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Abstract

It has been a long-standing problem to efficiently learn a halfspace using as few
labels as possible in the presence of noise. In this work, we propose an efficient
Perceptron-based algorithm for actively learning homogeneous halfspaces under the
uniform distribution over the unit sphere. Under the bounded noise condition [49],
where each label is flipped with probability at most < % our algorithm achieves a
near-optimal label complexity of O (ﬁ In %) 2 in time O (ﬁ) . Under
the adversarial noise condition [0, 45, 42], where at most a Q(e) fraction of labels
can be flipped, our algorithm achieves a near-optimal label complexity of O (dIn 1)

. . s 2 . . .
in time O (%) Furthermore, we show that our active learning algorithm can be

converted to an efficient passive learning algorithm that has near-optimal sample
complexities with respect to € and d.

1 Introduction

We study the problem of designing efficient noise-tolerant algorithms for actively learning homoge-
neous halfspaces in the streaming setting. We are given access to a data distribution from which we
can draw unlabeled examples, and a noisy labeling oracle O that we can query for labels. The goal is
to find a computationally efficient algorithm to learn a halfspace that best classifies the data while
making as few queries to the labeling oracle as possible.

Active learning arises naturally in many machine learning applications where unlabeled examples are
abundant and cheap, but labeling requires human effort and is expensive. For those applications, one
natural question is whether we can learn an accurate classifier using as few labels as possible. Active
learning addresses this question by allowing the learning algorithm to sequentially select examples
to query for labels, and avoid requesting labels which are less informative, or can be inferred from
previously-observed examples.

There has been a large body of work on the theory of active learning, showing sharp distribution-
dependent label complexity bounds [21, 11, 34, 27, 35, 46, 60, 41]. However, most of these general
active learning algorithms rely on solving empirical risk minimization problems, which are computa-
tionally hard in the presence of noise [5].

On the other hand, existing computationally efficient algorithms for learning halfspaces [17, 29, 42,
45, 6,23, 7, 8] are not optimal in terms of label requirements. These algorithms have different degrees
of noise tolerance (e.g. adversarial noise [6], malicious noise [43], random classification noise [3],

*Work done while at UC San Diego. ~ ~
_ *Weuse O(f() := O(f(-) In f()), and Q(f(-)) := Q(f()/In f(-)). Wesay f(-) = O(g(-)) if f(-) =
O(g(-)) and f(-) = Q2 (9(-))
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bounded noise [49], etc), and run in time polynomial in % and d. Some of them naturally exploit the
utility of active learning [6, 7, 8], but they do not achieve the sharpest label complexity bounds in
contrast to those computationally-inefficient active learning algorithms [10, 9, 60].

Therefore, a natural question is: is there any active learning halfspace algorithm that is computationally
efficient, and has a minimum label requirement? This has been posed as an open problem in [50].
In the realizable setting, [26, 10, 9, 56] give efficient algorithms that have optimal label complexity
of O(d In %) under some distributional assumptions. However, the challenge still remains open in
the nonrealizable setting. It has been shown that learning halfspaces with agnostic noise even under
Gaussian unlabeled distribution is hard [44]. Nonetheless, we give an affirmative answer to this
question under two moderate noise settings: bounded noise and adversarial noise.

1.1 Our Results

We propose a Perceptron-based algorithm, ACTIVE-PERCEPTRON, for actively learning homoge-
neous halfspaces under the uniform distribution over the unit sphere. It works under two noise
settings: bounded noise and adversarial noise. Our work answers an open question by [26] on
whether Perceptron-based active learning algorithms can be modified to tolerate label noise.

In the n-bounded noise setting (also known as the Massart noise model [49]), the label of an example
r € R? is generated by sign(u - z) for some underlying halfspace u, and flipped with probabil-
ity n(z) < n < % Our algorithm runs in time 0 (#2)35), and requires O (ﬁ -In %)
labels. We show that this label complexity is nearly optimal by providing an almost matching

information-theoretic lower bound of 2 ((

# -In 1 ). Our time and label complexities substan-
—2n) €

tially improve over the state of the art result of [8], which runs in time O(do( a-2nT )%) and requires

O(d° T 1n 1) labels.

