 if r ≥ 1/
√

2
. (A.29)

Now let us apply Theorem A.1, with X = V . First, we remark that the quantity t0 in Theorem A.1
may be taken to be t0 = 1/

√
2. The bounds on t in the theorem are t > C1, as well as

t > C2

∫ 1/
√
2

0

√
log

(
2(s0 + 1)

− log n

log(1− r2/2)

)
dr.

Next, we know that the right-hand side above is upper bounded by

C2

∫ 1/
√
2

0

[√
log
(
2(s0 + 1) log n

)
+

√
log

(
−1

log(1− r2/2)

) ]
dr

= C2

√
log
(
2(s0 + 1) log n

)
2

+ C2

√
2

∫ 1/2

0

√√√√log

(
1

log
(

1
1−x2

)) dx.
7



One can verify that the the integral in the second term above converges to a finite constant (upper
bounded by 1 in fact). Thus the entire expression above is upper bounded by C2

√
log s0 + log log n,

where the constant C2 > 0 is adjusted to be larger, as needed. Therefore, letting cI = max{C1, C2},
we may restrict our attention to t > cI

√
log s0 + log log n in Theorem A.1, and letting CI = C4, the

conclusion reads, for t = γcI and γ > 1,

P
(

sup
a∈V

ε>a√
n
> γcI

√
log s0 + log log n

)
≤ 2 exp

(
− CIγ2c2I(log s0 + log log n)

)
.

Recalling the form of a =
√
n/|A|1A ∈ V , the above may be rephrased as

P
(∑>

j=ti
εj√

|t− ti|
> γcI

√
log s0 + log log n, for t = 1, . . . , n, i = 0, . . . , s0

)
≤ 2 exp

(
− CIγ2c2I(log s0 + log log n)

)
. (A.30)

Finally, consider the following event

Ω4 =

{
|F (t)− F (ti)|√

|t− ti|
≤ γcI

√
log s0 + log log n, for t = 1, . . . , n, i = 0, . . . , s0

}
.

Recalling thatE(t) = εdte for all t ∈ [0, 1], we have F (t) =
∫ t
0
E(u) du =

∑t
j=0 εj for t = 1, . . . , n.

In (A.30), we have thus shown P(Ω4) ≥ 1− 2 exp(−CIγ2c2I(log s0 + log log n)). Note that |F (t)−
F (ti)| is piecewise linear with knots at t = 1, . . . , n and

√
|t− ti| is concave in between these knots,

so if |F (t)− F (ti)|/
√
|t− ti| ≤ γcI

√
log s0 + log log n for t = 1, . . . , n, then the same bound

must hold over all t ∈ [0, n]. This shows that Ω4 ⊇ Ω3, where Ω3 is the event in question in the
left-hand side of (A.17); in other words, we have verified (A.17).

For the proof of Lemma 3, we will need the following result from van de Geer (1990).
Lemma A.1 (Lemma 3.5 of van de Geer 1990). Assume the setting of Theorem A.1, and additionally,
assume that for some ζ ∈ (0, 1) and K > 0,

K(r) ≤ Kr−2ζ ,

where, recall, K(r) is a continuous function upper bounding the entropy number logN(r,X , ‖ · ‖n).
Then there exists constants C0, C1 depending only on σ such that for any t ≥ C0,

P
(

sup
x∈X

|ε>x|
√
n‖x‖1−ζn

> t
√
K

)
≤ exp(−C1t

2K).

Proof of Lemma 3. Recall that for i = 0, . . . , s0, we let Bi = {ti + 1, . . . , ti+1}. For i = 0, . . . , s0,
also define ni = |Bi|, the scaled norm ‖ · ‖ni

= ‖ · ‖2/
√
ni, and

Xi =
{
w(i) ∈ Rni : (1(i))>w(i) = 0, ‖D(i)w(i)‖1 ≤ 1, ‖w(i)‖ni

≤ 1
}
.

Here, we write 1(i) ∈ Rni for the vector of all 1s, and D(i) ∈ R(ni−1)×n for the difference operator,
as in (6) but of smaller dimension. The set Xi is the discrete total variation space in Rni , where all
elements are centered and have scaled norm at most 1. From well-known results on entropy bounds
for total variation spaces (e.g., from Lemma 11 and Corollary 12 of Wang et al. (2017)), we have

logN(r,Xi, ‖ · ‖ni
) ≤ C

r
,

for a universal constant C > 0. Hence we may apply Lemma A.1 with X = Xi and ζ = 1/2: for the
random variable

Mi = sup

{
|ε>Bi

w(i)|
√
ni‖w(i)‖1/2ni

: w(i) ∈ Xi

}
,

we may take t = γC0 in the lemma, for any γ > 1, and conclude that

P
(
Mi > γC0

√
C
)
≤ exp(−C1γ

2C2
0C).
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Notice that we may rewrite Mi as

Mi = sup

{
|ε>Bi

w(i)|
n
1/4
i ‖D(i)w(i)‖1/21 ‖w(i)‖1/22

: w(i) ∈ Rni , (1(i))>w(i) = 0

}
,

and therefore

P
(

sup
w(i)∈Rni , (1(i))>w(i)=0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γC0

√
Cn

1/4
i

)
≤ exp(−C1γ

2C2
0C).

