
A Proof of Theorem 3

Without loss of generality, we assume that σ2
w = 1. Recall from Section 3 the procedure for

generating and updating models with ensemble sampling. First, θ̃0,1, . . . , θ̃0,M are sampled i.i.d.
from N(µ0,Σ0). Then, these vectors are adapted according to

θ̃t,m = arg min
ν

(
t−1∑
τ=0

(Rτ+1 + W̃τ+1,m −A>τ ν)2 + (ν − θ̃0,m)>Σ−10 (ν − θ̃0,m)

)
.

Note that we have not yet specified how actions are selected. In the formulation we have put forth,
each At could be any Ft-measureable random variable. We will denote by A the Ft-adapted process
(A0, . . . , AT−1). We say A is deterministic if there exist a0, . . . , aT−1 ∈ A such that At = at for
t = 0, . . . , T − 1 with probability one.

Lemma 1. If A is deterministic, then, conditioned on (R1, . . . , Rt), θ̃t,1, · · · , θ̃t,M are i.i.d.
N(µt,Σt) random variables, where µt = E[θ|Ft] and Σt = E[(θ − µt)(θ − µt)>|Ft].

Proof. Say A = (a0, . . . , aT−1), where a0, . . . , aT−1 ∈ A. Let X be an t×N matrix with the jth

row equal to aj−1. Let y = (R1, . . . , Rt)
>. Then,

µt = arg min
ν

(
t−1∑
τ=0

(Rτ+1 − a>τ ν)2 + (ν − µ0)>Σ−10 (ν − µ0)

)
=
(
X>X + Σ−10

)−1 (
X>y + Σ−10 µ0

)
,

and
Σt =

(
X>X + Σ−10

)−1
.

For any m = 1, . . . ,M , we have

θ̃t,m = arg min
ν

(
t−1∑
τ=0

(Rτ+1 + W̃τ+1,m − a>τ ν)2 + (ν − θ̃0,m)>Σ−10 (ν − θ̃0,m)

)
=
(
X>X + Σ−10

)−1 (
X>(y + W̃m) + Σ−10 θ̃0,m

)
,

where W̃m = (W̃1,m, . . . , W̃t,m)>. We first observe that, conditioned on y, θ̃t,m follows a normal
distribution, since it is affine in θ̃0,m and W̃m. Next, we check its mean and covariance. Since W̃m

and θ̃0,m are independently sampled, we have

E
[
θ̃t,m

∣∣y] =
(
X>X + Σ−10

)−1 (
X>

(
y + E

[
W̃m

∣∣y])+ Σ−10 E
[
θ̃0,m

∣∣y]) = µt,

and

Cov
[
θ̃t,m

∣∣y] =
(
X>X + Σ−10

)−1 (
X>E

[
W̃mW̃

>
m

∣∣y]X
+ Σ−10 E

[
(θ̃0,m − µ0)(θ̃0,m − µ0)>

∣∣y]Σ−10

) (
X>X + Σ−10

)−1
= Σt.

Therefore, if A is deterministic, then for each m = 1, . . . ,M , θ̃t,m is a N(µt,Σt) random variable
conditioned on (R1, . . . , Rt). Further, since W̃m and θ̃0,m, m = 1, . . . ,M are all independent,
θ̃t,1, . . . , θ̃t,M are independent.

Recall that pt(a) denotes the posterior probability Pt(A∗ = a) = P (A∗ = a|A0, R1, . . . , At−1, Rt).
To explicitly indicate dependence on the action process, we will use a superscript: pt(a) = pAt (a).
Let p̂At denote an approximation to pAt , given by p̂At (a) = 1

M

∑M
m=1 I

(
a = arg maxa′ θ̃

>
t,ma

′
)

.
Note that given an action process A, at time t Thompson sampling would sample the next action
from pAt , while ensemble sampling would sample the next action from p̂At .

The following lemma shows that for any deterministic action sequence, conditioned on θ, the action
distribution that ensemble sampling would sample from is close to the action distribution that
Thompson sampling would sample from with high probability.
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Lemma 2. For any deterministic action sequence a ∈ AT ,

P (dKL(p̂at ‖pat ) ≥ ε | θ) ≤ (M + 1)|A|e−Mε.

Proof. If a ∈ AT is deterministic, then conditioned on (R1, . . . , Rt), p̂at and pat are independent of
θ. Thus, we have

P (dKL(p̂at ‖pat ) ≥ ε | θ) = E [E [I (dKL(p̂at ‖pat ) ≥ ε) |R1, . . . , Rt] | θ] .

