Supplementary Material

This section presents the complete proofs of lemmas presented in the article.

A Detailed Proof of Lemma 4.2]

Lemma 4.2 If there exists a partition in S such that at least half of its buckets are full, then for the
set Z produced by STAR-T-GREEDY we have

H2) > (1—e)(1‘3’;) @)

Proof. Let i* be a partition such that half of its buckets are full. Let B;~ ; be a full bucket that
minimizes |B;« ; N E|. In STAR-T, every partition contains w[k/2"] buckets. Hence, the number
of full buckets in partition 7* is at least wk /2% *1. That further implies

2"+l
|Bix j NE| < 2 6)
Taking into account that B;« ; is a full bucket, we conclude
21" tlm
B« j \ E| > | B ;| — 7
[Bie g \ E| 2 |Bioy| = —— ™

From the property of our Algorithm (line EI) every element added to B;« ; increased the utility of this

bucket by at least 7/2'". Combining this with the fact that B;« ; 1s full, we conclude that the gain of
every element in this bucket is at least 7/ | B;+ ;|. Therefore, from Eq. (7) it follows:

2i*+1m> T (21"+)
Bi*" E 2 Bz’",' _ —_— =71 - =]. (8)
R N e s

Taking into account that 20" +! < 4|B;. ;| this further reduces to

FBe\E) 27 (1207 ©)
Finally,
f(Z) = f(GREEDY(k, S\ E)) > (1 — e V) f(OPT(k, S\ E))
> (1—e ") f(OPT(k, By ; \ E)) (10)
=(1—e)f(U\E (1)
>(1—e) (1) (12)

where Eq. (I0) follows from (B, ; \ E) C (S'\ E), Eq. (IT) follows from the fact that | B;« ;| < k,
and Eq. (12) follows from Eq. (9). O

B Detailed Proof of Lemma 4.3

We start by studying some properties of E that we use in the proof of Lemma[4.3]
Lemma B.1 Let B; be a bucket in partition i > 0, and let E; := B; N E denote the elements that are
removed from this bucket. Given a bucket B;_1 from the previous partition such that |B; 1| < 2'~*

(i.e. B;_1 is not fully populated), the loss in the bucket B; due to the removals is at most

T
f(Ez ‘ Bi—l) < F|El|

11

Proof. First, we can bound f (F; | B;_1) as follows

F(E:|Bict) <Y fle|Biry). (13)

eelE;

Consider a single element e € Ej;. There are two possible cases: f(e) < 5=, and f(e) >

In the first case f (e] Bi—1) < f(e) < 5i=r. In the second one, as \Bz 1] < 2¢7! we conclude
(e | Bi-1) =T, as otherwise the streaming algorithm would place e in B;_;. These observations
together with @]} imply:

T T
f(Ei|Bia) <) 51 = it | Eil-
eckE;

Lemma B.2 For every partition i, let B; denote a bucket such that | B;| < 2 (i.e. no partition is
fully populated), and let E; = B; N E denote the elements that are removed from B;. The loss in the
bucket Biiog k1 due to the removals, given all the remaining elements in the previous buckets, is at
most

[log k1—1 [log k] -
FlEngn| U B\E)|< Y 2= Eil-
=0 j=1

Proof. We proceed by induction. More precisely, we show that for any ¢ > 1 the following holds

i—1 %
U@BN\E) | <X 55lEl (14)
j=0 j=1

Once we show that (T4) holds, the lemma will follow immediately by setting i = [log k].

Base case i = 1. Since By is not fully populated and the maximum number of elements in the
partition ¢ = 0 is 1, it follows that both By and Ej are empty. Then the term on the left hand side of
(T4) for i = 1 becomes f(E}). As |By| < 1 we can apply Lemma[B.1]to obtain

J(Ex) = f(Br | By) < |Br| g5

Inductive step i > 1. Now we show that (I4) holds for ¢ > 1, assuming that it holds for ¢ — 1.
First, due to submodularity we have

UB\E > | Eia OB\E :

and, hence, we can write

i—1 i—1 i—2
UBNE) | <flE|\UBNE) | +f|Eia | |JBi\E) | - f | Eia
=0 =0 =0 j
i—1 -
=flEuJB\E)| +f|Eia UB\E —flE_1uU
j=0 j=0
(15)
Due to monotonicity, the first term can be further bounded by
i—1 i—2
FlEUVB\E)| <f|EUuB_UlJB\E) |, (16)
Jj=0 j=0