Using the union bound,

P

 sup
w(i)∈Rni , (1(i))>w(i)=0

i=0,...,s0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γC0

√
Cn

1/4
i

 ≤ (s0+1) exp(−C1γ
2C2

0C).

Define the constants cR = max{C0

√
C, 1} and CR = max{C1/2, 1}. This ensures that we have

2CRγ
2c2R
√
s0 ≥ log(s0 + 1) for any γ > 1 and any s0, thus

P

 sup
w(i)∈Rni , (1(i))>w(i)=0

i=0,...,s0

|ε>Bi
w(i)|

‖D(i)w(i)‖1/21 ‖w(i)‖1/22

> γcR(nis0)1/4

 ≤ exp(−CRγ2c2R
√
s0).

The proof is completed by noting the following: if w ∈ R⊥, then (1(i))>wBi
= 0 for i = 0, . . . , s0,

and so on the event in consideration in the last display,

|ε>w| ≤
s0∑
i=0

|ε>Bi
wBi | ≤ γcRs

1/4
0

s0∑
i=0

n
1/4
i ‖D

(i)wBi‖
1/2
1 ‖wBi‖

1/2
2

≤ γcRs1/40

(
s0∑
i=0

‖D(i)wBi
‖1

)1/2( s0∑
i=0

n
1/2
i ‖wBi

‖2

)1/2

= γcRs
1/4
0 ‖D−S0

w‖1/21

(
s0∑
i=0

n
1/2
i ‖wBi

‖2

)1/2

≤ γcRs1/40 ‖D−S0
w‖1/21

(
s0∑
i=0

‖wBi
‖22

)1/4( s0∑
i=0

ni

)1/4

= γcRs
1/4
0 ‖D−S0

w‖1/21 ‖w‖
1/2
2 n1/4,

by two successive uses of Cauchy-Schwartz.

A.3 Proof of Theorem 2

Let θ̂ denote the fused lasso estimate in (3), and θ̃ ∈ Rn denote an arbitrary vector. By subgradient
optimality, we know that y − θ̂ = λg for a subgradient g ∈ Rn of the function x 7→ ‖Dx‖1 evaluated
at x = θ̂. Thus,

(y − θ̂)>θ̂ = λ‖Dθ̂‖1.
Furthermore,

(y − θ̂)>θ̃ ≤ λ‖Dθ̃‖1.
Subtracting the second to last equation from the last gives

(y − θ̂)>(θ̃ − θ̂) ≤ λ
(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
,

or
(θ0 − θ̂)>(θ̃ − θ̂) ≤ ε>(θ̃ − θ̂) + λ

(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
.

9



Using the polarization identity 2a>b = ‖a‖22 + ‖b‖22 − ‖a− b‖22 gives

‖θ̂ − θ0‖22 + ‖θ̃ − θ̂‖22 − ‖θ0 − θ̃‖22 ≤ 2ε>(θ̃ − θ̂) + 2λ
(
‖Dθ̃‖1 − ‖Dθ̂‖1

)
.

As this holds for any θ̃, we can take θ̃ = θ0(s) in particular, and rearrange, to find that

‖θ̂− θ0‖22 + ‖θ̂− θ0(s)‖22 ≤ ‖θ0(s)− θ0‖22 + 2ε>(θ0(s)− θ̂) + 2λ
(
‖Dθ0(s)‖1−‖Dθ̂‖1

)
. (A.31)

The right-hand side above can be handled just as in the proof of Theorem 1. Dropping ‖θ0(s)− θ̂‖22
from the left-hand side above proves the first display (17) in the theorem.

To prove the second display (18) in the theorem, observe that on E, ‖θ̂ − θ0‖22 ≥ ‖θ0(s)− θ0‖22 by
construction of θ0(s); thus from (A.31), we have

‖θ̂ − θ0(s)‖22 ≤ 2ε>(θ0(s)− θ̂) + 2λ
(
‖Dθ0(s)‖1 − ‖Dθ̂‖1

)
.

and the right-hand side here can be again handled as in the proof of Theorem 1.

A.4 Proofs of Theorem 3 and (21)

Proof of Theorem 3. For each i = 1, . . . , n, consider the univariate negative log-likelihood function
g defined by

gi(θi) = −yiθi + Λ(θi).

This is a strictly convex, twice continuously differentiable function, due to our assumptions on the
cumulant generating function Λ. Therefore, the second derivative of g satisfies

g′′i (θi) = Λ′′(θi) ≥ m,
i.e., its has a (strictly positive) minimum on the compact interval [l, u], which we denote as m > 0.
Now define f(θ) =

∑n
i=1 g(θi) as the negative log-likelihood loss over all n samples. The above

display implies that

f(θ)− f(θ0)−∇f(θ0)>(θ − θ0) ≥ m

2
‖θ − θ0‖22, for θi, θ0,i ∈ [`, u], i = 1, . . . , n. (A.32)

Returning to our estimate θ̂ in (20), by comparing the objectives at θ̂ and at θ0, we have

f(θ̂) + λ‖Dθ̂‖1 ≤ f(θ0) + λ‖Dθ0‖1.
Rearranging the terms in the above display and using (A.32), we have

m

2
‖θ̂ − θ0‖22 ≤ −∇f(θ0)>(θ̂ − θ0) + λ

(
‖Dθ0‖1 − ‖Dθ̂‖1

)
. (A.33)

By assumption, the components of the random vector −∇f(θ0), namely
−∇if(θ0) = yi − Λ′(θ0,i) = yi − E(yi), i = 1, . . . , n,

follow a sub-Gaussian distribution. Thus the right-hand side in (A.33) can be analyzed exactly as in
the proof of Theorem 1, which leads to the desired result.

