
A Proofs

A.1 Proof of Proposition 9

The spherical weight-update rule
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and rewriting proves the claim.

A.2 Proof of Theorem 10

WM with weight-update rule (2) for ⌘ = O(1/
p
T ) < 1
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p
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Now, let’s bound the final weight of expert i in terms of the number of mistakes she made:
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where in the third inequality we used �⌘ � ⌘
2  ln(1 � ⌘) for ⌘ 2 (0, 1

2 ). Rewriting the last
statement proves the claim.

A.3 Proof of Proposition 11
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loss of expert is |r(t) � b

(t)
i | = 1

2 + ✏, hence mini m
(T )
i 

�
1
2 + ✏

�
T/2, while M

(T ) = T . Taking
✏ = o(T�1) yields the claim.

13



A.4 Proofs of Proposition 12 and Theorem 14

These proofs appear in the text of Appendix D.

A.5 Proof of Lemma 16
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Therefore expert e2 will not incur any more loss during the last stage of the instance, so her total loss
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A.6 Proof of Theorem 18

The proof of this theorem appears in the text of Appendix E.

A.7 Proof of Lemma 32

Let F be a family of scoring rules generated by a normalized strictly proper scoring rule f , with not
both f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) and parameters c and d as in Definition 31. In the worst
case, MW with any scoring rule f

0 from F with ⌘ 2 (0, 1
2 ) can do no better than
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Proof. Fix f , and without loss of generality assume that f(0, 0) = 1 (since f is normalized, either
f(0, 0) or f(1, 1) needs to be 1, rename if necessary). As f is normalized, at least one of f(0, 1) and
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f(1, 0) needs to be 0. For now, we consider the case where f(0, 1) = 0, we treat the other case later.
For now we have f(0, 0) = 1, f(0, 1) = 0, and by definition 31, f(1, 0) = 1� c and f(1, 1) = 1�d,
where c > d (since correctly reporting 1 needs to score higher than reporting 0 when 1 materialized)
and ¬(c = 1 ^ d = 0) (since that would put us in the semi-symmetric case).

We construct an instance as follows. We have two experts, e0 reports 0 always, and e1 reports 1
always, and as usual, the realizations are opposite of the algorithms decisions. Since the experts have
completely opposite predictions, the algorithm will follow whichever expert has the highest weight.
We will show that after a constant number of time steps t, the weight w(t)

0 of e0 will be larger than
the weight w(t)

1 of e1 even though e0 will have made one more mistake. Note that when this is true
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We know that it cannot be the case that simultaneously c = 1 and d = 0, so let’s first consider the
case where c < 1. In this case, it is sufficient to prove the above statement assuming d = 0, as this
implies the inequality for all d 2 [0, c). The following derivation shows that a2t+1(1 � c⌘)t+1
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a
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So after 2t+ 1 time steps for some t  c
1�c + 1, expert e0 will have one more mistake than expert

e1, but still have a higher weight. This means that after at most another 2t+ 1 time steps, she will
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have two more mistakes, yet still a higher weight. In general, the total loss of the algorithm is at least
2 + 1�c

c times that of the best expert. Now consider the case where c = 1 and therefore d > 0. We
will show that after 2t+ 1 time steps for some t  2 1�d

d + 1 expert e0 will have one more mistake
than expert e1.

a
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So in any case, after t  2max{ c
1�c ,

1�d
d }+ 1 time steps so the loss compared to the best expert is

at least
2 + max{ 1�c

c ,
d

2(1�d)}.

What remains to be proven is the case where f(0, 1) > 0. In this case, it will have to be that
f(1, 0) = 0, as f is normalized. And similarly to before, by Definition 31, we have f(0, 1) = 1� c

and f(1, 1) = 1� d for c > d and ¬(c = 1 ^ d = 0). Now, whenever w(t)
o > w1(t), e0 will predict

1 and e1 predicts 0, and otherwise e0 predicts 0 and e1 predicts 1. As usual, the realizations are
opposite of the algorithm’s decisions. For now assume tie of the algorithm is broken in favor of e1,
then the weights will be identical to (5), (6). If the tie is broken in favor of e0 initially, it takes at
most twice as long before e0 makes two mistakes in a row. Therefore, the loss with respect to the
best expert in hindsight of an algorithm with any asymmetric strictly proper scoring rule is

2 + max{ 1�c
2c ,

d
4(1�d)}.