By Lemma 1, θ̃t,1, . . . , θ̃t,M , conditioned on (R1, . . . , Rt), are i.i.d. and distributed as the posterior
of θ. Thus, p̂at represents an empirical distribution of samples drawn from pat . Sanov’s Theorem then
implies that

P (dKL(p̂at ‖pat ) ≥ ε|R1, . . . , Rt) ≤ (M + 1)|A|e−Mε.

The result follows.

Next, we will establish results for any Ft-adapted action process A, deterministic or stochastic. To do
so, it is useful to introduce the notion of action counts. One way of encoding the sequence of actions
is in terms of counts c0, . . . , cT−1. In particular, let ct,a = |{τ ≤ t : Aτ = a}| be the number of
times that action a has been selected by time t. Each ct takes values in a set

Ct =

{
c ∈ N|A| :

∑
a∈A

ca = t+ 1

}
.

Since ct has |A| components, and each component takes a value in {0, . . . , t+ 1}, we have

|Ct| ≤ (t+ 2)|A|.

Sometimes, we use a superscript and write cAt to explicitly denote the dependence on action process
A.

We now introduce dependencies between the noise terms Wt and action counts, without changing the
distributions of any observable variables. This will turn out to be useful when we take the union bound
later. We let (Zn,a : n ∈ N, a ∈ A) be i.i.d. N(0, 1) random variables, and let Wt+1 = Zct,At ,At .
Similarly, we let (Z̃n,a,m : n ∈ N, a ∈ A,m = 1, . . . ,M) be i.i.d N(0, 1) random variables, and let
W̃t+1,m = Z̃ct,At ,At,m.

The following lemma establishes that, for any deterministic action sequence a ∈ AT , pat and p̂at
depend on a only through its action counts, cat−1; in other words, pat and p̂at do not depend on the
ordering of past actions and observations.

Lemma 3. For any t = 0, . . . , T−1, if a, a ∈ AT are deterministic sequences such that cat−1 = cat−1,
then pat = pat and p̂at = p̂at .

Proof. Recall that Rτ+1 = θ>Aτ +Wτ+1, where Wτ+1 = Zcτ,Aτ ,Aτ . This means that we observe
the same reward the first time we take an action, regardless of where that action appears in the action
sequence. Similarly, for all action sequences, we observe the same reward the second time we take
that action, and so on. Therefore, if cat−1 = cat−1, we have µat = µat and Σat = Σat , which implies
that pat = pat . By the same reasoning, since W̃τ+1,m = Z̃cτ,Aτ ,Aτ ,m for all τ and m, both action
sequences would yield the same model parameters, and it follows that p̂at = p̂at .

Lemma 4. For any Ft-adapted process A,

P
(
dKL(p̂At ‖pAt ) > ε | θ

)
≤ (t+ 1)|A|(M + 1)|A|e−Mε.
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Proof. We have

P
(
dKL(p̂At ‖pAt ) > ε | θ

)
≤ P

(
max
a∈AT

dKL(p̂at ‖pat ) > ε
∣∣∣ θ)

(a)
= P

(
max

cat−1:a∈AT
dKL(p̂at ‖pat ) > ε

∣∣∣ θ)
(b)

≤
∑

cat−1:a∈AT
P (dKL(p̂at ‖pat ) > ε | θ)

(c)

≤ (t+ 1)|A|(M + 1)|A|e−Mε,

where (a) follows from Lemma 3, (b) follows from the union bound, and (c) follows from Lemma 2
and the fact that the total number of counts |Ct−1| ≤ (t+ 1)|A|.

Now, we specialize the action process A to the action sequence At = AES
t selected by ensemble

sampling, and we will omit the superscripts in pAt and p̂At .

The expected cumulative regret of ensemble sampling conditioned on θ can be decomposed as

Regret(T, πES, θ) =

T−1∑
t=0

E
[
R∗ − θ>AES

t | θ
]

=

T−1∑
t=0

(
E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) > ε) |θ
]

+ E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) ≤ ε) |θ
] )
.

We will bound the per-period regret for the case where the divergence dKL(p̂t‖pt) is large and the
case where the divergence is small, respectively.

Lemma 5. For any t = 0, . . . , T − 1,
E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) > ε) |θ
]
≤ (t+ 1)|A|(M + 1)|A|e−Mε∆(θ).

Proof. This follows directly from the definition of ∆(θ) and Lemma 4.

Assumption 6. For simplicity, assume 0 < ε < 1 and 0 < δ < 1 are such that |A|Tεδ ≥ 9.

