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We first recall a property of functions that decompose over a tree structure. Assume we have a
directed tree G with n nodes. Denote by r its root, and by pa(i) the parent of node i. Note that any
undirected tree can be turned into a directed one by directing it away from an arbitrarily selected root.
Now consider a function λ(x1, . . . , xn) over n discrete variables. We will abbreviate x1, . . . , xn by
x wherever clear from context. Assume that λ(x) is defined as follows:

λ(x) = λr(xr) +
∑
i6=r

λi,pa(i)(xi, xpa(i)) + λi(xi).

where λr, λi and λi,j are given singleton and pairwise functions. Then λ(x) can be reparameterized
using min “marginals", as defined below (See [2, 7] for proof of this result for max marginals and
generalizations that include min operators):

λ(x) = λ̄r(xr) +
∑
i 6=r

λ̄i,pa(i)(xi, xpa(i))− λ̄pa(i)(xpa(i)) (0.1)

λ̄i(xi) = min
z:zi=xi

λ(z), λ̄ij(xi, xj) = min
z:zi,zj=xi,xj

λ(z)

Such λ functions will arise, whenever we take the dual of a problem whose variables are a proba-
bility distribution constrained to satisfy some marginal distributions. Specifically, the multipliers
λi(xi), λij(xi, xj) will be those that correspond respectively to the primal constraints:∑

z:zi=xi

p(z) = µi(xi),
∑

z:zi,zj=xi,xj

p(z) = µij(xi, xj).

1 Proof of Lem. 5.1

Let us begin with the proof of Lem. 5.1, in which we derive the form of solutions used in our
experiments.

Proof. We start by writing the problem down in the following manner:

min
p∈P(µ)

p(x, y)

p(x, y) +
∑
ŷ 6=y p(x, ŷ)

.

It is obvious that in order to minimize the objective, the higher p(x, ŷ) is for ŷ 6= y and the lower
p(x, y), the lower objective we get. We now notice that each of the assignments can be maximized or
minimized independently, because they appear in totally distinct constraints in P(µ). This is true
because all constraints in P(µ) are of the form:∑

z:zi,zj=xi,xj

p(z, ȳ) = µij(xi, xj , ȳ).
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Hence, for any pair y1 6= y2, non of the variables in {p(x1, y1) | x1 ∈ X} appear in the same
constraint with a variable in {p(x2, y2) | x2 ∈ X}, so all variables p(x, ŷ), p(x, y) can be maximized
or minimized separately. We already know from [5] that

min
p∈P(µ)

p(x, y) = I(x, y ; µ).

It is left to show that
max
p∈P(µ)

p(x, ȳ) = min
ij

µij(xi, xj , ȳ),

then the result of the lemma follows immediately. To prove the above equality we take the dual LP of
the left hand side:

min λ · µ (1.1)
s.t. λ(x, y) ≥ 1

λ(z, ȳ) ≥ 0 ∀z 6= x ∨ ȳ 6= y.

Here λ(·) are the dual variables, which we can think of as a function that decomposes over a directed
tree:

λ(x, y) = λr(xr, y) +
∑
i6=r

λi,pa(i)(xi, xpa(i), y) + λi(xi, y).

The inner product λ · µ is given by:∑
i,zi

λi(zi)µi(zi) +
∑

ij∈E,zi,zj

λij(zi, zj)µij(zi, zj). (1.2)

Let us take the min-reparameterization of this function and then take its expectation over a distribution
p ∈ P(µ). The following inequality holds for any feasible λ:

Ep [λ(x, y)] =
∑
zr

µr(zr)λ̄r(zr, y) +
∑
i 6=r

zi,zpa(i)

µi,pa(i)(zi, zpa(i))(λ̄(zi, zpa(i), y)− λ̄pa(i)(zpa(i), y))

≥ µr(xr)λ̄r(xr, y) +
∑
i 6=r

µi,pa(i)(xi, xpa(i))(λ̄(xi, xpa(i), y)− λ̄pa(i)(xpa(i), y)).

The inequality is true because any feasible λ is non-negative, hence λ̄r(zr) ≥ 0 and because min-
marginals over a pair of variables are always larger than those over one of them. We will conclude
the proof by observing that:

• The right hand side of the inequality is a combination of the µs that are consistent with x, y
and the coefficients of this combination sum up to:

λ̄r(xr, y) +
∑
i 6=r

λ̄(xi, xpa(i), y)− λ̄pa(i)(xpa(i), y) = λ(x, y) ≥ 1.

The equality holds due to the reparametrization property in Eq. (0.1) and λ’s feasibility.
Since the sum is higher than 1, the right hand side is also larger than any convex combination
of the µs, which in turn is larger than the smallest element in the combination. We arrive at
the conclusion that:

Ep [λ(x, y)] ≥ min
ij

µij(xi, xj , y).

• It also holds that λ · µ = Ep [λ(x)], hence the objective of any feasible solution is larger
than minij µij(xi, xj , y). On the other hand, setting λij(xi, xj , y) = 1 for a minimizing
pair i, j and all other variables to 0 results in a feasible solution with exactly this objective.
It follows that this must be the optimal value of the problem.
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2 Notations for Remainder of the Proofs

To allow for a more convenient notation, from now on we treat labels as hidden variables. That is,
instead of n features and r labels, we assume there are just n variables X1, . . . , Xn. The first m are
hidden (these will play the role of a label) and the last n−m are observed, where m may be between
0 and n − 1. For an assignment x, we refer to the hidden part as xh and the observed as xo. The
split into hidden and observed variables will mainly serve us in the proof of Thm. 4.1, in other proofs
it is just more convenient to not split expressions to x,y.