A.8 Proof of Lemma 34

Let f be a weight update function with a non-strictly increasing rationality function ⇢f , such that
there exists b1 < b2 with ⇢f (b1) � ⇢f (b2). For every deterministic algorithm, in the worst case

M
(T ) � (2 + |b2 � b1|)m(T )

i .

Proof. Fix, f , b1 and b2 such that ⇢f (b1) � ⇢f (b2) with b1 < b2. Let ⇡1 = ⇢f (b1), ⇡2 = ⇢f (b2),
b0 = 1� b2+b1

2 , and ⇡0 = ⇢f (b0).

Let there be two experts e0 and e1. Expert e0 always predicts ⇡0 with belief b0. If ⇡1 = ⇡2, e1
predicts ⇡1 (similar to Proposition 11, we first fix the predictions of e1, and will give consistent beliefs
later). Otherwise ⇡1 > ⇡2, and expert e1 has the following beliefs (and corresponding predictions) at
time t:

b
(t)
1 =

8
<

:
b1 if w(t)

0 ⇡0+w(t)
1 ⇡2

w(t)
0 +w(t)

1

� 1
2

b2 otherwise
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The realizations are opposite of the algorithm’s decisions.

We now fix the beliefs of e1 in the case that ⇡1 = ⇡2. Whenever r(t) = 1, set expert e1’s belief to b2,
and whenever r(t) = 0, set her belief to b1. Note that the beliefs indeed lead to the predictions she
made, by the fact that ⇡1 = ⇢f (b1) = ⇢f (b2).

For the case where ⇡1 > ⇡2, if (w(t)
0 ⇡0 + w

(t)
1 ⇡2)/(w

(t)
0 + w

(t)
1 ) � 1

2 then e1’s belief will be b1

leading to a report of ⇡1 and as ⇡1 > ⇡2 it must hold that (w(t)
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(t)
1 ⇡1)(w

(t)
0 +w

(t)
1 ) > 1

2 , hence
the algorithm will certainly choose 1, so the realization is 0. Conversely, if (w(t)

0 ⇡0 +w
(t)
1 ⇡2)(w

(t)
0 +

w
(t)
1 ) < 1

2 , then the belief of e1 will be b2 and her report will lead the algorithm to certainly choose
0, so the realization is 1. So in all cases, if the realization is 1, then the belief of expert e1 is b2 and
otherwise it is b1.

The total number of mistakes M (T ) for the algorithm after T time steps is T by definition. Every
time the realization was 1, e0 will incur loss of b1+b2

2 and e1 incurs a loss of 1� b2, for a total loss of
1� b2 +

b1+b2
2 = 1� b2�b1

2 . Whenever the realization was 0, e0 incurs a loss of 1� b1+b2
2 and e1

incurs a loss of b1 for a total loss of 1� b1+b2
2 + b1 = 1� b2�b1

2 .

So the total loss for both of the experts is
�
1� b2�b1

2

�
· T , so the best expert in hindsight has

m
(T )
i  1

2

�
1� b2�b1

2

�
· T . Rewriting yields the claim.

A.9 Proof of Theorem 21

Let A 2 A be a ✓-RWM algorithm with the Brier weight update rule fBr and ✓ = 0.382 and with
⌘ 2 (0, 1

2 ). For any expert i it holds that

M
(T )  2.62

✓
(1 + ⌘)m(T )

i +
lnn

⌘

◆
.

Proof. The core difference between the proof of this statement, and the proof for Theorem 10 is in
giving the upper bound of �(t+1). Here we will give an upper bound of �(T )  n ·exp

�
� ⌘

2.62M
(T )
�
.