12

T
- 9i—1-

|
A

(B \ Ej)

I
=)

i—1

UB\E

and for the third term we have

% i—2 %
BiaUlJB\E) | =f|EaUB U (B\E) | =f|BiaaulJ B\ E))
3=0 j=0 7=0
(17)
where to obtain the identity we used that F;_1 U (B;—1 \ F;—1) = E;—1 U B;_1.
By substituting the obtained bounds and in we obtain:
i-1 i—2 -
UB\E) | <f|E|BiaulJBi\E) | +f|Eica U (Bj \ Ej)
j=0 j=0 =0
i—2
<FENBi)+f | B | | Bi\E)) |, (18)
j=0
where the second inequality follows by submodularity.
Next, Lemma|[B.1|can be used (as | B;—1| < 2°~?) to bound the first term in (T8):
UB\E < gl Bl + f | B UB\E : (19)

To conclude the proof, we use the inductive hypothesis that (T4) holds for ¢ — 1, which together
with implies

%

_ i—1

T T T
U B \E < 21_1|Ei|+22j_1|Ej‘ 222]‘_1|E]"7
j=0 j=1

Jj=1

as desired. O

Lemma 4.3 If there does not exist partition of S such that at least half of its buckets are full, then
for the set Z produced by STAR-T-GREEDY we have

f(2) > (1 —6_1/3) (f (Bhogk) — 477;7')’

where Biiog 1) is a bucket in the last partition which is not fully populated minimizing |B Mogk] N E |
and |E| < m.

Proof. Let B; denote a bucket in partition 7 which is not fully populated (B; < min{2%, k}), and for
, where IV, = B; N E, is of minimum cardinality. Such bucket exists in every partition ¢
due to the assumption of the lemma that more than a half of the buckets are not fully populated.

First,
[log k] Mog k]1—1
f U (Bi\Ei) | 2 f (Bpiogk1) — f | Enogr U (Bi \ E;) (20)
i=0 i=0
[log k] -
> f (Bogr) = D 5iglBil; @1
i=1

UDOg k1= Y(B; \ E;). As we consider buckets that are not fully populated, Lemma [B.2is used

where Eq. (20) follows from Lemma by setting B = Biggr], B = Efiog kild A =
|E;| in Eq. (2I) independently.

to obtain Eq. (2I). Next, we bound each term 5=

From Algorithm|[1| we have that partition i consists of w[k/2'] buckets. By the assumption of the
lemma, more than half of those are not fully populated. Recall that B; is defined to be a bucket of

13

partition ¢ which is not fully populated and which minimizes |E;|. Let E; be the subset of E that
intersects buckets of partition i. Then, | E;| can be bounded as follows:

| Es] 27+ By
< .

i< s
Bl < wlh2T = "k

Hence, the sum on the left hand side of Eq. can be bounded as

[log k] [log k] [log k]

T T 2”1|E | 4 4|E‘
Putting the last inequality together with Eq. (ZI)) we obtain
[log k7
41F
Fl U @AE)| 2 f Bro) - 2L
i=0
Observe also that
[log k] [log k] llog k|
U 1B\E|< | Bil<k+ |J 2 <3k,
i=0 i=0 i=0
which implies
[log kT 4E|
FOPTERS\E) > | J (Bi\E) | 2 f (Bogsy) = — -7
i=0

Finally,

f(Z) = f(GREEDY(K, S\ E)) > (*1/3)f(OPT(3k S\ E))

4IE|
Z 1/3 <f Bﬂogk] wk T)
4m
> (1-e7) (an%kw wkr), (22)

as desired. O

C Detailed Proof of Lemma 4.4

Lemma 4.4 [f there does not exist partition of S such that at least half of its buckets are full, then
for the set Z produced by STAR-T-GREEDY,

f(Z) > (1 7671)(f(OPT(k7V\E)) *f(Bﬂong) 77_);

where Biiog 1 is any bucket in the last partition which is not fully populated.

Proof. Let B[jog 1) denote a bucket in the last partition which is not fully populated. Such bucket
exists due to the assumption of the lemma that more than a half of the buckets are not fully populated.

