
Supplementary Material

1 VW transition operators and their convergence1

Proposition 1. If p has enough capacity, training data and training time, with slow enough annealing2

and a small departure from reversibility so p can match q, then at convergence of VW training, the3

transition operator pT at T = 1 has the data generating distribution as its stationary distribution.4

Proof. With these conditions p(sK+n
0 ) match q(sK+n

0 ), where q(s0) is the data distribution. It5

means that p(s0) (the marginal at the last step of sampling) is the data distribution when running the6

annealed (cooling) trajectory for K + n steps, for n any integer between 0 and N1, where the last7

n + 1 steps are at temperature 1. Since the last n steps are at temperature 1, they apply the same8

transition operator. Consider any 2 consecutive sampling steps among these last n steps. Both of these9

samples are coming from the same distribution (the data distribution). It means that the temperature 110

transition operator leaves the data distribution unchanged. This implies that the data distribution is an11

eigenvector of the linear operator associated with the temperature 1 transition operator, or that the12

data generating distribution is a stationary distribution of the temperature 1 transition operator.13

2 Additional Results14

Image inpainting samples from CelebA dataset are shown in Fig 1, where each top sub-figure shows15

the masked image of a face (starting point of the chain), and the bottom sub-figure shows the inpainted16

image. The images are drawn from the test set.17

The VW samples for CelebA, CIFAR10 and SVHN are shown in Fig 3, 4, 5.18

Figure 1: VW inpainting in CelebA images. Images on the left are the ground truth images corrupted
for their bottom half (which is the starting point of the chain). The goal is to fill in the bottom half of
each face image given an observed top half of an image (drawn from test set). Images on the right
show the inpainted lower halves for all these images.

3 VW on Toy Datasets19

Fig. 6 and 7 shows the application of a transition operator applied on 2D datasets.20
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Figure 2: VW samples on MNIST using Gaussian noise in the transition operator. The model is
trained with 30 steps of walking away, and samples are generated using 30 annealing steps.

4 VW chains21

Fig. 8, 9, 10, 11, 12, 13, 14 shows the model chains on repeated application of transition operator at22

temperature = 1. This is to empirically prove the conjecture mentioned in the paper (Preposition 1)23

that is, if the finite time generative process converges to the data distribution at multiple different VW24

walkback time-steps, then it remains on the data distribution for all future time at T= 125

5 Architecture Details26

In this section, we provide more details on the architecture that was used for each of the dataset. The27

details of the hyper parameter and architecture used for each dataset can also be found in Tables 1, 2,28

3 and 4. Complete specifications are available as experiment scripts at http://github.com/29

anirudh9119/walkback_nips17.30

5.1 MNIST31

For lower bound(and IS estimates) comparisons, the network trained on MNIST is a MLP composed32

of two fully connected layers with 1200 units using batch-normalization (Ioffe Szegedy, 2015) This33

network has two different final layers with a number of units corresponding to the image size (i.e34
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Figure 3: VW samples on CelebA dataset using Gaussian noise in the transition operator. Model is
trained using 30 steps to walk away and samples are generated using 30 annealing steps.

number of pixels) each corresponding to mean and variance for each pixel. We use softplus output35

for the variance. We don’t share the batch-normalization parameters across different time steps.36

For the real-values MNIST dataset samples, we used an encoder-decoder architecture with convolu-37

tional layers. The encoder consists of 2 convolutional layers with kernel length of 5 and stride of 238

followed by a decoder with strided convolutions. In addition, we used 5 fully connected feedforward39

layers to connect the encoder and decoder. We applied batch normalization (Ioffe and Szegedy, 2015)40

to the convolutional Layers, and we applied layer normalization (Ba et al., 2016) to the feedforward41

layers. The network has 2 separate output layers, one corresponding the mean of the Gaussian sample,42

and one corresponding to the variance of the added Gaussian noise. We use Adam (Kingma and Ba,43

2014) with a learning rate of 0.0001 to optimize the network. Details of the hyper parameter and44

architecture is also available in Table 1.45

5.2 CIFAR10, CelebA and SVNH46

We use a similar encoder-decoder architecture as we have stated above. We use 3 convolutional layers47

for the encoder as well as for the decoder. We also apply batch normalization (Ioffe and Szegedy,48

2015)to the convolutional layers, as well as layer normalization (Ba et al., 2016) to the feedforward49

layers. Details of the hyper parameter and architecture is also available in Table 3, 4 and 2.50
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Operation Kernel Strides Feature Maps Normalization Non Linearity Hidden Units
Convolution 5 x 5 2 16 Batchnorm Relu -
Convolution 5 x 5 2 32 Batchnorm Relu -

Fully Connected - - - LayerNorm Leaky Relu 1568 * 1024
Fully Connected - - - LayerNorm Leaky Relu 1024 * 1024
Fully Connected - - - LayerNorm Leaky Relu 1024 * 1024
Fully Connected - - - LayerNorm Leaky Relu 1024 * 1024
Fully Connected - - - LayerNorm Leaky Relu 1024 * 1568

Strided Convolution 5 x 5 2 16 Batchnorm Relu -
Strided Convolution 5 x 5 2 1 No None -

Table 1: Hyperparameters for MNIST experiments, for each layer of the encoder-decoder (each
row of the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and
variance of each pixel. We use reconstruction error as per-step loss function. We see improvements
using layernorm in the bottleneck, as compared to batchnorm. Using Dropout also helps, but all the
results reported in the paper are without dropout.