Proof of (21). From (A.33), observe

m

2M
‖θ̂ − θ0‖22 ≤

−∇f(θ0)

M

>
(θ̂ − θ0) +

λ

M

(
‖Dθ0‖1 − ‖Dθ̂‖1

)
, (A.34)

where M > 1 is a parameter free to vary, that we will specify below. Define an event

E = {y : ‖∇f(θ0)‖∞ ≤M} =

n⋂
i=1

{yi : |yi − µ(θ0,i)| ≤M},

On E, the random vector −∇f(θ0)/M has sub-Gaussian components (since it is bounded), and the
right-hand side in (A.34) can be analyzed as in the proof of Theorem 1. The final error bound will be
the usual error bound (i.e., that from Theorem 1) multiplied by a factor of M .

Now we bound the probability of E. For W ∼ Pois(µ), by Poisson concentration results (Pollard,
2015),

P(|W − µ| > x) ≤ 2 exp

(
− x2

2µ
ψ

(
x

µ

))
, for x > 0, where ψ(x) =

(1 + x) log(1 + x)− x
x2/2

.
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Observe for any x ≥ 1,

x2

2µ
ψ

(
x

µ

)
≥ x2

2µ

1

1 + x/(3µ)
≥ 1/2

µ+ 1/3
x.

Setting M = δ log n for a constant δ > 0 to be determined, and using the last two displays, as well
as the bound µ(θ0,i) = eθ0,i ≤ eu, i = 1, . . . , n, yields

P(Ec) ≤ n exp

(
− 1/2

eu + 1/3
δ log n

)
= exp

((
1− 1/2

eu + 1/3
δ

)
log n

)
.

Now we simply need to choose δ large enough so that the right-hand side above equals 1/n, i.e., we
choose δ = 4(eu + 1/3), and this completes the proof.

A.5 Proof of Theorem 4

Fix any ε > 0. By assumption, we know that there is a constant C > 0 and an integer N1 > 0 such
that

P
(
‖θ̃ − θ0‖2n >

C

4
Rn

)
≤ ε,

for all n ≥ N1. We also know that there is an integer N2 > 0 such that 2CnRn/H
2
n ≤Wn for all

n ≥ N2. Let N = max{N1, N2}, take n ≥ N , and let rn = bCnRn/H2
nc.

Suppose that d(S(θ̃) |S0) > rn. Then, by definition, there exists a changepoint ti ∈ S0 such that no
changepoints of θ̃ are within rn of ti, which means that θ̃j is constant over j ∈ {ti− rn + 1, . . . , ti +
rn}. Denote

z = θ̃ti−rn+1 = . . . = θ̃ti = θ̃ti+1 = . . . = θ̃ti+rn .

We then form the lower bound

1

n

ti+rn∑
j=ti−rn+1

(
θ̃j − θ0,j

)2
=
rn
n

(
z − θ0,ti

)2
+
rn
n

(
z − θ0,ti+1

)2 ≥ rnH
2
n

2n
>
C

4
Rn,

where the first inequality holds because (x− a)2 + (x− b)2 ≥ (a− b)2/2 for all x (the quadratic in
x here is minimized at x = (a+ b)/2), and the second because rn = bCnRn/H2

nc. Therefore, we
see that d(S(θ̃) |S0) > rn implies

‖θ̃ − θ0‖2n ≥
1

n

ti+rn∑
j=ti−rn+1

(
θ̃j − θ0,j

)2
>
C

4
Rn,

which implies

P
(
d
(
S(θ̃) |S0

)
> rn

)
≤ P

(
‖θ̃ − θ0‖2n >

C

4
Rn

)
≤ ε,

for all n ≥ N , completing the proof.

A.6 Approximate changepoint recovery result, using post-processing

Here we state and prove a general result on approximate changepoint recovery using post-processing.
It is a precursor to the result in Theorem 5 and will be used to prove the latter.
Theorem A.2. Let θ̃ ∈ Rn be such that ‖θ̃ − θ0‖2n = OP(Rn). Consider the following procedure:
we evaluate the filter in (24) with bandwidth bn at all locations i = bn, . . . , n− bn, and only keep the
locations whose absolute filter value is greater than or equal to a threshold τn. Denote the resulting
filtered set by

SA(θ̃) =
{
i ∈ {bn, . . . , n− bn} : |Fi(θ̃)| ≥ τn

}
.

For bandwidth and threshold values satisfying bn = ω(nRn/H
2
n), 2bn ≤ Wn, and τn/Hn → ρ ∈

(0, 1) as n→∞, we have

P
(
dH
(
SA(θ̃), S0

)
≤ bn

)
→ 1 as n→∞.
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Proof. The proof is not complicated conceptually, but requires some careful bookkeeping. Also, we
make use of a few key lemmas whose details will be given later. Fix ε > 0. Let C > 0 and N1 > 0
be an integer such that for all n ≥ N1,

P
(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
.

Set ε = min{ρ, 1−ρ}/2. As bn = ω(nRn/H
2
n), there is an integerN2 > 0 such that for all n ≥ N2,

2CnRn
bn

≤ (0.99εHn)2.