Let X and Y be two sets such that Y contains all the elements from OPT(k, V' \ E) that are placed
in the buckets that precede bucket Briog 7 in S, and let X := OPT(k, V' \ E) \ Y. In that case, for
every e € X we have

Hd&mm<£ (23)

due to the fact that Byjg g7 is the bucket in the last partition and is not fully populated.

14

We proceed to bound f(Y):

f(Y) = f(OPT(k,V \ E)) — f(X) (24)
Zf(OPT(k’V\E»_f(X ‘ B(logk‘\) _f(B[logk]) (25)
> f(OPT(k’V\E)) - f (B[logk]) - Z f (6 ’ Bﬂoglﬂ) (26)
eeX
> [(OPT(k,V\ B)) = f (Biogr1) — 71X)
> f(OPT(k, V\ E)) = f (Biog1) = 7, (28)

where Eq. 24) follows from f(OPT(k,V \ E)) = f(X UY) and submodularity, Eq (23) and
Eq (26) follow from monotonicity and submodularity, respectively. Eq. (27) follows from Eq. 23),
and Eq. (28) follows from | X| < k.

Finally, we have:

f(Z) = f(GREEDY(k, S\ E)) > (L—e™') f(OPT(k, S\ E))
> (1—e ') f(OPT(k,Y)) (29)
=(1-e 1) f(Y) (30)
> (1—e ') (f(OPT(k,V\ E)) = f(Bfiogx1) —7), (1)

where Eq. (29) follows from Y C (S'\ E), Eq. (30) follows from |Y| < k, and Eq. (31) follows from

Eq. 28). O

D Technical Lemma

Here, we outline a technical lemma that is used in the proof of Lemmal4.3]
Lemma D.1 For any submodular function f on a ground set V, and any sets A, B, R C V, we have
f(AUB) = f(AU(B\R)) < f(R[A).
Proof. Define Ry := AN R,and Ry := R\ A= R\ Ry. We have
f(AUB) - f(AU(B\ R)) = f(AUB) = f((AUB) \ 1)

=f(R1|(AUB)\ Ry)

< f(Ra | (A\ Ry)) (32)
=f(R1]4) (33)
=f(RiIURy | A) (34)
=f(R|A),

where (32)) follows from the submodularity of f, (33) follows since A and Ry are disjoint, and (34)
follows since Ry C A. O

E Detailed Proof of Theorem

Setting 7 in STAR-T assumes that we know the unknown value f(OPT(k, V'\ E)). In this subsection
we show how to approximate that value. First, f(OPT(k,V \ E)) can be bounded in the following
way: n < f(OPT(k,V \ E)) < kn, where n denotes the largest value of any of the elements
of V'\ E,ie. 7 = max.cny\g) f(e). In case we are given 1), we follow the same approach
as in [8] by considering all the O (log, . k) possible values of f(OPT(k,V \ E)) from the set
{(1+€)*|i € Z,n < (1+¢€)* < kn}. For each of the thresholds independently and in parallel we then
run STAR-T, and hence build O (log1 Te k:) different summaries. After the stream ends, on each of
the summaries we run algorithm STAR-T-GREEDY and report the maximum output over all the runs.

15

Algorithm 3 Parallel Instances of (STAR-T)

Input: SetV,k,we Ny, neR
LO={(1+e'[n<(1+¢' <kn}
2: Create a set of instances Z := {STAR-T(V,k,n,w) | n € O}, and run all the instances in
parallel over the stream.
3: Let S = {the output of instance I | I € Z }.
4: return S

Algorithm 4 Parallel Instances STAR-T- GREEDY

Input: Family of sets S, query set F and k
1: Z < argmaxges GREEDY(k, S\ E)
2: return Z

As this approach runs O(log, +ﬂ copies of our algorithm, it requires O(log; , . k) more memory
space than stated in Theorem Furthermore, since we are approximating f(OPT(k,V \ E))
as the geometric series with base (1 + €), our final result is an (1 + €)-approximation of the value
provided in the theorem.

Unfortunately, the value 7 might also not be known a priori. However, 7 is some value among the
m + 1 largest elements of the stream. This motivates the following idea. At every moment, we keep
m + 1 largest elements of the stream. Let L denote that set (note that L changes during the course
of the stream). Then, for different values of 1 belonging to the set { f(e) | e € L} we approximate
f(OPT(k,V \ E)) as described above. Here we make a minor difference, as also described in [§]].
Namely, instead of instantiating all the copies of the algorithm corresponding to n < (1 + €)* < km,
we instantiate copies of the algorithm corresponding to the values of f(OPT(k, V' \ E)) from the set
{1+e)'|i€Z,n<(1+¢€) < 2kn}. We do so as an element e can belong to an instance of our
algorithm even if f(OPT(k,V \ E)) = 2k f(e).