Lemma 7. If the size of the ensemble satisfies

M ≥ 2|A|
ε

log
|A|T
εδ

,

then
T−1∑
t=0

E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) > ε) |θ
]
≤ δ∆(θ)T.

Proof. We show that if M satisfies the condition above, then
T |A|(M + 1)|A|e−Mε ≤ δ,

or, equivalently,

M − |A|
ε

log(M + 1) ≥ 1

ε

(
|A| log T + log

1

δ

)
.

We have

M − |A|
ε

log(M + 1)− 1

ε

(
|A| log T + log

1

δ

)
≥ 2|A|

ε
log
|A|T
εδ
− |A|

ε
log

(
4|A|
ε

log
|A|T
εδ

)
− |A|

ε
log

T

δ

=
|A|
ε

log

(
|A|
ε
· |A|T
εδ

)
− |A|

ε
log

(
4|A|
ε

log
|A|T
εδ

)
≥ 0,
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since Assumption 6 implies that |A|Tεδ ≥ 4 log |A|Tεδ . The result then follows from Lemma 5.

Lemma 8. Let πTS denote the Thompson sampling policy. We have
T−1∑
t=0

E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) ≤ ε) |θ
]
≤ Regret(T, πTS, θ) +

√
ε/2 ∆(θ)T.

Proof. We apply a coupling argument that couples the actions that would be selected by ensemble
sampling with those that would be selected by Thompson sampling. Let ATS

t denote the action that
Thompson sampling would select at time t. On {dKL(p̂t‖pt) ≤ ε}, Pinsker’s inequality implies that

‖p̂t − pt‖TV ≤
√

2ε.

Conditioning on p̂t and pt, if dKL(p̂t‖pt) ≤ ε, we construct random variables ÃES
t and ÃTS

t such
that they have the same distribution as AES

t and ATS
t , respectively. Using maximal coupling, we can

make ÃES
t = ÃTS

t with probability at least 1− 1
2‖p̂t − pt‖TV ≥ 1−

√
ε/2. Then,

E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) ≤ ε) |θ
]

= E
[
E
[
(R∗ − θ>AES

t )I (dKL(p̂t‖pt) ≤ ε)
∣∣p̂t, pt, θ] ∣∣θ]

= E
[
E
[
(R∗ − θ>ÃES

t )I (dKL(p̂t‖pt) ≤ ε)
∣∣p̂t, pt, θ] ∣∣θ]

= E
[
E
[
(R∗ − θ>ÃES

t )I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t = ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
+E

[
E
[
(R∗ − θ>ÃES

t )I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t 6= ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
On the first part of the sum, we have

E
[
E
[
(R∗ − θ>ÃES

t )I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t = ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
= E

[
E
[
(R∗ − θ>ÃTS

t )I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t = ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
≤ E

[
E
[
(R∗ − θ>ÃTS

t )
∣∣p̂t, pt, θ] ∣∣θ]

= E
[
E
[
(R∗ − θ>ATS

t )
∣∣p̂t, pt, θ] ∣∣θ]

= E
[
R∗ − θ>ATS

t |θ
]
,

where the inequality follows from the nonnegativity of R∗ − θ>ÃTS
t . On the second part of the sum,

we have

E
[
E
[
(R∗ − θ>ÃES

t )I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t 6= ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
≤ E

[
E
[
(R∗ −R∗)I

(
dKL(p̂t‖pt) ≤ ε, ÃES

t 6= ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
= ∆(θ)E

[
E
[
I
(
dKL(p̂t‖pt) ≤ ε, ÃES

t 6= ÃTS
t

) ∣∣p̂t, pt, θ] ∣∣θ]
≤

√
ε/2 ∆(θ),

where the last inequality follows from the way we couple ÃES
t and ÃES

t . Thus, the result follows.

Combining Lemma 7 and Lemma 8 delivers a proof for our main result. In particular, we have

Regret(T, πES, θ) =

T−1∑
t=0

E
[
(θ>A∗ − θ>AES

t )I
(
dKL(p̂t‖pt) > ε2/2

)
|θ
]

+

T−1∑
t=0

E
[
(θ>A∗ − θ>AES

t )I
(
dKL(p̂t‖pt) ≤ ε2/2

)
|θ
]

≤ 1

2
ε∆(θ)T + Regret(T, πTS, θ) +

1

2
ε∆(θ)T

= Regret(T, πTS, θ) + ε∆(θ)T,

where the inequality follows from Lemma 7, with δ = ε/2, and Lemma 8.
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