As τn/Hn → ρ ∈ (0, 1), there is an integer N3 > 0 such that for all n ≥ N3,

(ρ− ε)Hn ≤ τn ≤ (ρ+ ε)Hn.

Set N = max{N1, N2, N3}, and take n ≥ N . Note that ε ≤ ρ− ε and ρ+ ε ≤ 1− ε by construction,
and thus by the last two displays,√

2CnRn
bn

< τn < Hn −
√

2CnRn
bn

. (A.35)

Now observe

P
(
dH
(
SA(θ̃), S0

)
> bn

)
≤ P

(
d
(
SA(θ̃) |S0

)
> bn

)
+ P

(
d
(
S0 |SA(θ̃)

)
> bn

)
. (A.36)

We focus on bounding each term on the right-hand side above separately. For the first term on the
right-hand side in (A.36), observe that if Fti(θ̃) ≥ τn for all ti ∈ S0, then d(SA(θ̃) |S0) ≤ bn. By
the contrapositive,

P
(
d
(
SA(θ̃) |S0

)
> bn

)
≤ P

(
|Fti(θ̃)| < τn for some ti ∈ S0

)
≤ P

(
|Fti(θ̃)| < Hn −

√
2CnRn
bn

for some ti ∈ S0

)
, (A.37)

where in the second line we used the upper bound on τn in (A.35). Suppose that ‖θ̃ − θ0‖2n ≤ CRn;
then, for ti ∈ S0, Lemma A.3 tells us how small |Fti(θ̃)| can be made with this error bound in place.
Specifically, define

a = (−1/bn, . . . ,−1/bn︸ ︷︷ ︸
bn times

, 1/bn, . . . , 1/bn︸ ︷︷ ︸
bn times

) and c = (θ0,ti−bn+1, . . . , θ0,ti+bn),

and also r =
√
CnRn. Then Lemma A.3 implies the following: if ‖θ̃ − θ0‖2n ≤ CRn, then

|Fti(θ̃)| ≥ |a>c| − r‖a‖2 ≥ |θ0,ti+1 − θ0,ti | −
√

2CnRn
bn

≥ Hn −
√

2CnRn
bn

.

Therefore, continuing on from (A.37),

P
(
d
(
SA(θ̃) |S0

)
> bn

)
≤ P

(
|Fti(θ̃)| < Hn −

√
2CnRn
bn

for some ti ∈ S0

)
≤ P

(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
.

It suffices to consider the second term in (A.36), and show that this is also bounded by ε/2. Note that

P
(
d
(
S0 |SA(θ̃)

)
> bn

)
≤ P

(
|Fi(θ̃)| ≥ τn at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
≤ P

(
|Fi(θ̃)| >

√
2CnRn
bn

at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
.

(A.38)
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In the second inequality we used the lower bound on τn in (A.35). Similar to the previous argument,
suppose that ‖θ̃ − θ0‖2n ≤ CRn; for any location i in consideration in (A.38), Lemma A.2 tells us
how large |Fi(θ̃)| can be made with this error bound in place. Defining

a = (−1/bn, . . . ,−1/bn︸ ︷︷ ︸
bn times

, 1/bn, . . . , 1/bn︸ ︷︷ ︸
bn times

) and c = (θ0,i−bn+1, . . . , θ0,i+bn),

and r =
√
CnRn, as before, the lemma says the following: if ‖θ̃ − θ0‖2n ≤ CRn, then

|Fi(θ̃)| ≤ |a>c|+ r‖a‖2 =

√
2CnRn
bn

.

Hence, continuing on from (A.38),

P
(
d
(
S0 |SA(θ̃)

)
> bn

)
≤ P

(
|Fi(θ̃)| >

√
2CnRn
bn

at some i such that θ0,i−bn+1 = . . . = θ0,i+bn

)
≤ P

(
‖θ̃ − θ0‖2n > CRn

)
≤ ε

2
,

completing the proof.

A.7 Lemmas A.2 and A.3

The proof of Theorem A.2 above relied on two lemmas, that we state below. Their proofs are based
on simple arguments in convex analysis.
Lemma A.2. Given a, c ∈ Rm, r ≥ 0, the optimal value of the (nonconvex) optimization problem

max
x∈Rm

|a>x| such that ‖x− c‖2 ≤ r (A.39)

is |a>c|+ r‖a‖2.

Proof. We first consider the convex optimization problem

min
x∈Rm

a>x such that ‖x− c‖2 ≤ r, (A.40)

whose Lagrangian may be written as, for a dual variable λ ≥ 0,

L(x, λ) = a>x+ λ(‖x− c‖22 − r2).

The stationarity condition is a+λ(x− c) = 0, thus x = c−a/λ. By primal feasibility, ‖x− c‖2 ≤ r,
we see that we can take λ = ‖a‖2/r, which gives a solution x = c− ra/‖a‖2. The optimal value in
(A.40) is therefore a>x = a>c− r‖a‖2. By the same logic, the optimal value of the convex problem

max
x∈Rm

a>x such that ‖x− c‖2 ≤ r (A.41)

is a>c+ r‖a‖2. Now we can read off the optimal value of (A.39) from those of (A.40), (A.41): its
optimal value is

max
{
−
(
a>c− r‖a‖2

)
, a>c+ r‖a‖2

}
= |a>c|+ r‖a‖2,

completing the proof.