We also denote the subvector of µ over hidden variables and edges between them as µh. That is, con-
sidering the items of µ are expressions µi(zi), µij(zi, zj), µh is the subvector containing items where
i ∈ h, i, j ∈ h respectively. Define a similar vector µo for observed variables and edges between
them. The vectors Ix, Ih,x are defined to have the same indices as µ,µh respectively, their value is 1
in indices consistent with x (i.e. zi, zj = xi, xj or zi = xi for entries that contain µij(zi, zj), µi(zi)
respectively) and 0 otherwise. We will use the shorthand Ix for the vector I(x;µ)Ix.

Some notations related to graphical properties of hidden and observed nodes will be required. The
number of connected components in the subgraph of hidden variables and edges between them is
|Ph|, similarly for observed variables we will use |Po|. The set of edges ij between hidden nodes (i.e.
i, j ∈ h) is Eh, between a hidden and observed node (i.e. i ∈ o, j ∈ h w.l.o.g) is Eoh and between
observed nodes (i.e. i, j ∈ o) is Eo. The degree of node i is di and the number of its hidden neighbors
is dhi .

Finally, we define variations on the objects related to graphical models that we use in the paper. The
functional Ĩ(· ; µ) is the same functional defined in Eq. (3) of the paper, only without the ReLU
operator:

Ĩ(x ; µ) =
∑
i

(1− di)µi(xi) +
∑
ij∈E

µij(xi, xj).

We will also use two variants on the local marginal polytope [7]:

ML =

{
µ̃ |

∑
xj
µ̃ij(xi,xj)=µ̃i(xi) ∀ij∈E,xi∑

xi
µ̃ij(xi,xj)=µ̃j(xj) ∀ij∈E,xj

,

∑
xi
µ̃i(xi)=1 ∀i∑

xi,xj
µ̃i(xi,xj)=1 ∀i,j∈E

}
.

One variant we use isML(U) that was defined in the paper. The other isMh
L, where items contain

marginals only on hidden variables and edges between them:

Mh
L = {µ̃ |

∑
xi∈X̄i

µ̃ij(xi,xj)=µ̃j(xj) ∀(i,j)∈Eh∑
xj∈X̄j

µ̃ij(xi,xj)=µ̃i(xi) ∀(i,j)∈Eh
}.

3 Proof of Lem. 5.2

We start by proving the connection to Set-Cover and then move on to Max-Flow.

3.1 Connection to Set-Cover

Proof. Considrt Eq. (9) of the paper and let us write down its dual:

min λ · µ (3.1)

s.t. λr(xr) +
∑
i 6=r

λi,pa(i)(xi, xpa(i)) + λi(xi) ≥ 0 ∀x /∈ U

λr(xr) +
∑
i 6=r

λi,pa(i)(xi, xpa(i)) + λi(xi) ≥ 1 ∀x ∈ U,

This is already very similar to the LP Relaxation of Set-Cover, but with the significant difference that
variables λ are unrestricted, where in the Set-Cover LP they are non-negative. This is where the tree
structure plays an important role. Consider the min-reparameterization of any feasible solution λ(x):

λ(x) = λ̄r(xr) +
∑
i6=r

λ̄i,pa(i)(xi, xpa(i))− λ̄pa(i)(xpa(i)).
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Since λ is feasible and the constraints demand that λ(x) is non negative for all x, it is clear
that λ̄r(xr) ≥ 0. Moreover, because λ̄ is a min-reparameterization it is easy to see that
λ̄i,pa(i)(xi, xpa(i)) − λ̄pa(i)(xpa(i)) ≥ 0. This is true because constraining a minimization on
xi, xpa(i) gives a higher result than constraining on xpa(i) alone.

Now let us look at the LP Relaxation of the aforementioned Set-Cover problem:

min δ · µ (3.2)

s.t. δr(xr) +
∑
i 6=r

δi,pa(i)(xi, xpa(i)) + δi(xi) ≥ 0 ∀x /∈ U

δr(xr) +
∑
i 6=r

δi,pa(i)(xi, xpa(i)) + δi(xi) ≥ 1 ∀x ∈ U,

δ ≥ 0

Obviously, if δ is feasible for Eq. (3.2), setting λ = δ gives a feasible solution to Eq. (3.1) with the
same objective as δ’s in Eq. (3.2). That is, this problem is more constrained than Eq. (3.1). Yet given
a feasible solution to Eq. (3.1), we can use the min-reparameterization and obtain a feasible solution
to the above problem with the same objective λ · µ:

δi(xi) =

{
λ̄r(xr) i = r

0 i 6= r
, δi,pa(i)(xi, xpa(i)) = λ̄i,pa(i)(xi, xpa(i))− λ̄pa(i)(xpa(i)).

It is easy to see that because of the min-reparameteriztion property, δ(x) = λ(x) for all x and
δ ≥ 0. This means that δ is feasible and that the objectives are equal. To verify the latter, consider
a distribution p ∈ P(µ). Taking the expectations of δ,µ with respect to p shows the equality in
objectives:

λ · µ = Ep [λ(x)] = Ep [δ(x)] = δ · µ.

We conclude that while the set cover LP Relaxation is more constrained, all feasible solutions of
Eq. (3.1) can be mapped to feasible solutions of this relaxation in a manner that preserves the objective.
Hence the problems have the same value.

Let us emphasize the following two points:

• This part of the lemma did not exploit the specific choice of U (being consisted of all
assignments where variables take values in a certain set X̄i). That is, it holds for any choice
of U , not only those of the form mentioned in Eq. (6).