Operation Kernel Strides Feature Maps Normalization Non Linearity Hidden Units
Convolution 5 x 5 2 64 Batchnorm Relu -
Convolution 5 x 5 2 128 Batchnorm Relu -
Convolution 5 x 5 2 256 Batchnorm Relu -

Fully Connected - - - Batchnorm Relu 16384 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 16384

Strided Convolution 5 x 5 2 128 Batchnorm Relu -
Strided Convolution 5 x 5 2 64 Batchnorm Relu -
Strided Convolution 5 x 5 2 3 No None -

Table 2: Hyperparameters for CelebA experiments, for each layer of the encoder-decoder (each
row of the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and
variance of each pixel. We use reconstruction error as per-step loss function.

Operation Kernel Strides Feature Maps Normalization Non Linearity Hidden Units
Convolution 5 x 5 2 64 Batchnorm Relu -
Convolution 5 x 5 2 128 Batchnorm Relu -
Convolution 5 x 5 2 256 Batchnorm Relu -

Fully Connected - - - Batchnorm Relu 4096 * 2048
Fully Connected - - - Batchnorm Relu 2048 * 2048
Fully Connected - - - Batchnorm Relu 2048 * 2048
Fully Connected - - - Batchnorm Relu 2048 * 2048
Fully Connected - - - Batchnorm Relu 2048 * 4096

Strided Convolution 5 x 5 2 128 Batchnorm Relu -
Strided Convolution 5 x 5 2 64 Batchnorm Relu -
Strided Convolution 5 x 5 2 3 No None -

Table 3: Hyperparameters for Cifar experiments, for each layer of the encoder-decoder (each row of
the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and variance
of each pixel. We use reconstruction error as per-step loss function.

4



Figure 4: VW samples on Cifar10 using Gaussian noise in the transition operator. Model is trained
using 30 steps to walk away and samples are generated using 30 annealing steps.

6 Walkback Procedure Details51

The variational walkback algorithm has three unique hyperparameters. We specify the number of52

Walkback steps used during training, the number of extra Walkback steps used during sampling and53

also the temperature increase per step.54

The most conservative setting would be to allow the model to slowly increase the temperature during55

training. However, this would require a large number of steps for the model to walk to the noise, and56

this would not only significantly slow down the training process, but this also means that we would57

require a large number of steps used for sampling.58

There may exist a dynamic approach for setting the number of Walkback steps and the temperature59

schedule. In our work, we set this hyperparameters heuristically. We found that a heating temperature60

schedule of Tt = T0
√
2t at step t produced good results, where T0 = 1.0 is the initial temperature.61

During sampling, we found good results using the exactly reversed schedule: Tt =
√
2N√
2t

, where t is62

the step index and N is the total number of cooling steps.63

For MNIST, CIFAR, SVHN and CelelbA, we use K = 30 training steps and N = 30 sampling steps.64

We also found that we could achieve better quality results if allow the model to run for a few extra65

steps with a temperature of 1 during sampling. Finally, our model is able to achieve similar results66

compared to the NET model(Sohl-Dickstein et al., 2015). Considering our model uses only 30 steps67

for MNIST and NET (Sohl-Dickstein et al., 2015) uses 1000 steps for MNIST.68
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Figure 5: VW samples on SVHN dataset using Gaussian noise in the transition operator. Model is
trained using 30 steps to walk away and samples are generated using 30 annealing steps.

7 Higher Lower Bound: not always better samples69

We have observed empirically that the variational lower bound does not necessarily correspond to70

sample quality. Among trained models, higher value of the lower bound is not a clear indication71

of visually better looking samples. Our MNIST samples shown in Fig 15 is an example of this72

phenomenon. A model with better lower bound could give better reconstructions while not producing73

better generated samples. This resonates with the finding of (Theis et al., 2016)74

8 Reversibility of transition operator75

We measured the degree of reversibility of pT by estimating the KL divergence76

DKL(pT (s
′|s)πT (s) || pT (s|s′)πT (s′)), which is 0 if and only if pT obeys detailed balance and77

is therefore time-reversal invariant by computing the Monte-Carlo estimator 1
K

∑K
t=1 ln

pT (st+1|st)
pT (st|st+1)

,78

where sK1 is a long sequence sampled by repeatedly applying transition operator pT from a draw79

s1 ∼ πT , i.e., taking samples after a burn-in period (50 samples).80

To get a sense of the magnitude of this reversibility measure, and because it corresponds to an81

estimated KL divergence, we estimate the corresponding entropy (of the forward trajectory) and use82

it as a normalizing denominator telling us how much we depart from reversibility in nats relative to83

the number of nats of entropy. To justify this, consider that the minimal code length required to code84
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Figure 6: The proposed modeling framework trained on 2-d swiss roll data. This algorithm was
trained on 2D swiss roll for 30 annealing steps using annealing schedule increasing temperator by
1.1 each time. We have shown every 5th sample (ordering is row wise, and within each row it is
column-wise.