Lemma A.3. Given a, c ∈ Rm, r ≥ 0 such that |a>c|−r‖a‖2 ≥ 0, the optimal value of the (convex)
optimization problem

min
x∈Rn

|a>x| such that ‖x− c‖2 ≤ r (A.42)

is |a>c| − r‖a‖2.

Proof. The proof is nearly immediate from the proof of Lemma A.2, above. Notice that the optimal
value of (A.42) is lower bounded by that of (A.40), which we already know is a>c − r‖a‖22. But
when the latter is nonnegative, this is also the optimal value of (A.42). Repeating the argument with
−a in place of a gives the result as stated in the lemma.
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A.8 Proof of Theorem 5

We will show that {
dH
(
SA(θ̃), S0

)
≤ bn

}
⊆
{
dH
(
SF (θ̃), S0

)
≤ 2bn

}
, (A.43)

Since the left-hand side occurs with probability tending to 1, by Theorem A.2, so will the right-hand
side. To show the desired containment, recall that, by the definition of Hausdorff distance,{

dH
(
SA(θ̃), S0

)
≤ bn

}
=
{
d
(
S0 |SA(θ̃)

)
≤ bn

}
∩
{
d
(
SA(θ̃) |S0

)
≤ bn

}
. (A.44)

Inspecting the first term on the right-hand side of (A.44), we observe{
d
(
S0 |SA(θ̃)

)
≤ bn

}
⊆
{
d
(
S0 |SA(θ̃)

)
≤ 2bn

}
⊆
{
d
(
S0 |SF (θ̃)

)
≤ 2bn

}
, (A.45)

where the last containment holds as SF (θ̃) ⊆ SA(θ̃). Inspecting the second term on the right-hand
side of (A.44), we apply Lemma A.4 which states that for each j ∈ {bn, . . . , n− bn}, there exists
i ∈ IF (θ̃) such that |i− j| ≤ bn and |Fi(θ̃)| ≥ |Fj(θ̃)|. Using this, we see{

d
(
SA(θ̃) |S0

)
≤ bn

}
=
{

for all ` ∈ S0, there exists j ∈ SA(θ̃) such that |`− j| ≤ bn
}

⊆
{

for all ` ∈ S0, there exists i ∈ IF (θ̃) such that |`− i| ≤ 2bn

}
=
{
d
(
SF (θ̃) |S0

)
≤ 2bn

}
. (A.46)

Above, we have used Lemma A.4 for the containment in the second line. Combining (A.44), (A.45),
and (A.46), we have established (A.43), as desired.

A.9 Lemma A.4

The proof of Theorem 5 relied on the following lemma.
Lemma A.4. Let IF (θ̃) be the candidate set defined in Theorem 5. For each j ∈ {bn, . . . , n− bn}
where |Fj(θ̃)| > 0, there exists i ∈ IF (θ̃) such that |i− j| ≤ bn and |Fi(θ̃)| ≥ |Fj(θ̃)|.

Proof. To facilitate the proof, we define the concept of a local maximum among the absolute filter
values: a location i is a local maximum if its absolute filter value |Fi(θ̃)| is be greater than or equal
to the absolute values at neighboring locations, and strictly greater than at least one of these values
(where the boundary points are treated as having just one neighboring location). Specifically, a local
maximum i must satisfy one of the following conditions

|Fi−1(θ̃)| < |Fi(θ̃)|, |Fi+1(θ̃)| ≤ |Fi(θ̃)|, if i ∈ {bn + 1, . . . , n− bn − 1}, (A.47)

|Fi−1(θ̃)| ≤ |Fi(θ̃)|, |Fi+1(θ̃)| < |Fi(θ̃)|, if i ∈ {bn + 1, . . . , n− bn − 1}, (A.48)

|Fi+1(θ̃)| < |Fi(θ̃)| if i = bn, (A.49)

|Fi−1(θ̃)| < |Fi(θ̃)| if i = n− bn. (A.50)

Let L(θ̃) denote the set of local maximums derived from the filter with bandwidth bn, i.e., the set of
locations i satisfying one of the four conditions (A.47)–(A.50).

We first establish that L(θ̃) ⊆ IF (θ̃). Fix i ∈ L(θ̃). The boundary cases, i = bn or i = n− bn, are
handled directly by the definition of IF (θ̃). Hence, we may assume that i ∈ {bn+1, . . . , n− bn−1},
and without a loss of generality,

|Fi(θ̃)| > |Fi−1(θ̃)| and |Fi(θ̃)| ≥ |Fi+1(θ̃)|,
as well as Fi(θ̃) > 0. This means that

Fi(θ̃) > |Fi−1(θ̃)| and Fi(θ̃) ≥ |Fi+1(θ̃)|,
which of course implies

Fi(θ̃) > Fi−1(θ̃) and Fi(θ̃) ≥ Fi+1(θ̃).
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Applying the definition of the filter in (24) gives( i+bn∑
j=i+1

θ̃j −
i∑

j=i−bn+1

θ̃j

)
−
( i+bn−1∑

j=i

θ̃j −
i−1∑

j=i−bn

θ̃j

)
> 0

( i+bn∑
j=i+1

θ̃j −
i∑

j=i−bn+1

θ̃j

)
−
( i+bn+1∑

j=i+2

θ̃j −
i+1∑

j=i−bn+2

θ̃j

)
≥ 0,

or, after simplification,

θ̃i+bn − 2θ̃i + θ̃i−bn > 0 and − θ̃i+bn+1 + 2θ̃i+1 − θ̃i−bn+1 ≥ 0.