€
Our main theorem on learning under bounded noise is as follows:
Theorem 2 (Informal). Suppose the labeling oracle O satisfies the n-bounded noise condition with

respect to u, then for ACTIVE-PERCEPTRON, with probability at least 1 —§: (1) The output halfspace
v is such that Plsign(v - X) # sign(u - X)| < €; (2) The number of label queries to oracle O is at

most O (ﬁ -In %), (3) The number of unlabeled examples drawn is at most o} (W‘In)gﬁ) ; (4)

The algorithm runs in time O (ﬁ)

In addition, we show that our algorithm also works in a more challenging setting, the v-adversarial
noise setting [6, 42, 4513 In this setting, the examples still come iid from a distribution, but the
assumption on the labels is just that P[sign(u - X) # Y] < v for some halfspace u. Under this
assumption, the Bayes classifier may not be a halfspace. We show that our algorithm achieves an

. . . s g2 .
error of € while tolerating a noise level of v = 2 <1d€1> . It runs in time O (d—), and requires
n§+Inln ¢ €
only O (d - In 1) labels which is near-optimal. ACTIVE-PERCEPTRON has a label complexity bound
that matches the state of the art result of [39]*, while having a lower running time.
Our main theorem on learning under adversarial noise is as follows:

Theorem 3 (Informal). Suppose the labeling oracle O satisfies the v-adversarial noise condition

with respect to u, where v < @(ﬁ) Then for ACTIVE-PERCEPTRON, with probability at
n s nin <

least 1 —6: (1) The output halfspace v is such that P[sign(v- X) # sign(u- X)| < € (2) The number

of label queries to oracle O is at most O (d -In %) (3) The number of unlabeled examples drawn is

at most O (g) (4) The algorithm runs in time O (%)

3Note that the adversarial noise model is not the same as that in online learning [18], where each example
can be chosen adversarially.

“The label complexity bound is implicit in [39] by a refined analysis of the algorithm of [6] (See their Lemma
8 for details).



Table 1: A comparison of algorithms for active learning of halfspaces under the uniform distribution,
in the n-bounded noise model.

Algorithm Label Complexity Time Complexity

[10,9,60] O(7=%+s (1 2?7)2 Inl) superpoly(d, 1) 3
- . 7 o
Our Work O((1 I E) O (mz)

Table 2: A comparison of algorithms for active learning of halfspaces under the uniform distribution,
in the v-adversarial noise model.

Algorithm  Noise Tolerance Label Complexity Time Complexity
[60] v =Qe) O(dInt) superpoly(d, 1)
[39] v=2Q(e) O(dln ) poly(d, )

Our Work v = Q(j—omt) O(dIn 6) O (d?- )

Throughout the paper, ACTIVE-PERCEPTRON is shown to work if the unlabeled examples are drawn
uniformly from the unit sphere. The algorithm and analysis can be easily generalized to any spherical
symmetrical distributions, for example, isotropic Gaussian distributions. They can also be generalized
to distributions whose densities with respect to uniform distribution are bounded away from 0.

In addition, we show in Section 6 that ACTIVE-PERCEPTRON can be converted to a passive learning
algorithm, PASSIVE-PERCEPTRON, that has near optimal sample complexities with respect to € and
d under the two noise settings. We defer the discussion to the end of the paper.

2 Related Work

Active Learning. The recent decades have seen much success in both theory and practice of active
learning; see the excellent surveys by [54, 37, 25]. On the theory side, many label-efficient active
learning algorithms have been proposed and analyzed. An incomplete list includes [21, 11, 34, 27,
35, 46, 60, 41]. Most algorithms relies on solving empirical risk minimization problems, which are
computationally hard in the presence of noise [5].