• The constraints for x /∈ U in Eq. (3.2) are redundant because δ ≥ 0. Removing these
constraints and moving back from Eq. (3.2) to its dual, expressed with variables p, we get
another formulation of Eq. (9). We will use this in the next part of the proof and also later
on, we thus state it as a corollary.

Corollary 3.1. Let U be a universe of assignments (not necessarily of the form in Eq. (6)) and µ a
tree-structured vector of marginals. The following LP has the same value as Eq. (9):

max
p≥0

∑
u∈U

p(u) (3.3)

s.t.
∑
u∈U

ui,uj=zi,zj

p(u) ≤ µi,j(zi, zj) ∀ij ∈ E, zi, zj

∑
u∈U
ui=zi

p(u) ≤ µi(zi) ∀i ∈ V, zi

3.2 Equivalence to Max-Flow

As stated in Section 5.2 of the paper, when the underlying graph is a chain, Eq. (9) is a Max-Flow
problem. The equivalence to Max-Flow is apparent when thinking of every assignment x ∈ U as
a path in a flow network. Assume our statistics µ are µ1,2, µ2,3, . . . , µn−1,n, then define a flow
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network with source and sink s, t and a node (i, xi) for each variable i and xi ∈ X̄i (i.e. one node
for each variable-assignment pair). The edges of the network are (i, xi) → (i + 1, xi+1) for each
0 ≤ i ≤ n − 1 and xi, xi+1 ∈ X̄i × X̄i+1, they will have capacity µi,i+1(xi, xi+1). Additionally
we will have edges s→ (1, x1), (n, xn)→ t for each x1 and xn with unbounded capacity.

It is simple to see that there is a one-to-one correspondence between paths from s to t and assignments
in U . This is where U ’s special structure, stated in Eq. (6) of the paper comes into play. Also, the
paths that go through each edge (i, xi) → (i + 1, xi+1) are exactly those of assignments z where
zi, zi+1 = xi, xi+1. According to flow decomposition [4], the LP in Eq. (3.3) solves the Max-Flow
problem on this network (where the flow is expressed as the sum of flows in all s − t paths in the
network), with a single exception that it does not contain the constraints:∑

u∈U
ui=zi

p(u) ≤ µi(zi) ∀i ∈ V, zi.

Thus to finish the proof we will get convinced that these added constraints are redundant. Consider a
solution p that only satisfies the constraints of pairwise marginals in Eq. (3.3), we will show it also
satisfies the constraints above. Let i ∈ [n] and xi ∈ X̄i and let j be a neighbour of i in the chain (the
graph is connected, so there always is a neighbour), then:∑

u∈U
ui=xi

p(u) =
∑
uj∈X̄j

∑
u∈U

ui,uj=xi,xj

p(u) ≤
∑
uj∈X̄j

µij(xi, uj) ≤ µi(xi).

This shows the constraint is satisfied and concludes our proof.

The next proof, that of Thm. 4.2, is for results on maximizing probabilities. When the underlying
graph is a chain, these results are similar to the equivalence to Max-Flow that we just proved. When
the graph is not a chain, they will give an LP that does not directly correspond to a Max-Flow problem,
but is still of polynomial size. That is, it can be solved efficiently with a standard LP solver, but not
necessarily with a combinatorial algorithm. Our conjecture is that combinatorial algorithms can be
derived for other cases, but we defer this to future work.

4 Proof of Thm. 4.2

The theorem reformulates the following problems:

max
p∈P(µ)

∑
u∈U

p(u), max
p∈P(µ)

∑
u∈U\x

p(u). (4.1)

Our goal is to show that they have the same optimum as:

max
µ̃∈ML(U),µ̃≤µ

Z(µ̃), max
µ̃∈ML(U),µ̃≤µ

I(x ; µ̃)≤0

Z(µ̃). (4.2)

Proof. To show equality of the optimal values, let us offer a mapping between feasible solutions of
the pairs of problems. From our previous results, both problems in Eq. (4.1) can be written in the
form of Eq. (3.3) with U and U \ x respectively. We will start by mapping feasible solutions of these
problems to feasible solutions of Eq. (4.2).

Choose an arbitrary root for the tree, r ∈ V , and turn the undirected tree to a directed one rooted in r.
Consider a feasible solution p to the reformulated problem in Eq. (3.3) and define:

µ̃i,pa(i)(ui, upa(i)) =
∑

z∈U :zi,zpa(i)=ui,upa(i)

p(z) ∀(ui, upa(i)) ∈ X̄i × X̄pa(i)

µ̃i(ui) =
∑

z∈U :zi=ui

p(z) ∀ui ∈ X̄i

It is simple to prove that µ̃ ∈ML(U), because for any pair ij ∈ E it holds that:∑
uj∈X̄j

µ̃i,j(ui, uj) =
∑
uj∈X̄j

∑
z∈U :zi,zj=ui,uj

p(z) =
∑

z∈U :zi=ui

p(z) = µ̃i(ui).
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And from p’s feasibility we also get µ̃ ≤ µ. This can be seen from inequalities of the following type:

µ̃i,j(ui, uj) =
∑

z∈U :zi,zj=ui,uj

p(z) ≤ µij(ui, uj).

We conclude that µ̃ is a feasible solution to Eq. (4.2) with objective:

Z(µ̃) =
∑
ur∈X̄r

µ̃r(zr) =
∑
ur∈X̄r

∑
z∈U :zr=ur

p(z) = p(U).