Before giving this bound, observe that this would imply the theorem: since the weight updates
are identical to the deterministic algorithm, we can use the same lower bound for �(T ), namely
�(T ) � (1� ⌘)m

(T )
i for each expert. Then taking the log of both sides we get:
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(T ) � m
(T )
i · ln(1� ⌘)

lnn� ⌘

2.62
M

(T ) � m
(T )
i · (�⌘ � ⌘

2)

M
(T )  2.62

✓
(1 + ⌘)m(T )

i +
lnn

⌘

◆

So all that’s left to prove is that whenever the algorithm incurs a loss `, �(t+1)  exp
�
� ⌘

2.62`
�
.

At time t, the output q(t) of a ✓-RWM algorithm is one of three cases, depending on the weighted
expert prediction. The first options is that the algorithm reported the realized event, in which case the
`
(t) = 0 and the statement holds trivially. We treat the other two cases separately.

Let’s first consider the case where the algorithm reported the incorrect event with certainty: `(t) = 1.
The means that

Pn
i=1 w

(t)
i s

(t)
i � (1� ✓)�(t). Since the Brier rule is concave, �(t+1) is maximized

when s
(t)
i = 1� ✓ for all experts i. In this case each we get
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�(t+1) 
X

i

 
1� ⌘

 
(p(t)i )2 + (1� p

(t)
i )2 + 1

2
� (1� s

(t)
i )

!!
w

(t)
i


X

i

✓
1� ⌘

✓
(✓)2 + (1� ✓)2 + 1

2
� ✓

◆◆
w

(t)
i


X

i

⇣
1� ⌘

2.62

⌘
w

(t)
i (since ✓ = .382)

=
⇣
1� ⌘

2.62
`
(t)
⌘
�(t)

.

Otherwise the algorithms report is between ✓ and 1 � ✓. Let `(t) 2 [✓, 1 � ✓] be the loss of the
algorithm. Again, since the Brier rule is concave, �(t+1) is maximized when s

(t)
i = `

(t) for all
experts i. On [✓, 1� ✓] the Brier proper scoring rule can be upper bounded by

1� ⌘

fBr(1� ✓, 1)/✓
s
(t)
i = 1� ⌘

2.62
s
(t)
i .

This yields

�(t+1) 
X

i

 
1� ⌘

 
(p(t)i )2 + (1� p

(t)
i )2 + 1

2
� (1� s

(t)
i )

!!
w

(t)
i


X

i

⇣
1� ⌘

2.62
s
(t)
i

⌘
w

(t)
i


⇣
1� ⌘

2.62
`
(t)
⌘
�(t)

So the potential at time T can be bounded by �(T )  n ·
Q

t

�
1� ⌘

2.62`
(t)
�
 n · exp

�
� ⌘

2.62M
(T )
�
,

from which the claim follows.

B Incentive Compatibility of Standard Weighted Majority

When experts care about the weight that they are assigned, and with it their reputation and influence
in the algorithm, different loss functions can lead to different expert behaviors. In the section B.2 we
observe that for the quadratic loss function, in the standard WM and RWM algorithms, experts have
no reason to misreport their beliefs. The next example shows that this is not the case for other loss
functions, such as the absolute loss function.

B.1 Absolute Losses

Example 22. Consider the standard WM algorithm, where each expert initially has unit weight, and
an expert’s weight is multiplied by 1� ⌘|p(t)i � r

(t)| at a time step t, where ⌘ 2 (0, 1
2 ) is the learning

rate. Suppose there are two experts and T = 1, and that b(1)1 = .49 while b
(1)
2 = 1. Each expert

reports to maximize her expected weight. Expanding, for each i = 1, 2 we have

E[w(1)
i ] = Pr(r(1) = 1) · (1� ⌘(1� p

(1)
i )) + Pr(r(1) = 0) · (1� ⌘p

(1)
i )

= b
(1)
i · (1� ⌘(1� p

(1)
i )) + (1� b

(1)
i ) · (1� ⌘p

(1)
i )