Computational Hardness of Learning Halfspaces. Efficient learning of halfspaces is one of
the central problems in machine learning [22]. In the realizable case, it is well known that linear
programming will find a consistent hypothesis over data efficiently. In the nonrealizable setting,
however, the problem is much more challenging.

A series of papers have shown the hardness of learning halfspaces with agnostic noise [5, 30, 33, 44,
23]. The state of the art result [23] shows that under standard complexity-theoretic assumptions, there
exists a data distribution, such that the best hnear classifier has error o(1), but no polynomial time
algorithms can achieve an error at most % — dc for every ¢ > 0, even with improper learning. [44]
shows that under standard assumptions, even if the unlabeled distribution is Gaussian, any agnostic
halfspace learning algorithm must run in time (1)?("9) to achieve an excess error of €. These results
indicate that, to have nontrivial guarantees on learning halfspaces with noise in polynomial time, one

has to make additional assumptions on the data distribution over instances and labels.

Efficient Active Learning of Halfspaces. Despite considerable efforts, there are only a few halfs-
pace learning algorithms that are both computationally-efficient and label-efficient even under the
uniform distribution. In the realizable setting, [26, 10, 9] propose computationally efficient active
learning algorithms which have an optimal label complexity of O(d In %)

Since it is believed to be hard for learning halfspaces in the general agnostic setting, it is natural
to consider algorithms that work under more moderate noise conditions. Under the bounded noise

>The algorithm needs to minimize 0-1 loss, the best known method for which requires superpolynomial time.



setting [49], the only known algorithms that are both label-efficient and computationally-efficient are
[7, 8]. [7] uses a margin-based framework which queries the labels of examples near the decision
boundary. To achieve computational efficiency, it adaptively chooses a sequence of hinge loss
minimization problems to optimize as opposed to directly optimizing the 0-1 loss. It works only
when the label flipping probability upper bound 7 is small (n < 1.8 x 1075). [8] improves over [7]
by adapting a polynomial regression procedure into the margin-based framework. It works for any

1 < 1/2, but its label complexity is O(do( a2nt) In %), which is far worse than the information-
theoretic lower bound Q(ﬁ In %) Recently [20] gives an efficient algorithm with a near-optimal
label complexity under the membership query model where the learner can query on synthesized
points. In contrast, in our stream-based model, the learner can only query on points drawn from the
data distribution. We note that learning in the stream-based model is harder than in the membership
query model, and it is unclear how to transform the DC algorithm in [20] into a computationally

efficient stream-based active learning algorithm.

Under the more challenging v-adversarial noise setting, [6] proposes a margin-based algorithm that
reduces the problem to a sequence of hinge loss minimization problems. Their algorithm achieves an
error of € in polynomial time when v = Q(e), but requires O(d? In 1) labels. Later, [39] performs a
refined analysis to achieve a near-optimal label complexity of O(d In %), but the time complexity of
the algorithm is still an unspecified high order polynomial.

Tables 1 and 2 present comparisons between our results and results most closely related to ours
in the literature. Due to space limitations, discussions of additional related work are deferred to
Appendix A.

3 Definitions and Settings

We consider learning homogeneous halfspaces under uniform distribution. The instance space X’
is the unit sphere in R?, which we denote by S~ := {z € R?: ||lz|| = 1}. We assume d > 3
throughout this paper. The label space Y = {+1, —1}. We assume all data points (z, y) are drawn
i.i.d. from an underlying distribution D over X x ). We denote by D y the marginal of D over X
(which is uniform over S~ 1), and Dy |x the conditional distribution of Y given X. Our algorithm is
allowed to draw unlabeled examples x € X" from D y, and to make queries to a labeling oracle O for
labels. Upon query z, O returns a label y drawn from Dy x—,. The hypothesis class of interest is
the set of homogeneous halfspaces H := {h,,(z) = sign(w - =) | w € S*~'}. For any hypothesis
h € H, we define its error rate err(h) := Pp[h(X) # Y]. We will drop the subscript D in Pp when
it is clear from the context. Given a dataset S = {(X L,Y1), ..., (X, Yim) }, we define the empirical
error rate of 1 over S as errg(h) := L 3" 1 {h(z;) # yi }.