This mapping only considered the first problem in Eq. (4.1). We can use the exact same construction
when considering U \ x as follows. Feasible solutions to Eq. (3.3) are functions p : U \ x→ R+,
so extending p’s domain to U by setting p(x) = 0, the above equations remain unaltered. It is left
to show that the resulting µ̃ satisfies I(x; µ̃) ≤ 0. If we examine the term I(x; µ̃), when di is the
degree of node i in the graph, we get that:∑

i

(1− di)µ̃i(xi) +
∑
ij

µ̃ij(xi, xj) =
∑
u∈U

αup(u),

αu ,
∑
i

Iui=xi
−
∑
ij

I(ui=xi)∨(uj=xj).

Simple counting arguments show that αx = 1, while αu ≤ 0 for all u 6= x. Since we set p(x) = 0,
it follows that

∑
u∈U αup(u) ≤ 0 and also I(x; µ̃).

It is left to provide a mapping from solutions of Eq. (4.2) to solutions of Eq. (4.1). We will provide a
proof for the case where

U =
{
u | ui ∈ X̄i ∀i ∈ [n]

}
.

More specifically, we will construct a function p : U → R+ whose marginals are µ̃ and summing it
over all of its domain gives Z(µ̃). The construction is the same one used when proving that the local
marginal polytope is equal to the marginal polytope for tree graphs [7]. To complete the proof, we
will also need to show a construction when p’s domain is U \ x (and U defined the same as above).
We refer the reader to [5] where this detailed construction can be found. There the sum of p over its
domain is 1, yet applying this construction to µ̃ gives a function that sums up to Z(µ̃).

The function p we suggest for the problem over domain U is:

p(u) = µ̃r(ur)
∏
i6=r

µ̃i,pa(i)(ui, upa(i))

µ̃pa(i)(ui)
.

Assume r is set arbitrarily and 1, . . . , n is a topological ordering of the nodes. Notice that any choice
of r and an ordering yields the same function p. It is simple to see that the function marginalizes to µ̃
if we let ij ∈ E, set i as the root and eliminate all variables other than i, j. To show that p’s sum over
its domain U is exactly the partition function, eliminate all the variables to get:∑
x∈U

p(x) =

∑
u1∈X̄1

µ̃1(u1)

 ∑
u2∈X̄2

µ̃2,pa(2)(u2, upa(2))

µ̃pa(2)(u2)
. . .

 ∑
un∈X̄n

µ̃n,pa(n)(un, upa(n))

µ̃pa(n)(upa(n))

 =
∑
u1∈X̄1

µ̃1(u1).

Here we implicitly numbered the root node as 1. To conclude, we showed a mapping from µ̃ to a
function p that is feasible for Eq. (4.1), completing the proof.

For the case U \ x, as stated earlier, [5] offer a construction of a function that marginalizes to µ̃ and
achieves p(x) = I(x ; µ). Thus enforcing I(x ; µ) ≤ 0 ensures there is a mapping from µ̃ to a
function p with the same objective.

Notice the equality in the above equation holds because of U ’s special structure that includes all the
assignments that take values in sets X̄i. Different choices of U do not necessarily yield this equation,
thus the theorem does not hold for all choices of U .
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5 Proof of Thm. 4.1

We recall the problem at hand of minimizing conditional probabilities:

min
p∈P(µ)

p(xh | xo),

where we assume w.l.o.g that xh = x1, . . . , xm are hidden variables, xo = xm+1, . . . , xn are
observed, and x is the fixed assignment to both. Using the Charnes-Cooper variable transformation
[1] between p(zh, zo) and p(zh,zo)

p(xo) for all z, and taking the dual of the resulting LP, we arrive at the
following problem:

max λx (5.1)

s.t. λr(zr) +
∑
i 6=r

λi,pa(i)(zi, zpa(i)) + λi(zi) ≤ 0 ∀z : zo 6= xo

λr(zr) +
∑
i 6=r

λi,pa(i)(zi, zpa(i)) + λi(zi) ≤ −λx ∀z : zo = xo, zh 6= xh,

λr(xr) +
∑
i 6=r

λi,pa(i)(xi, xpa(i)) + λi(xi) ≤ 1− λx

λ · µ ≥ 0.

The transformation is correct under the assumption that p(xo) > 0, which is reasonable to assume
when we observe xo and try to infer xh.

The rest of the proof can now be decomposed into two main parts, one manipulates Eq. (5.1) and the
other manipulates the second problem in Eq. (4.2):

Lemma 5.1. Let U be a set of the shape defined in Eq. (6) of the paper and µ a vector of tree shaped
marginals. If

max
p∈P(µ)

∑
u∈U

p(u) > max
p∈P(µ)

∑
u∈U\x

p(u), (5.2)

then it holds that:

max
µ̃∈ML(U),µ̃≤µ

I(x ; µ̃)≤0

Z(µ̃) = max
µ̃∈ML(U),µ̃≤µ−Ix

I(x ; µ̃)=0

Z(µ̃).

Lemma 5.2. Eq. (5.1) has the same optimal value as:

min µx (5.3)

s.t. µ̃ ∈Mh
L, 0 ≤ µ̃ ≤ τµµh − µxIx

µoτµ ≥ 1∑
zi

µ̃i(zi) = τ̃ ∀i ∈ h

µx + τ̃ = 1

I(xh; µ̃) + (1− |Ph|)τ̃ ≤ 0

τµI(x;µ)− µx − I(xh; µ̃) + (|Ph| − 1)τ̃ ≤ 0.