= b
(1)
i � b

(1)
i ⌘ + b

(1)
i ⌘p

(1)
i + 1� ⌘p

(1)
i � b

(1)
i + b

(1)
i ⌘p

(1)
i

= 2b(1)i ⌘p
(1)
i � p

(1)
i ⌘ � b

(1)
i ⌘ + 1,

where all expectations and probabilities are with respect to the true beliefs of agent i. To maximize
this expected weight over the possible reports p(1)i 2 [0, 1], we can omit the second two terms (which
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are independent of p(1)i ) and divide out by ⌘ to obtain

argmax
p(1)
i 2[0,1]

2b(1)i ⌘p
(1)
i � p

(1)
i ⌘ � b

(1)
i ⌘ + 1 = argmax

p(1)
i 2[0,1]

p
(1)
i (2b(1)i � 1)

=

(
1 if b(1)i � 1

2

0 otherwise.

Thus an expert always reports a point mass on whichever outcome she believes more likely. In our
example, the second expert will report her true beliefs (p(t)2 = 1) while the first will not (p(t)1 = 0).
While the combined true beliefs of the experts clearly favor outcome 1, the WM algorithm sees two
opposing predictions and must break ties arbitrarily between them.

B.2 Quadratic Losses

The first goal of this paper is to describe the class of algorithms that lead incentive compatible
learning. Proposition 7 answers this question, so we can move over to our second goal, which is
for different loss functions, do there exist incentive compatible algorithms with good performance
guarantees? In this subsection we show that a corollary of Proposition 7 is that the standard MW
algorithm with the quadratic loss function `(p, r) = (p� r)2 is incentive compatible.

Corollary 23. The standard WM algorithm with quadratic losses, i.e. w
(t+1)
i = (1 � ⌘(p(t)i �

r
(t)))2 · w(t)

i is incentive compatible.

Proof. By Proposition 7 it is sufficient to show that b(t)i = maxp b
(t)
i · (1� ⌘(p� 1)2) + (1� b

(t)
i ) ·

(p� 0)2.

max
p

b
(t)
i · (1� ⌘(p� 1)2) + (1� b

(t)
i ) · (1� ⌘(p� 0)2)

=max
p

b
(t)
i � b

(t)
i ⌘p

2 + 2b(t)i ⌘p� b
(t)
i ⌘ + 1� b

(t)
i � ⌘p

2 + b
(t)
i ⌘p

2

=max
p

1� b
(t)
i ⌘ + 2b(t)i ⌘p� ⌘p

2

=max
p

1� b
(t)
i ⌘ + ⌘p(2b(t)i � p)

To solve this for p, we take the derivative with respect to p: d
dp1�b

(t)
i ⌘+⌘p(2b(t)i �p) = ⌘(2b(t)i �2p).

So the maximum expected value is uniquely p = b
(t)
i .

A different way of proving the Corollary is by showing that the standard update rule with quadratic
losses can be translated into the Brier strictly proper scoring rule. Either way, for applications
with quadratic losses, the standard algorithm already works out of the box. However, as we saw in
Example 22, this is not the case with the absolute loss function. As the absolute loss function arises
in practice—recall that FiveThirtyEight uses absolute loss to calculate their pollster ratings—in the
remainder of this paper we focus on answering questions (2) and (3) from the introduction for the
absolute loss function.

C Further Related Work

We survey in more detail the multiple other ways in which online learning and incentive issues have
been blended, and the other efforts to model incentive issues in machine learning.

There is a large literature on prediction and decision markets (e.g. [Chen and Pennock, 2010, Horn
et al., 2014]), which also aim to aggregate information over time from multiple parties and make use
of proper scoring rules to do it. There are several major differences between our model and prediction
markets. First, in our model, the goal is to predict a sequence of events, and there is feedback (i.e.,
the realization) after each one. In a prediction market, the goal is to aggregate information about a
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single event, with feedback provided only at the end (subject to secondary objectives, like bounded
loss).12 Second, our goal is to make accurate predictions, while that of a prediction market is to
aggregate information. For example, if one expert is consistently incorrect over time, we would like
to ignore her reports rather than aggregate them with others’ reports. Finally, while there are strong
mathematical connections between cost function-based prediction markets and regularization-based
online learning algorithms in the standard (non-IC) model [Abernethy et al., 2013], there does not
appear to be analogous connections with online prediction with selfish experts.