Definition 1 (Bounded Noise [49]). We say that the labeling oracle O satisfies the n-bounded noise
condition for some n € [0,1/2) with respect to u, if for any x, P[Y #sign(u-z) | X = z] <n.

It can be seen that under n-bounded noise condition, A, is the Bayes classifier.

Definition 2 (Adversarial Noise [6]). We say that the labeling oracle O satisfies the v-adversarial

noise condition for some v € [0, 1] with respect to u, if P[Y" # sign(u - X)] < v.

For two unit vectors v1, ve, denote by (v, v2) = arccos(vy - v9) the angle between them. The
following lemma gives relationships between errors and angles (see also Lemma 1 in [8]).

err(hy, ) — err(th)’ <P [hvl (X) # hy, (X)} = M
Additionally, if the labeling oracle satisfies the n-bounded noise condition with respect to u, then for

any vector v, |err(hy) — err(hy)| = (1= 2n)P [hy(X) # ho(X)] = L2210 (v, w).

™

Lemma 1. For any vy, vy € S1,

Given access to unlabeled examples drawn from Dy and a labeling oracle O, our goal is to find a
polynomial time algorithm .4 such that with probability at least 1 — §, A outputs a halfspace h, € H
with P[sign(v - X') # sign(u - X)] < e for some target accuracy € and confidence . (By Lemma 1,
this guarantees that the excess error of h,, is at most ¢, namely, err(h,) — err(h,) < €.) The desired
algorithm should make as few queries to the labeling oracle O as possible.



We say an algorithm A achieves a label complexity of A(e, d), if for any target halfspace h, € H,
with probability at least 1 — 0, A outputs a halfspace h, € H such that err(h,) < err(h,) + ¢, and
requests at most A(e, §) labels from oracle O.

4 Main Algorithm

Our main algorithm, ACTIVE-PERCEPTRON (Algorithm 1), works in epochs. It works under the
bounded and the adversarial noise models, if its sample schedule {mny} and band width {b;,} are set
appropriately with respect to each noise model. At the beginning of each epoch k, it assumes an upper
bound of 7} on §(vy_1,u), the angle between current iterate vy, _; and the underlying halfspace u.
As we will see, this can be shown to hold with high probability inductively. Then, it calls procedure
MODIFIED-PERCEPTRON (Algorithm 2) to find an new iterate vy, which can be shown to have an
angle with v at most 57 with high probability. The algorithm ends when a total of £y = [log, 5
epochs have passed.

For simplicity, we assume for the rest of the paper that the angle between the initial halfspace v and
the underlying halfspace v is acute, that is, 6(vo,u) < 7; Appendix F shows that this assumption
can be removed with a constant overhead in terms of label and time complexities.

Algorithm 1 ACTIVE-PERCEPTRON

Input: Labeling oracle O, initial halfspace vy, target error ¢, confidence 0, sample schedule {my },
band width {by }.
Output: learned halfspace .

1: Let ko = [log, 1.

2: fork=1,2,...,kydo

3w — MODIFIED PERCEPTRON(O, vy _1, o & G ‘§+ ),mk,bk)
4: end for

5: return vg,.

Procedure MODIFIED-PERCEPTRON (Algorithm 2) is the core component of ACTIVE-PERCEPTRON.