The decision variables in in Eq. (5.3) are µ̃, τ̃ , τµ, µx, where µ̃ are pseudo-marginals on hidden
variables and pairs of them that are connected by an edge. This form is very similar to that of
problems in Eq. (4.2), and indeed their solutions are similar. Using Lem. 5.1, we will show that a
simple modification to the solution of the second problem in Eq. (4.2) leads to a solution of Eq. (5.3).
This modification is shown in the following two lemmas, that also conclude the proof of Thm. 4.1.
For now we assume the correctness of Lem. 5.2 and Lem. 5.1, their proofs are deferred to the end of
this document.
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To fit our problem into the formulation of Lem. 5.1, define U using X̄i = {xi} for all observed
variables i ∈ o and X̄j unrestricted for all hidden variables j ∈ h. Under this definition we have:

max
p∈P(µ)

∑
u∈U

p(u) = max
p∈P(µ)

p(xo),

max
p∈P(µ)

∑
u∈U\x

p(u) = max
p∈P(µ)

∑
zh 6=xh

p(xo, zh).

We are now ready to use the above lemmas and conclude the proof.
Lemma 5.3. If I(x ; µ) ≤ 0 then

min
p∈P(µ)

p(xh | xo) = 0,

unless maxp∈P(µ)

∑
zh 6=xh

p(zh,xo) = 0 and then the value is 1.

Proof. We assume that p(xo) is constrained to be larger than 0, otherwise the robust conditional
probability problem is ill-defined. So it is trivial that if

max
p∈P(µ)

∑
zh 6=xh

p(xo, zh) = 0,

then p(x) = p(xo) and the conditional is 1.
Now assume towards contradiction that minp∈P(µ) p(xh | xo) > 0, clearly we must have:

max
p∈P(µ)

∑
u∈U

p(u) > max
p∈P(µ)

∑
u∈U\x

p(u),

because otherwise equality must hold, so a maximizing distribution of the right hand side will have to
achieve a conditional probability of 0. Then the conditions of Lem. 5.1 hold and we have:

max
p∈P(µ)

∑
zh 6=xh

p(xo, zh) = max
µ̃∈ML(U),µ̃≤µ

I(x ; µ̃)=0

Z(µ̃).

Denote the value of the above problems as τ̃1 > 0, let µ̃1 be an optimal solution to the problem on
the right hand side and µ̃1,h its sub-vector that corresponds to hidden variables and edges between

them. Consider taking µ̃ =
µ̃1,h

τ̃1
, τ̃ = 1, µx = 0, we will show there exists a value of τµ such that

µ̃, τ̃ , µx, τµ is a feasible solution to Eq. (5.3). The value of this solution is µx = 0, which contradicts
the assumption that the minimum is strictly positive and concludes the proof.

To see such a value of τµ exists, note the following three points:

• µ̃1 ∈ ML(U), µ̃1 ≤ µ and normalizes to τ̃1. So it also holds that µ̃ ∈ ML, µ̃ ≤ τ̃−1
1 µh,

hence the first constraint of Eq. (5.3) is satisfied for any τµ ≥ τ̃−1
1 . Also from these results

it is straightforward to see that the third and fourth constraints are satisfied.

• Because we enforced p(xo) > 0, it holds that µo > 0. Thus the second constraint of
Eq. (5.3) can also be satisfied if we take a large enough value for τµ (i.e. larger than one
over the minimal item in µo).

• Finally, we will show that

I(xh; µ̃) + (1− |Ph|)τ̃ = 0. (5.4)

This means the fifth constraint is satisfied and more importantly, because I(x;µ) ≤ 0, the
last constraint is satisfied for any positive value of τµ.
To show that Eq. (5.4) holds, notice that:

I(x; µ̃1) = 0,

µ̃1,i(xi) = τ̃1 ∀i ∈ o,
µ̃1,ij(xi, xj) = τ̃1 ∀(i, j) ∈ Eo,
µ̃1,ij(xi, zj) = µ̃1,j(zj) ∀(i, j) ∈ Eoh, zj .
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This first equality holds because it is a constraint in the problem that µ̃1 solves, the others
because observed variables have only one possible value in U and µ̃1 ∈ ML(U). Let
us write down I(x; µ̃1) and decompose the sums in its expression into smaller ones over
observed and hidden variables, and to different types of edges:

I(x; µ̃1) =
∑
i

(1− di)µi(xi) +
∑
ij∈E

µij(xi, xj)

=
∑
i∈o

(1− di)τ̃1 +
∑
i∈h

(1− di)µ̃1,i(xi) +
∑
ij∈Eh

µ̃1,ij(xi, xj)

+
∑

ij∈Eoh

µ̃1,j(xj) +
∑
ij∈Eo

τ̃1

= 0

Since the subgraph of observed nodes is a forest, it has |Eo| = |o|−|Po| edges. Furthermore,∑
i∈o di = |Eoh|+ 2|Eo| so we can rewrite the above expression as:

I(x; µ̃1) = (|Po| − |Eoh|)τ̃1 +
∑
i∈h

(1− dhi )µ̃1,i(xi) +
∑
ij∈Eh

µ̃1,ij(xi, xj).

Notice we also combined the summation over ij ∈ Eoh to that over i ∈ h, changing di to
dhi . The entire graph being a tree, it must also hold that |Eoh| = |Ph|+ |Po| − 1. Plugging
this into our expression, we get:

I(x; µ̃1) = I(xh; µ̃1,h) + (1− |Ph|)τ̃1 = 0.

Now because of the way we set µ̃, we arrive at:
I(x; µ̃1)

τ̃1
= I(xh; µ̃) + (1− |Ph|)τ̃ = 0,

which gives Eq. (5.4).

Combining the items above, we see that taking τµ larger than τ̃−1
1 and all entries of µ−1

o , gives a
feasible solution as required.

Lemma 5.4. If I(x;µ) > 0 then minp∈P(µ) p(xh | xo) = I(x;µ)
I(x;µ)+maxp∈P(µ)

∑
zh 6=xh

p(zh,xo) .