Adding the above two equations together, we get

−
(
θ̃i+bn+1 − θ̃i+bn

)
+ 2
(
θ̃i+1 − θ̃i

)
−
(
θ̃i−bn+1 − θ̃i−bn

)
> 0,

which implies at least one of the three bracketed pairs of terms must be nonzero, i.e., a changepoint
must occur at one of the locations i, i+ bn, or i− bn. The proves that L(θ̃) ⊆ IF (θ̃).

Now we show the intended statement. Let j ∈ {bn, . . . , n − bn}, and i ∈ L(θ̃) be in the direction
of ascent from j with respect to F (θ̃), where j ≤ i, without a loss of generality (for the case i < j,
replace `+ bn below by `− bn). That is, the location i is a local maximum where

|Fj(θ̃)| ≤ |Fj+1(θ̃)| ≤ . . . ≤ |Fi−1(θ̃)| ≤ |Fi(θ̃)|. (A.51)

If |i− j| ≤ bn, then we have the desired result, due to (A.51). If |i− j| > bn, then there must be at
least one location ` ∈ S(θ̃) such that |`− j| ≤ bn. (To see this, note that if θ̃j−bn+1 = . . . = θ̃j+bn ,
then Fj(θ̃) = 0.) Thus, at least one of `, `+ bn lies in between j and i, and then again (A.51) implies
the result, completing the proof.

A.10 Comparison of Corollaries 4 and 5 to other results in the literature

Below are some remarks on the results in Corollaries 4 and 5.
Remark A.1 (Recovery under weak sparsity, comparison to BS). The weak sparsity result in (25)
of Corollary 4 considers a challenging setting in which the number of changepoints s0 in θ0 could be
growing quickly with n, and we only have control on Cn = ‖Dθ0‖1. We draw a comparison here
to known results on binary segmentation (BS). The result in (25) on the (filtered) fused lasso and
Theorem 3.1 in Fryzlewicz (2014) on the BS estimator θ̂BS, each under the appropriate conditions on
Wn, Hn, state that

dH
(
SF (θ̂), S0

)
≤ 2n1/3C

2/3
n log n

H2
n

vs. dH
(
S(θ̂BS), S0

)
≤ cn log n

H2
n

respectively, (A.52)

where c > 0 is a constant, and both bounds hold with probability approaching 1. The result on SF (θ̂)
is obtained by choosing νn =

√
log n and then bn = bn1/3C2/3

n log n/H2
nc in (25). Examining

(A.52), we see that, when Cn scales more slowly than n, Corollary 4 provides the stronger result: the
term n1/3C

2/3
n will be smaller than n, and hence the bound on dH(SF (θ̂), S0) will be sharper than

that on dH(S(θ̂BS), S0).

But we must also examine the specific restrictions that each result in (A.52) places on s0,Wn, Hn.
Consider the simplification Wn = Θ(n/s0), corresponding to a case in which the changepoints in
θ0 are spaced evenly apart. Corollary 4, starting with the condition n1/3C2/3

n log n/H2
n ≤Wn/2,

plugging in the relationship Cn ≥ s0Hn, and rearranging to derive a lower bound on the minimum
signal gap, requires Hn = Ω(s

5/4
0 n−1/2 log3/4 n). If s0 = Θ(n2/5), then we see that the minimum

signal gap requirement becomes Hn = Ω(log3/4 n), which is growing with n and is thus too strin-
gent to be interesting (Sharpnack et al. (2012) showed simple thresholding of pairwise differences
achieves perfect recovery when Hn = ω(

√
log n)). Hence, to accommodate signals for which Hn

remains constant or even shrinks with n, we must restrict the number of jumps in θ0 according to
s0 = O(n2/5−δ), for any fixed δ > 0. Meanwhile, inspection of Assumption 3.2 in Fryzlewicz (2014)
reveals that his Theorem 3.1 requires s0 = O(n1/4−δ), for any δ > 0, in order to handle signals
such that Hn remains constant or shrinks with n. In short, the (effectively) allowable range for s0 is
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larger for Corollary 4 than for Theorem 3.1 in Fryzlewicz (2014). Even when we look within their
common range, Corollary 4 places weaker conditions on Hn. As an example, consider s0 = Θ(n1/6)
and Wn = Θ(n5/6). The fused lasso result in (A.52) requires Hn = Ω(n−7/24 log4/3 n), and the
BS result in (A.52) requires Hn = Ω(n−1/6+δ), for any δ > 0. Finally, to reiterate, the fused lasso
result in (A.52) gives a better Hausdorff recovery bound when Cn is small compared to n; at the
extreme end, this is better by a full factor of n2/3, when Cn = O(1).

While the post-processed fused lasso looks favorable compared to BS, based on its approximate
changepoint recovery properties in the weak sparsity setting, we must be clear that the analyses for
other methods—wild binary segmentation (WBS), the simultaneous multiscale changepoint estimator
(SMUCE), and tail-greedy unbiased Haar (TGUH) wavelets—are still much stronger in this setting.
Such methods have Hausdorff recovery bounds that are only possible for the post-processed fused
lasso (at least, using our current analysis technique) when we assume strong sparsity. We discuss this
next.