There is also an emerging literature on “incentivizing exploration” (as opposed to exploitation) in
partial feedback models such as the bandit model (e.g. [Frazier et al., 2014, Mansour et al., 2016]).
Here, the incentive issues concern the learning algorithm itself, rather than the experts (or “arms”)
that it makes use of.

The question of how an expert should report beliefs has been studied before in the literature on strictly
proper scoring rules [Brier, 1950, McCarthy, 1956, Savage, 1971, Gneiting and Raftery, 2007], but
this literature typically considers the evaluation of a single prediction, rather than low-regret learning.
The work by Bayarri and DeGroot [1989] specifically looks at the question of how an expert should
respond to an aggregator who assigns and updates weights based on their predictions. Their work
focuses on optimizing relative weight under different objectives and informational assumptions.
However, it predates the work on low-regret learning, and it does not include performance guarantees
for the aggregator over time. Boutilier [2012] discusses a model in which an aggregator wants to
take a specific action based on predictions that she elicits from experts. He explores incentive issues
where experts have a stake in the action that is taken by the decision maker.

Finally, there are many works that fall under the broader umbrella of incentives in machine learning.
Roughly, work in this area can be divided into two genres: incentives during the learning stage, or
incentives during the deployment stage. During the learning stage, one of the main considerations
is incentivizing data providers to exert effort to generate high-quality data. There are several
recent works that propose ways to elicit data in crowdsourcing applications in repeated settings
through payments, e.g. [Cai et al., 2015, Shah and Zhou, 2015, Liu and Chen, 2016]. Outside of
crowdsourcing, Dekel et al. [2010] consider a regression task where different experts have their own
private data set, and they seek to influence the learner to learn a function such that the loss of their
private data set with respect to the function is low.

During deployment, the concern is that the input is given by agents who have a stake in the result
of the classification, e.g. an email spammer wishes to avoid its emails being classified as spam.
Brückner and Scheffer [2011] model a learning task as a Stackelberg game. On the other hand Hardt
et al. [2016] consider a cost to changing data, e.g. improving your credit score by opening more lines
of credit, and give results with respect to different cost functions.

Online learning does not fall neatly into either learning or deployment, as the learning is happening
while the system is deployed. Babaioff et al. [2010] consider the problem of no-regret learning with
selfish experts in an ad auction setting, where the incentives come from the allocations and payments
of the auction, rather than from weights as in our case.

D The Cost of Selfish Experts for IC Algorithms

We now address the third fundamental question: whether or not online prediction with selfish experts
is strictly harder than with honest experts. In this section we restrict our attention to deterministic
algorithms; we extend the results to randomized algorithms in Section F. As there exists a deterministic
algorithm for honest experts where the loss is no more than twice that of the best expert in hindsight,
showing a separation between honest and selfish experts boils down to proving that there exists a
constant � such that the worst-case loss is no better than a factor of 2 + � (with � bounded away from
0 as T ! 1). In this section we show that such a � exists for all incentive compatible algorithms,
and that � depends on properties of a “normalized” version of the weight-update rule f , independent
of the learning rate. This implies that the lower bound also holds for algorithms that, like the classical
prediction algorithms, use a time-varying learning rate. In Section E we show that under mild
technical conditions the true loss of non-IC algorithms is also bounded away from 2, and in Section F

12In the even more distantly related peer prediction scenario [Miller et al., 2005], there is never any realization
at all.
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the lower bounds for deterministic algorithms are used to show that there is no randomized algorithm
that achieves vanishing regret.

To prove the lower bound, we have to be specific about which set of algorithms we consider. To cover
algorithms that have a decreasing learning parameter, we first show that any positive proper scoring
rule can be interpreted as having a learning parameter ⌘.
Proposition (12). Let f be any strictly proper scoring rule. We can write f as f(p, r) = a+bf

0(p, r)
with a 2 R, b 2 R+

and f
0

a strictly proper scoring rule with min(f 0(0, 1), f 0(1, 0)) = 0 and

max(f 0(0, 0), f 0(1, 1)) = 1.