Proof. Obviously the right hand side is a lower bound on the minimum, we need to show there is
a feasible solution that gives this bound. When I(x;µ) > 0 it is easy to see that the conditions
of Lem. 5.1 hold. So defining µ̃1, τ̃1 as we did in the proof of Lem. 5.3, we can assume µ̃1 ≤
µ− Ix, I(xh; µ̃1) + (1− |Ph|) = 0. Now consider setting:

τµ =
1

I(x,µ) + τ̃1
, µ̃ = µ̃1,hτµ, τ̃ = τ̃1τµ, µx = I(x;µ)τµ.

Since τ̃1 is defined as the value of the maximization problem in the denominator of the bound stated
in the lemma, it can be seen that the value of µx is equal to this bound. So if this solution is feasible
for Eq. (5.3), µx is also an upper bound on the robust conditional probability and it must also be the
optimal value. We will simply go through each constraint in Eq. (5.3) and show this solution satisfies
it:

• µ̃ ∈ Mh
L, 0 ≤ µ̃ ≤ τµµh − µxIxh

: since µ̃1 ∈ ML(U) and linear constraints stay
satisfied after multiplying all variables by a positive scalar, we have µ̃ ∈Mh

L. Satisfaction
of capacity constraints is also a direct consequence of µ̃1 satisfying capacity constraints:
µ̃ = µ̃1,hτµ ≤ (µh − Ix)τµ = τµµh − µxIxh

.

• µi(xi)τµ ≥ 1 ∀i ∈ o, µij(xi, xj)τµ ≥ 1 ∀ij ∈ Eo: Notice that µ̃1 also has components
for observed variables i ∈ o that satisfy τ̃1 = µ̃1,i(xi) ≤ µi(xi) − I(x;µ) and τ̃1 =
µ̃1,ij(xi, xj) ≤ µij(xi, xj)− I(x;µ) for ij ∈ Eo. This gives us the constraints easily:

τ̃1 + I(x;µ) =
1

τµ
≤ µi(xi) ∀i ∈ o,

and the same holds for every ij ∈ Eo.
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•
∑
zi
µ̃i(zi) = τ̃ ∀i ∈ h, µx + τ̃ = 1: Easy to see from our setting of µ̃, τ̃ , µx, because

µ̃1 normalizes to τ̃1.

• I(xh; µ̃) + (1 − |Ph|)τ̃ ≤ 0, τµI(x;µ) − µx − I(xh; µ̃) + (|Ph| − 1)τ̃ ≤ 0: Using
I(xh; µ̃) + (1− |Ph|)τ̃ = 0 (this was proved in the proof of Lem. 5.3) and because we set
µx = I(x;µ)τµ, it is easy to confirm these two constraints are satisfied.

We are left with the task of proving Lem. 5.2 and Lem. 5.1, this is the topic of the next section.

5.1 Proofs of Lem. 5.2 and Lem. 5.1

The problem we are concerned with, Eq. (5.1), has an exponential number of constraints. We will see
shortly that these constraints can be treated as constraints on the value of 2nd-best MAP problems
[5], one over the tree shaped field λ(z) and the other over the forest shaped λ(zh,xo). To prove
our results we will use a relaxation of these problems. Specifically, we will use the tightness of this
relaxation in trees and forests to switch these constraints with a polynomially sized set, that is easier
to handle analytically. Hence we turn to derive the set of linear constraints, this is done in a very
similar manner to the derivation in [6].

5.1.1 Second Best MAP using Dual Decomposition

As proved by the authors in [5], the 2nd-best MAP problem over a field λ(z), with excluded
assignment x can be written as follows:

max
µ̃

λ · µ̃

s.t. µ̃ ∈ML, Ĩ(x ; µ̃) ≤ |P | − 1,

where |P | is the number of connected components. This is in fact a relaxation of the 2nd-best MAP
problem, but it is exact when the graph is a tree or a forest. The dual of this problem is:

min
δ,δx

∑
i

δi +
∑
ij

δij + (|P | − 1)δx

s.t. λi(zi) +
∑
j

δji(zi) + (di − 1)δxIzi=xi
≤ δi ∀i, zi

λij(zi, zj)− δji(zi)− δij(zj)− δxIzi,zj=xi,xj
≤ δij ∀ij, (zi, zj)

δx ≥ 0

At the optimum, δi, δij will just be equal to the maximum of the left hand side over different values
of zi, zj (since the problem is a minimization problem), hence we can solve:

min
δ,δx≥0

∑
i

max
zi

λi(zi) +
∑
j

δji(zi) + (di − 1)δxIzi=xi

+

∑
ij

max
zi,zj

{
λij(zi, zj)− δji(zi)− δij(zj)− δxIzi,zj=xi,xj

}
+ (|P | − 1)δx

To formulate a set of linear constraints that are satisfied if and only if this MAP value is smaller than
a constant c, we can use auxiliary variables and a polynomial number of constraints, as done in [3]:∑

i

αi +
∑
ij

αij + (|P | − 1)δx ≤ c (5.5)

λi(zi) +
∑
j

δji(zi) + (di − 1)δxIzi=xi
≤ αi ∀i, zi

λij(zi, zj)− δji(zi)− δij(zj)− δxIzi,zj=xi,xj
≤ αij ∀ij, (zi, zj)

δx ≥ 0.