Remark A.2 (Recovery under strong sparsity, comparison to other methods). When s0 = O(1)
and Wn = Θ(n), the result in (26) in Corollary 4 shows that the post-processed fused lasso estimator
delivers a Hausdorff bound of

dH
(
SF (θ̂), S0

)
≤ 2 log2 n

H2
n

, (A.53)

on the set SF (θ̂) of filtered changepoints, with probability approaching 1. This is obtained by choos-
ing (say) νn =

√
log n/ log log n and bn = blog2 n/H2

nc ≤Wn/2 in the corollary. The effective
restriction on the minimum signal gap is thus Hn = Ω(log n/

√
n), which is quite reasonable, as

Hn = ω(1/
√
n) is needed for any method to detect a changepoint with probability tending to 1.

Several other methods—the Potts estimator (Boysen et al., 2009), binary segmentation (BS) and wild
binary segmentation (WBS) (Fryzlewicz, 2014), the simultaneous multiscale changepoint estimator
(SMUCE) (Frick et al., 2014), and tail-greedy unbiased Haar wavelets (TGUH) (Fryzlewicz, 2016)—
all admit Hausdorff recovery bounds that essentially match (A.53), under similarly weak restrictions
on Hn. But, it should be noted that the latter three methods—WBS, SMUCE, and TGUH—continue
to enjoy these same sharp Hausdorff bounds outside of the strong sparsity setting, i.e., their analyses
do not require that s0 = O(1) and Wn = Θ(n), and instead just place weak restrictions on the
allowed combinations of Wn, Hn (e.g., the analysis of WBS in Fryzlewicz (2014) only requires
WnH

2
n ≥ log n). These analyses (and those for all previously described estimators) are more refined

than that given in Corollary 4: they are based on specific properties of the estimator in question. The
corollary, on the other hand, follows from Theorem A.2, which uses a completely generic analysis
that only assumes knowledge of the estimation error rate.

Remark A.3 (Recovery in the Poisson model). Corollary 5 gives an approximate screening result
for the post-processed fused lasso in the Poisson model, similar to the result in the strong sparsity,
sub-Gaussian error case discussed above. As with all of our other approximate recovery results, this
is established via the estimation error guarantees for the Poisson fused lasso estimator. Analyzing
changepoint detection properties directly in the Poisson model seems like it could be a challenging
task, and we are not aware of many results in the literature that do so. (Likewise for the binomial
model; we did not state formal recovery results for this model but they follow from the estimation
error bounds exactly as in the Poisson case, and changepoint detection analysis in this model seems
difficult and we are not aware of extensive literature in this setting.)

A.11 Choosing a threshold level in the post-processing procedure

We describe a data-driven procedure to determine the threshold level τn of the filter in (24), used to
derive a post-processed set of changepoints SF (θ̃) from an estimate θ̃, as described in Theorem 5.

Let A(·) denote a fitting algorithm that, applied to data y, outputs an estimate θ̃ of θ0 (e.g., A(y)
could be the minimizer in (3), so that its output is the fused lasso estimate). In Algorithm 1 below,
we present a heuristic but intuitive method for choosing the threshold level τn, based on (entrywise)
permutations of the residual vector y − θ̃. Aside from the choice of fitting algorithm A(·), we must
specify a number of permutations B to be explored, the bandwidth bn for the filter in (24), and a
quantile level q ∈ (0, 1). The intuition behind Algorithm 1 is to set τn large enough to suppress “false
positive” changepoints 100 · q% of the time (according to the permutations). This is revisited later, in
the discussion of the simulation results.
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Some example settings: we may takeA(·) to be the fused lasso estimator, where the tuning parameter
λ is selected to minimize 5-fold cross-validation (CV) error, B = 100, and q = 0.95. The choice of
bandwidth bn is more subtle, and unfortunately, there is no one choice that works for all problems.1
But, the theory in the last section provides some general guidance: e.g., for problems in which we
believe there are a small number of changepoints (i.e., s0 = O(1)) of reasonably large magnitude (i.e.,
Hn = Ω(1)), Theorem 5 instructs us to choose a bandwidth that grows faster than log n(log log n),
so, choosing bn to scale as log2 n would suffice. We will use this scaling, and the above suggestions
for A(·), B, and q in all coming experiments.

Algorithm 1 Permutation-based approach for choosing τn
0. Input a fitting algorithm A(·), number of permutations B, bandwidth bn, and quantile level
q ∈ (0, 1).

1. Compute θ̃ = A(y). Let S̃ = S(θ̃) denote the changepoints, and r = y − θ̃ the residuals.
2. For each b = 1, . . . , B, repeat the following steps:

(a) Let r(b) be a random permutation of r, and define auxiliary data y(b) = θ̃ + r(b).
(b) Rerun the fitting algorithm on the auxiliary data to yield θ̃(b) = A(y(b)).
(c) Apply the filter in (24) to θ̃(b) (with the specified bandwidth bn), and record the largest

magnitude τ̂ (b) of the filter values at locations greater than bn away from S̃. Formally,

τ̂ (b) = max
i∈{bn,...,n−bn}:
d(S̃|{i})>bn

∣∣Fi(θ̃(b))∣∣.
3. Output τ̂n, the level q quantile of the collection τ̂ (b), b = 1, . . . , B.

After running Algorithm 1 to compute τ̂n, the idea is to proceed with the filter SF (θ̃), applied at the
level τn = τ̂n, to the estimate θ̃ computed on the original data y at hand.