It sequentially performs a modified Perceptron update rule on the selected new examples (z, y;) [51,
17, 26]:
Wi+1 — Wy — 21 {ytwt X < 0} (U}t . xt) - Tt (1)

Define 6; := 6(wy, u). Update rule (1) implies the following relationship between 6,1 and 0; (See
Lemma 8 in Appendix E for its proof):

cos 01 — cos by = =21 {ypw; - ¢ < 0} (wy - 2¢) - (w - x4) 2)
This motivates us to take cos 6, as our measure of progress; we would like to drive cos 6; up to 1(so
that 6; goes down to 0) as fast as possible.
To this end, MODIFIED-PERCEPTRON samples new points z; under time-varying distributions D x| g,
and query for their labels, where R; = {x € Sd-1 . g <w-x < b} is a band inside the unit sphere.
The rationale behind the choice of R; is twofold:

1. We set R; to have a probability mass of Q(e), so that the time complexity of rejection
sampling is at most O(%) per example. Moreover, in the adversarial noise setting, we set R;
large enough to dominate the noise of magnitude v = Q(e)

2. Unlike the active Perceptron algorithm in [26] or other margin-based approaches (for
example [55, 10]) where examples with small margin are queried, we query the label of the

examples with a range of margin [%, b]. From a technical perspective, this ensures that 6,
decreases by a decent amount in expectation (see Lemmas 9 and 10 for details).

Following the insight of [32], we remark that the modified Perceptron update (1) on distribution
Dx|g, can be alternatively viewed as performing stochastlc gradient descent on a special non-convex
loss function £(w, (x,y)) = min(1, max(0, —1— 2yw-x)). Itis an interesting open question whether
optimizing this new loss function can lead to 1mpr0ved empirical results for learning halfspaces.



Algorithm 2 MODIFIED-PERCEPTRON
Input: Labeling oracle O, initial halfspace wy, angle upper bound 6, confidence ¢, number of
iterations m, band width b.
QOutput: Improved halfspace w,,.
1: fort =0,1,2,...,m — 1do
2:  Define region R; = {a: e Sd-1. g <wpex < b}.

3:  Rejection sample z; ~ Dx|g,. In other words, draw x; from Dy until z; is in R;. Query O
for its label ;.

4: Wiy < Wy — 21 {ytwt e < O} . (wt . l‘t) + Tt

end for

6: return w,,.

bl

5 Performance Guarantees

‘We show that ACTIVE-PERCEPTRON works in the bounded and the adversarial noise models, achiev-
ing computational efficiency and near-optimal label complexities. To this end, we first give a lower
bound on the label complexity under bounded noise, and then give computational and label complexity
upper bounds under the two noise conditions respectively. We defer all proofs to the Appendix.

5.1 A Lower Bound under Bounded Noise

We first present an information-theoretic lower bound on the label complexity in the bounded noise
setting under uniform distribution. This extends the distribution-free lower bounds of [53, 37], and
generalizes the realizable-case lower bound of [47] to the bounded noise setting. Our lower bound
can also be viewed as an extension of [59]’s Theorem 3; specifically it addresses the hardness under
the a-Tsybakov noise condition where av = 0 (while [59]’s Theorem 3 provides lower boundes when
a € (0,1)).

Theorem 1. Foranyd > 4,0<7n< % 0<e<L ﬁ, 0<é6< %,for any active learning algorithm
A, there is a u € S%=1, and a labeling oracle O that satisfies n-bounded noise condition with respect

to u, such that if with probability at least 1 — 9, A makes at most n queries of labels to O and outputs

STV such that Plsign(v - X) # sign(u - X)] < ¢ thenn > Q (105, 4 1183
UNS such that P[sign(v - X) # sign(u - X)] <, thenn > a5 + e )-

5.2 Bounded Noise

We establish Theorem 2 in the bounded noise setting. The theorem implies that, with appropriate
settings of input parameters, ACTIVE-PERCEPTRON efficiently learns a halfspace of excess error
at most € with probability at least 1 — 4, under the assumption that Dy is uniform over the unit
sphere and O has bounded noise. In addition, it queries at most O(W In %) labels. This matches
the lower bound of Theorem 1, and improves over the state of the art result of [8], where a label
~ 1
complexity of O(dO( =) In %) is shown using a different algorithm.
The proof and the precise setting of parameters (my, and by) are given in Appendix C.