Next, let e be a new element that arrives on the stream. If e is not among the m + 1 largest elements
of the stream seen so far, we do not instantiate any new copy of our algorithm. On the other hand, if e
should replace another element e’ € L because ¢’ does not belong to the m + 1 largest elements of
the stream anymore, we redefine L to be (L \ {e'}) U {e}, and update the instances. The instances
are updated as follows: we instantiate copies (those that do not exist already) of our algorithm for
1 = f(e) as described above; and, any instance of our algorithm corresponding to = f(e’), but not
to any other element of L, we discard.

To bound the space complexity, we start with the following observation — given an element e, we
do not need to add e to any instance of our algorithm corresponding to f(OPT(k,V \ E)) < f(e).
This reasoning is justified by the following: if e € E, then it does not matter whether we keep e in
our summary or not; if e ¢ F, then f(OPT(k,V \ E)) > f(e). Therefore, those thresholds that
are less than f(e) are not a good estimate of the optimum solution with respect to e. To keep the
memory space low, we pass an element e to the instances of our algorithm corresponding to the of
f(OPT(k,V \ E)) being inset {(1+¢€) | i € Z, f(e) < (1+¢€)* < 2kf(e)}. Notice that, by the
structure of our algorithm, e will not be added to any instance of our algorithm with threshold more
than 2k f (e).

Putting all together we make the following conclusions. At any point during the execution, ev-
ery element of L belongs to at most O(log, . k) instances of our algorithm. Define e, =
argmingcy, f(e). Then by the definition, every element a ¢ L kept in the parallel instances of
our algorithms is such that f(a) < f(emin). This further implies that a also belongs to at most
O(log, ., k) instances corresponding to the following set of values {(1 + €)* | i € Z, f(emin) <
(1+ €)" < 2k f(emin)}. Therefore, the total memory usage of the elements of L is O (mlog, k).
On the other hand, since all the elements not in L belong to at most O(log, . k) different instances
of STAR-T, the total memory those elements occupy is O((k 4+ mlog k) log klog, , . k). Therefore,
the memory complexity of this approach is O ((k + mlog k) log klog, , . k)

16

F Additional results for the dominating set problem

In Figure [3| we outline further results for the dominating set problem considered in Section[5.1]

Amazon communities,|E| = 2k
12000

—o-Star-T-Greedy]
—¥-Star-T-Sieve
—o-Sieve-Str
—A-Random

Avg. obj. value
EBEE 8

Amazon communities,|E| = k/2
12000

—o-Star-T-Greedy]
—%-Star-T-Sieve
—o-Sieve-Str
—A-Random

10 20 30 40 50 60 70 80 90 100
Cardinality k&

Amazon communities,|E| = k/2

10 20 30 40 50 60 70 80 90 100
Cardinality k&

—o-Star-T-Greedy
—¥-Star-T-Sieve
—o-Sieve-Str
~A-Random

Lot ego-Twitter,|E| = 2k
25,

—0-Star-T-Greedy
—¥-Star-T-Sieve
—o-Sieve-Str
~A-Random

A==
10 20 30 40 50 60 70 80 90 100

Cardinality k&

10 20 30 40 50 60 70 80 90 100

Cardinality k&

Obj. value

Amazon communities,|E| = k
000

—o-Star-T-Greedy]
—¥-Star-T-Sieve
—o-Sieve-Str
—A-Random

U

At

10 20 30 40 50 60 70 8 90 100
Cardinality k&

a0 ego-Twitter,|E| = k

—o-Star-T-Greedy
—¥-Star-T-Sieve
1.5|——Sieve-Str
~A-Random

0
10 20 30 40 50 60 70 8 90 100
Cardinality k&

Figure 3: Numerical comparisons of the algorithms STAR-T-GREEDY, STAR-T-SIEVE and SIEVE-

STREAMING.

17

	Detailed Proof of Lemma 4.2
	Detailed Proof of Lemma 4.3
	Detailed Proof of Lemma 4.4
	Technical Lemma
	Detailed Proof of Theorem 4.5
	Additional results for the dominating set problem