In the next section we will place these constraints in Eq. (5.1) and move back to its own dual, after
some manipulation this will give us Lem. 5.2.
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5.1.2 Concluding the Proofs

Proof of Lem. 5.2. Consider Eq. (5.1). Because we know that the optimal value of λx is in the
segment [0, 1], this problem can be written as:

max λx (5.6)
s.t. max

z 6=x
λ(z) ≤ 0

max
zh 6=xh,zo=xo

λ(z) ≤ −λx

λ(xr) +
∑
i6=r

λi,pa(i)(xi, xpa(i)) + λi(xi) ≤ 1− λx

λ · µ ≥ 0.

Begin by writing the full dual problem, where we plug the liner constraints described in Eq. (5.5)
instead of the first two constraints in Eq. (5.6). The first 4 constraints are received by replacing the
first 2nd-best MAP in Eq. (5.6), while the 4 constraints after these are for the second 2nd-best MAP
in Eq. (5.6). On the right hand side we assign dual variables to each of the constraints:
max λx

s.t.
∑
i αi +

∑
ij αij ≤ 0 τ̄

λi(zi) +
∑
j δ̄ji(zi) + (di − 1)δ̄xIzi=xi

≤ αi ∀i, zi µ̄i(zi)

λij(zi, zj)− δ̄ji(zi)− δ̄ij(zj)− δ̄xIzi,zj=xi,xj
≤ αij ∀ij, (zi, zj) µ̄ij(zi, zj)

δ̄x ≥ 0∑
i∈h βi +

∑
ij∈Eh

βij + (|Ph| − 1)δ̃x ≤ −λx −
∑
ij∈Eo

λij(xi, xj)−
∑
i∈o λi(xi) τ̃

λi(zi) +
∑
j∈o λji(xj , zi) +

∑
j∈h δ̃ji(zi) + (dhi − 1)δ̃xIzi=xi

≤ βi ∀i ∈ h, zi µ̃i(zi)

λij(zi, zj)− δ̃ji(zi)− δ̃ij(zj)− δ̃xIzi,zj=xi,xj ≤ βij ∀ij ∈ Eh, (zi, zj) µ̃ij(zi, zj)

δ̃x ≥ 0
λr(xr) +

∑
i6=r λi,pa(i)(xi, xpa(i)) + λi(xi) ≤ 1− λx µx

λ · µ ≥ 0 τµ

Because we assume (V,E) is connected, the coefficient of δ̄x in the first constraint is 0 and this
variable does not appear in the constraint. Yet the subgraph of hidden variables might not be connected.
Recall we denoted its number of connected components by |Ph|, this explains the coefficient of δ̄x in
the fifth consraint. Now we take the dual of the above and get the problem:
min µx

s.t. µx + τ̃ = 1 λx
µ̄i(zi) + µ̃i(zi)− µi(zi)τµ + Izi=xiµx = 0 ∀i ∈ h, zi λi(zi), i ∈ h
µ̄ij(zi, zj) + µ̃ij(zi, zj)− µij(zi, zj)τµ + Izi,zj=xi,xj

µx = 0 ∀ij ∈ Eh, (zi, zj) λij(zi, zj)
µ̄i(zi) + Izi=xi

(τ̃ + µx)− µi(zi)τµ = 0 ∀i ∈ o, zi λi(zi), i ∈ o
µ̄ij(zi, zj) + Izi,zj=xi,xj (τ̃ + µx)− µij(zi, zj)τµ = 0 ∀ij ∈ Eo, (zi, zj) λij(zi, zj)
µ̄ij(zi, zj) + Izj=xj

(µ̃i(zi) + Izi=xi
µx)− µij(zi, zj)τµ = 0 ∀ij ∈ Eho, (zi, zj) λij(zi, zj)∑

zj
µ̄ij(zi, zj) = µ̄i(zi) ∀ij ∈ E, zi δ̄ji(zi)∑

zj
µ̃ij(zi, zj) = µ̃i(zi) ∀ij ∈ Eh, zi δ̃ji(zi)∑

zi
µ̄i(zi) = τ̄ ∀i αi∑

zi
µ̃i(zi) = τ̃ ∀i βi∑

i (1− di)µ̄i(xi) +
∑
ij µ̄ij(xi, xj) ≤ 0 δ̄x∑

i (1− dhi )µ̃i(xi) +
∑
ij µ̃ij(xi, xj) + (1− |Ph|)τ̃ ≤ 0 δ̃x

All variables in the problem are constrained to be non negative as well. The right column denotes
the primal variables that each dual constraint corresponds to, in the third row these variables are λij
for ij ∈ Eh, while in the fifth and sixth they are for ij ∈ Eo and Eho respectively. Notice that we
can simplify the problem by using the second to sixth equality constraints and eliminate variables µ̄.
Local consistency constraints for µ̄:∑

zj

µ̄ij(zi, zj) = µ̄i(zi) ∀ij ∈ E, zi,
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will be satisfied because of µ̃ and µ’s local consistency, while normalization constraints:∑
zi

µ̄i(zi) = τ̄ ∀i,

are also satisfied because µ̃ normalizes to τ̃ . Combining the above switch of variables into the
constraint Ĩ(x ; µ̄) ≤ 0, it becomes:

τµĨ(x ; µ)− µx − Ĩ(xh ; µ̃) + (
∑
i∈o

(di − 1)− |Eo|)τ̃ ≤ 0.

We already showed in the proof of Lem. 5.3 that the term
∑
i∈o (di − 1)− |Eo| is equal to |Ph| − 1,

turning the above constraint to:

τµĨ(x ; µ)− µx − Ĩ(xh ; µ̃) + (|Ph| − 1)τ̃ ≤ 0.