Theorem 2 (ACTIVE-PERCEPTRON under Bounded Noise). Suppose Algorithm 1 has inputs la-
beling oracle O that satisfies n-bounded noise condition with respect to halfspace wu, initial half-
space vy such that 6(vo,u) € [0, 5], target error €, confidence 6, sample schedule {my} where

my = 0 ((1—%77)2 (In (1_d2n)2 +1In %)) band width {by,} where b, = © (Qk(l_%)> Then with

Vdin(kmy/8)
probability at least 1 — §:

1. The output halfspace v is such that P[sign(v - X) # sign(u - X)] <e.

2. The number of label queries is O ((1%77)2 -In % . (1n ﬁ +1In % + Inln i))



3. The number of unlabeled examples drawn is

2
g d 1 1 1,1
O ((1277)3 . (h’l (17277)2 +1ng +1nln E) . Eln 6).

2

2
4. The algorithm runs in time O <(1—d?n)3 . <1n (1_‘;77)2 +In % +Inln %) . % In i)

The theorem follows from Lemma 2 below. The key ingredient of the lemma is a delicate analysis
of the dynamics of the angles {6,}," ;, where 6; = 0(w;, u) is the angle between the iterate w;
and the halfspace u. Since x; is randomly sampled and ¥, is noisy, we are only able to show that
0; decreases by a decent amount in expectation. To remedy the stochastic fluctuations, we apply
martingale concentration inequalities to carefully control the upper envelope of sequence {6; };- .

Lemma 2 (MODIFIED-PERCEPTRON under Bounded Noise). Suppose Algorithm 2 has inputs
labeling oracle O that satisfies n-bounded noise condition with respect to halfspace u, initial

us

halfspace wq and angle upper bound 6 € (0, %] such that 6(wo,u) < 0, confidence 6, number

of iterations m = @((1—d2n)2 (In (1—%n)2 +1In3$)), band width b = © (M)‘ Then with

probability at least 1 — §:

SIS

1. The output halfspace w,, is such that 6(w,,,u) <

2. The number of label queries is O ((1d2n)2 (ln (17‘1277)2 +1In ;))

2
3. The number of unlabeled examples drawn is O ((1—d2n)3 . (111 (1_‘;77)2 +In %) : é)

2
4. The algorithm runs in time O <(1_d22n)3 . (ln (1_%7])2 + In %) . ;,)

5.3 Adversarial Noise

We establish Theorem 3 in the adversarial noise setting. The theorem implies that, with appropriate
settings of input parameters, ACTIVE-PERCEPTRON efficiently learns a halfspace of excess error at
most € with probability at least 1 — §, under the assumption that Dy is uniform over the unit sphere

and O has an adversarial noise of magnitude v = Q(m) In addition, it queries at most

O(dIn 1) labels. Our label complexity bound is information-theoretically optimal [47], and matches
the state of the art result of [39]. The benefit of our approach is computational: it has a running time

of O(%), while [39] needs to solve a convex optimization problem whose running time is some
polynomial over d and % with an unspecified degree.
The proof and the precise setting of parameters (my, and by) are given in Appendix C.

Theorem 3 (ACTIVE-PERCEPTRON under Adversarial Noise). Suppose Algorithm 1 has inputs
labeling oracle O that satisfies v-adversarial noise condition with respect to halfspace wu, initial
halfspace vg such that 0(vy,u) < T, target error €, confidence §, sample schedule {my} where

my = O(d(Ind + In%)), band width {b,} where b, = © (W) Additionally v <
Q

. Then with probability at least 1 — §:

In %+Tn In % )
1. The output halfspace v is such that P[sign(v - X) # sign(u - X)] <e.

2. The number of label queries is O (d -In % . (ln d+1In % +Inln %))
3. The number of unlabeled examples drawn is O (d : (ln d+1In % +Inln %)2 . % In %)

4. The algorithm runs in time O (d2 . (ln d—+ ln% + Inln %)2 : % In %)



The theorem follows from Lemma 3 below, whose proof is similar to Lemma 2.