A.12 Numerical simulations to verify some of our theoretical results

The code for the the results in this section can be found at https://github.com/linnylin92/
fused_lasso. In our experiments, we use the following simulation setup. For a given n, the mean
parameter θ0 ∈ Rn is defined to have s0 = 5 equally-sized segments, with levels 0, 2, 4, 1, 4, from
left to right. Data y ∈ Rn is generated around θ0 using i.i.d. N(0, 4) noise. Lastly, the sample size n
is varied between 100 and 10, 000, equally-spaced on a log scale. Figure A.1 displays example data
sets with n = 774 and n = 10, 000.
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Figure A.1: An example from our simulation setup for n = 774 (left) and n = 10, 000 (right), where in each
panel, the mean θ0 is plotted in red, and the data points in gray.

For each sample size in consideration, we generated 50 example data sets from the setup described
above, and on each data set, computed the full solution path of the fused lasso using the R package

1We note that in some situations, problem-specific intuition can yield a reasonable choice of bandwidth
bn. Also, it should be possible to extend Algorithm 1 to choose both τn and bn, but we do not pursue this, for
simplicity.
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genlasso. We applied 5-fold CV to determine λ, as implemented in genlasso: each consecutive,
non-overlapping block of 5 points were grouped into 5 different folds. When minimizing the out-
of-sample test mean squared error, the average of the immediate-left and immediate-right estimates
were used as a proxy for the estimate at a particular location.

Estimation error rate for fused lasso. Figure A.2 displays the selected value of λ, as well as the
estimation error ‖θ̂ − θ0‖2n, averaged over the 50 trials, as functions of n. The results support the
theoretical conclusion in Theorem 1, as the achieved estimation error rate scales as log n/n (perhaps
even as log n(log log n)/n, although it would be hard to tell the difference between the two). Also,
CV appears to produce a choice of λ that scales as

√
n, agreeing with the scaling of λ prescribed by

the theory. The screening distance d(S(θ̂) |S0) was at most 5 across the entire simulation, regardless
of n.
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Figure A.2: The left panel shows the median values of λ chosen to minimize 5-fold CV error, aggregated over
repetitions in our simulation setup, as the sample size n varies. This scales approximately as

√
n, which is

drawn as a red curve (with a best-fitting constant), supporting the choice prescribed by Theorem 1. The middle
panel shows the corresponding estimation error ‖θ̂ − θ0‖2n, again aggregated over repetitions, as n varies. The
scaling appears to be about log /n (red curve). The right panel plots the median values of n‖θ̂ − θ0‖2n against
logn; this looks close to linear (red line), which provides empirical support to the claim that the fused lasso
error rate is logn/n (or perhaps even logn(log log n)/n, it would be hard to distinguish these two), which is
roughly in agreement with Theorem 1. In each panel, vertical bars denote ±1 standard deviations.

Evaluation of the filter. We demonstrate that the filter in (24), with bn = b0.25 log2 nc, can be
effective at reducing the Hausdorff distance between estimated and true changepoint sets. We first
illustrate the use of the filter in a single data example with n = 774, in Figure A.3. As we can see,
the fused lasso originally places a spurious jump around location 250, but this jump is eliminated
when we apply the filter, provided that we set the threshold to be (say) τn = 0.5.

Figure A.4 now reports the results from applying the filter in problems of sizes between n = 100 and
n = 10, 000, using 50 trials for each n. We consider three different sets of changepoint estimates:
S(θ̂), the original changepoints from fused lasso estimate θ̂, tuning λ via 5-fold CV; SF (θ̂), the
changepoints after applying the reduced filter as described in Theorem 5 to θ̂, with τn chosen by
Algorithm 1; and SO(θ̂), an oracle set of changepoints given by trying a wide range of τn values and
choosing the value that minimizes the Hausdorff distance after filtering (this assumes knowledge
of S0, and is infeasible in practice). These are labeled as “original”, “data-driven”, and “oracle”
in the figure, respectively. As we can see from the left and middle panels, the Hausdorff distance
achieved by the original changepoint set grows nearly linearly with n, but after applying the filter,
the Hausdorff distance becomes very small, provided that n is larger than 1000 or so. Empirically,
the Hausdorff distance associated with the filtered set appears to grow very slowly with n, nearly
constant (slower than the the log n(log log n) rate guaranteed by Theorem 5). The right panel shows
that our data-driven choices of τn are not substantially different from those made by the oracle.
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Figure A.3: In the top plot, an example with n = 774 is shown from our simulation setup, where the data y is
drawn in gray, the mean θ0 in red, and the fused lasso estimate θ̂ in blue. In the bottom plot, the filter values
Fi(θ̂), i = 1, . . . , n are drawn in blue, and the threshold τn is drawn as a horizontal green line. Changepoints
before and after filtering are marked by short black lines along the bottom and top x-axes, respectively.
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Figure A.4: In the left panel, the Hausdorff distances between original changepoints, filtered changepoints
with a data-driven threshold, and filtered changepoints with an oracle threshold, are plotted (in black, blue, and
red, respectively). The results are aggregated across 50 trial runs for each sample size n; the solid dots display
the median values, and the vertical segments display the interquartile ranges (25th to 75th percentiles). The
middle panel zooms in on the Hausdorff distances for the data-driven and oracle filtering procedures, and the
right panel displays the choices of τn for these procedures.
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