So we end up with the following problem:

min µx
s.t. µx + τ̃ = 1

µ̃i(zi)− µi(zi)τµ + Izi=xi
µx ≤ 0 ∀i ∈ h, zi

µ̃ij(zi, zj)− µij(zi, zj)τµ + Izi,zj=xi,xj
µx ≤ 0 ∀ij ∈ Eh, (zi, zj)

µi(xi)τµ ≥ 1 ∀i ∈ o
µij(xi, xj)τµ ≥ 1 ∀ij ∈ Eo
µ̃i(zi) + Izi=xiµx − µij(zi, xj)τµ ≤ 0 ∀ij ∈ Eho∑
zj

µ̃ij(zi, zj) = µ̃i(zi) ∀ij ∈ Eh, zi∑
zi

µ̃i(zi) = τ̃ ∀i ∈ h

τµI(x ; µ)− µx − I(xh ; µ̃) + (|Ph| − 1)τ̃ ≤ 0

I(xh; µ̃) + (1− |Ph|)τ̃ ≤ 0

Simplifying notation using the vectors µh, Ix,µo that we defined in Section 2, the problem takes the
shape of Eq. (5.3)

Proof of Lem. 5.2. From Thm. 4.2 we know that:

max
µ̃∈ML(U),µ̃≤µ

Z(µ̃) = max
p∈P(µ)

∑
u∈U

p(u),

max
µ̃∈ML(U),µ̃≤µ

I(x ; µ̃)≤0

Z(µ̃) = max
p∈P(µ)

∑
u∈U\x

p(u).

Now for each i, (i, j) ∈ E, consider replacing constraints in P(µ) as follows:∑
z:zi,zj=xi,xj

p(z) = µij(xi, xj)→
∑

z:zi,zj=xi,xj ,
z 6=x

p(z) ≤ µij(xi, xj)− I(x,µ),

∑
z:zi=xi

p(z) = µi(xi)→
∑

z:zi=xi
z 6=x

p(z) ≤ µi(xi)− I(x,µ).

We will denote this set by P̃(µ). Since for any p ∈ P(µ) we know that p(x) ≥ I(x,µ), it holds that
P(µ) ⊆ P̃(µ), which means the maximum of the new problem is higher than that of the original for
both problems (on U and U \ x):

max
p∈P(µ)

∑
u∈U

p(u) ≤ max
p∈P̃(µ)

∑
u∈U

p(u)

max
p∈P(µ)

∑
u∈U\x

p(u) ≤ max
p∈P̃(µ)

∑
u∈U\x

p(u)
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Taking the dual of this new problem on U \ x we obtain:

min
λ
λ · (µ− Ix)

s.t. λ(z) ≥ 1 ∀z ∈ U \ x
λ(z) ≥ 0 ∀z /∈ U
λij(xi, xj) ≥ 0, λi(xi) ≥ 0 ∀i ∈ V, (i, j) ∈ E

From the result in Cor. 3.1, we can consider the variables to be non-negative (i.e. λ ≥ 0), the second
constraint is redundant and can be removed. Furthermore, the first constraint is in fact a constraint on
the value of the 2nd-best MAP problem on −λ(z) (i.e. minimization of λ(z) while excluding x).
Adapting the constraints in Eq. (5.5) to a minimization problem and switching into our problem we
get:

min
λ≥0,δx≥0,α,δ

λ · (µ− Ix) (5.7)

s.t.
∑
i

αi +
∑
ij

αij ≥ 1

λi(zi) +
∑
j

δji(zi) + (1− di)δxIzi=xi ≥ αi ∀i, zi ∈ X̄i

λij(zi, zj)− δji(zi)− δij(zj) + δxIzi,zj=xi,xj
≥ αij ∀ij, (zi, zj) ∈ X̄i × X̄j .

Taking the dual of this problem, it is easy to see it equals to:

max
µ̃∈ML(U),µ̃≤µ−Ix

I(x ; µ̃)≤0

Z(µ̃).

The constraints of this problem are more strict than the ones in the original, therefore its value is
lower:

max
p∈P(µ)

∑
u∈U\x

p(u) = max
µ̃∈ML(U),µ̃≤µ

I(x ; µ̃)≤0

Z(µ̃) ≥ max
µ̃∈ML(U),µ̃≤µ−Ix

I(x ; µ̃)≤0

Z(µ̃) = max
p∈P̃(µ)

∑
u∈U\x

p(u).

We gather that an equality must hold:

max
p∈P(µ)

∑
u∈U\x

p(u) = max
p∈P̃(µ)

∑
u∈U\x

p(u) = max
µ̃∈ML(U),µ̃≤µ−Ix

I(x ; µ̃)≤0

Z(µ̃).

To complete the proof we need to show the existence a solution µ̃ that is optimal for the problem
on the right hand side and satisfies I(x ; µ̃) = 0. Then assume towards contradiction that Eq. (5.2)
holds and there is no optimal solution where I(x ; µ̃) = 0. Since the problem is feasible, some
optimal solution µ∗ does exist and from complementary slackness, there is a corresponding solution
λ∗, 0,α∗, δ∗ to Eq. (5.7). Since the value of δx is 0, then λ∗,α∗, δ∗ is also a feasible solution to the
dual of:

max
p∈P̃(µ)

∑
u∈U

p(u),

which means λ∗ · (µ − Ix) is an upper bound on this problem. To conclude, we concatenate the
inequalities we have so far:

max
p∈P(µ)

∑
u∈U

p(u) ≤ max
p∈P̃(µ)

∑
u∈U

p(u) ≤ λ∗ · (µ− Ix) = max
p∈P(µ)

∑
u∈U\x

p(u).

This inequality contradicts the hard inequality we assumed at the statement of the lemma, therefore
there exists an optimal solution where I(x ; µ̃) = 0 and we can incorporate this equality into the
constraints without changing the value of the problem.
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