Figure 7: The proposed modeling framework trained on circle data. This algorithm was trained on
circle for 30 annealing time steps using annealing schedule increasing temperature by factor 1.1 each
time. We have shown every 5th sample (ordering is row wise, and within each row it is column-wise.

samples from a distribution p is the entropy H(p). But suppose we evaluate those samples from p85

using q instead to code them. Then the code length is H(p) +D(p||q). So the fractional increase86

in code length due to having the wrong distribution is D(p||q)/H(p), which is what we report here,87

with p being the forward transition probability and q the backward transition probability.88

To compute this quantity, we took our best model (in terms of best lower bound) on MNIST, and ran89

it for 1000 time steps i.e (T = 1000), at a constant temperature.90

We run the learned generative chain p for T time steps (after a burn in period91

whose samples we ignore) getting s0 → s1 → s2 → · · · sT and computing92

log p(s0 → s1 → s2 → · · · sT )/p(sT → · · · → s2→ s1) both under the same generative chain, di-93

vided by T to get the per-step average.94

On the same set of runs, we compute 1/T ∗log p(s0 → s1 → s2 → · · · sT ) under the same generative95

chain. This is an estimate of the entropy per unit time of the chain. This is repeated multiple times to96

average over many runs and reduce the variance of the estimator.97
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Figure 8: VW sample chain (vertically, going down) starting from pure noise. Model trained using
K = 30 steps to walk away and samples are generated using 30 steps of annealing. The figure shows
every 3rd sample of the chain in each column.

The obtained ratio (nats/nats) is 3.6%, which seems fairly low but also suggests that the trained model98

is not perfectly reversible.99

9 Some Minor Points100

• In all the image experiments, we observed that by having different batchnorm papemeters101

for different steps, actually improves the result considerably. Having different batchnorm102

parameters was also necessery for making it work on mixture on gaussian. The authors were103

not able to make it work on MoG without different parameters. One possible way, could be104

to let optimizer know that we are on different step by giving the temperature information to105

the optimizer too.106

• We observed better results while updating the parameters in online-mode, as compared to107

batch mode. (i.e instead of accumulating gradients across different steps, we update the108

parameters in an online fashion)109
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Figure 9: VW sample chain. Each coloumn above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.

10 Inception Scores on CIFAR110

We computed the inception scores using 50,000 samples generated by our model. We compared the111

inception scores with (Salimans et al., 2016) as the baseline model.112
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Figure 10: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.
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Figure 11: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps temperature = 1.

Operation Kernel Strides Feature Maps Normalization Non Linearity Hidden Units
Convolution 5 x 5 2 64 Batchnorm Relu -
Convolution 5 x 5 2 128 Batchnorm Relu -
Convolution 5 x 5 2 256 Batchnorm Relu -

Fully Connected - - - Batchnorm Relu 4096 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 1024
Fully Connected - - - Batchnorm Relu 1024 * 4096

Strided Convolution 5 x 5 2 128 Batchnorm Relu -
Strided Convolution 5 x 5 2 64 Batchnorm Relu -
Strided Convolution 5 x 5 2 3 No None -

Table 4: Hyperparameters for SVHN experiments, for each layer of the encoder-decoder (each row of
the table). We use adam as an optimizer, learning rate of 0.0001. We model both mean and variance
of each pixel. We use reconstruction error as per-step loss function.
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Figure 12: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.

Model Inception Score
Real Data 11.24

Salimans (semi-supervised) 8.09
Salimans (unsupervised) 4.36

Salimans (supervised training without minibatch features) 3.87
VW(20 steps) 3.72
VW(30 steps) 4.39 ±0.2

Table 5: Inception scores on CIFAR
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Figure 13: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.
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Figure 14: VW sample chain. Each column above corresponds to one sampling chain. We have
shown every 10th sample. We applied the transition operator for 5000 time-steps at temperature =
1, to demonstrate that even over very long chain, the transition operator continues to generate good
samples.
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Figure 15: Samples from two VW models (left and right) which have a higher lower bound than the
one whose samples are shown in Figure 5 (and comparable but slightly better importance sampling
estimators of the log-likelihood): yet, the generated samples are clearly not as good, suggesting
that either the bound is sometimes not tight enough or that the log-likelihood is not always a clear
indicator of sample quality.
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