Lemma 3 (MODIFIED-PERCEPTRON under Adversarial Noise). Suppose Algorithm 2 has inputs
labeling oracle O that satisfies v-adversarial noise condition with respect to halfspace wu, initial
halfspace wo and angle upper bound 0 € (0, 5| such that 0(wo,u) < 0, confidence 6, number of

iterations m = O(d(Ind + In })), band width b = © (V&ln?m/é)

Then with probability at least 1 — §:

). Additionally v < Q(W).

1. The output halfspace wy, is such that (W, u) < g.

2. The number of label queries is O (d . (ln d+In %))

3. The number of unlabeled examples drawn is O (d . (ln d+1In %) 2.

S
N——

4. The algorithm runs in time O (d2 . (ln d+1In %)2 . %)

6 Implications to Passive Learning

ACTIVE-PERCEPTRON can be converted to a passive learning algorithm, PASSIVE-PERCEPTRON,
for learning homogeneous halfspaces under the uniform distribution over the unit sphere.
PASSIVE-PERCEPTRON has PAC sample complexities close to the lower bounds under the two
noise models. We give a formal description of PASSIVE-PERCEPTRON in Appendix B. We give its
formal guarantees in the corollaries below, which are immediate consequences of Theorems 2 and 3.

In the n-bounded noise model, the sample complexity of PASSIVE-PERCEPTRON improves over the

- O(z—i—p)
state of the art result of [8], where a sample complexity of O(%)

is obtained. The bound
has the same dependency on € and d as the minimax upper bound of @(e(l%n)) by [49], which is
achieved by a computationally inefficient ERM algorithm.

Corollary 1 (PASSIVE-PERCEPTRON under Bounded Noise). Suppose PASSIVE-PERCEPTRON has
inputs distribution D that satisfies n-bounded noise condition with respect to u, initial halfspace vy,

target error €, confidence 0, sample schedule {my} where mj, = © ((kgn)g (In (17‘1277)2 +1n %))
band width {b} where by, = © (\/m) Then with probability at least 1 — 0: (1) The
output halfspace v is such that err(h,) < err(hy,) + €; (2) The number of labeled examples drawn is

O (ﬁ‘ln)gé) (3) The algorithm runs in time o} (ﬁz)ge .

In the v-adversarial noise model, the sample complexity of PASSIVE-PERCEPTRON matches the

minimax optimal sample complexity upper bound of é(%) obtained in [39]. Same as in active
learning, our algorithm has a faster running time than [39].

Corollary 2 (PASSIVE-PERCEPTRON under Adversarial Noise). Suppose PASSIVE-PERCEPTRON
has inputs distribution D that satisfies v-adversarial noise condition with respect to u, initial

halfspace vy, target error ¢, confidence 6, sample schedule {my} where my = © (d(ln d-+1n %)),

N Then with
probability at least 1 — §: (1) The output halfspace v is such that err(h,) < err(h,) + ¢ (2) The

number of labeled examples drawn is 0 % . (3) The algorithm runs in time 0 (d—:)

band width {by} where b, = © <N> Furthermore v = Q(

i)
InIn %Jrln % :

Tables 3 and 4 present comparisons between our results and results most closely related to ours.
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Table 3: A comparison of algorithms for PAC learning halfspaces under the uniform distribution, in
the n-bounded noise model.

Algorithm  Sample Complexity Time Complexity

- OCg—ta) . O(g—s—T)
[8] Q(%) 0(%)
ERM [49] O(ﬁ) superpoly(d, 1)
~ ~ 2
Our Work 0(7(1751”)36) ()(7(1}277)3 )

Table 4: A comparison of algorithms for PAC learning halfspaces under the uniform distribution, in
the v-adversarial noise model where v = Q(+——F——).

Inln %Jrln d

Algorithm  Sample Complexity —Time Complexity

[39] o(%) poly(d, 1)
ERM [57] O(%) superpoly(d, 1)
Our Work ~ O(%) o)
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