Proof. Let fmin = min(f(0, 1), f(1, 0)) and fmax = max(f(0, 0), f(1, 1)) = 1. Then define
f
0(p, r) = f(p,r)�fmin

fmax�fmin
, a = fmin and b = fmax � fmin. This is a positive affine translation, hence

f
0 is a strictly proper scoring rule.

We call f 0 : [0, 1]⇥ {0, 1} ! [0, 1] a normalized scoring rule. Using normalized scoring rules, we
can define a family of scoring rules with different learning rates ⌘.
Definition 24. Let f be any normalized strictly proper scoring rule. Define F as the following family
of proper scoring rules generated by f :

F = {f 0(p, r) = a (1 + ⌘(f(p, r)� 1)) : a > 0 and ⌘ 2 (0, 1)}

By Proposition 12 the union of families generated by normalized strictly proper scoring rules cover
all strictly proper scoring rules. Using this we can now formulate the class of deterministic algorithms
that are incentive compatible.
Definition 25 (Deterministic Incentive-Compatible Algorithms). Let Ad be the set of deterministic
algorithms that update weights by w

(t+1)
i = a(1 + ⌘(f(p(t)i , r

(t)) � 1))w(t)
i , for a normalized

strictly proper scoring rule f and ⌘ 2 (0, 1
2 ) with ⌘ possibly decreasing over time. For q =

Pn
i=1 w

(t)
i p

(t)
i /

Pn
i=1 w

(t)
i , A picks q(t) = 0 if q <

1
2 , q(t) = 1 if q >

1
2 and uses any deterministic

tie breaking rule for q = 1
2 .

Using this definition we can now state our main result:
Theorem (14). For the absolute loss function, there does not exists a deterministic and incentive-

compatible algorithm A 2 Ad with no 2-regret.

To prove Theorem 14 we proceed in two steps. First we consider strictly proper scoring rules that are
symmetric with respect to the outcomes, because they lead to a lower bound that can be naturally
interpreted by looking at the geometry of the scoring rule. We then extend these results to cover
weight-update rules that use any (potentially asymmetric) strictly proper scoring rule.

D.1 Symmetric Strictly Proper Scoring Rules

We first focus on symmetric scoring rules in the sense that f(p, 0) = f(1�p, 1) for all p 2 [0, 1]. We
can thus write these as f(p) = f(p, 1) = f(1� p, 0). Many common scoring rules are symmetric,
including the Brier rule [Brier, 1950], the family of pseudo-spherical rules (e.g. [Gneiting and Raftery,
2007]), the power family (e.g. [Jose et al., 2008]), and the beta family [Buja et al., 2005] when ↵ = �.
We start by defining the scoring rule gap for normalized scoring rules, which will determine the lower
bound constant.
Definition 26 (Scoring Rule Gap). The scoring rule gap � of family F with generator f is � =
f( 12 )�

1
2 (f(0) + f(1)) = f( 12 )�

1
2 .

The following proposition shows that for all strictly proper scoring rules, the scoring rule gap must
be strictly positive.
Proposition 27. The scoring rule gap � of a family generated by a symmetric strictly proper scoring

rule f is strictly positive.

Proof. Since f is symmetric and a strictly proper scoring rule, we must have that 1
2f(

1
2 ) +

1
2f(

1
2 ) >

1
2f(0) +

1
2f(1) (since an expert with belief 1

2 must have a strict incentive to report 1
2 instead of 1).

The statement follows from rewriting.
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We are now ready to prove our lower bound for all symmetric strictly proper scoring rules. The
interesting case is where the learning rate ⌘ ! 0, as otherwise it is easy to prove a lower bound
bounded away from 2.

The following lemma establishes that the gap parameter is important in proving lower bounds for IC
online prediction algorithms. Intuitively, the lower bound instance exploits that experts who report
1
2 will have a higher weight (due to the scoring rule gap) than an expert who is alternatingly right
and wrong with extreme reports. This means that even though the indifferent expert has the same
absolute loss, she will have a higher weight and this can lead the algorithm astray. The scoring rule
gap is also relevant for the discussion in Appendix G. We give partial proof of the lemma below; the
full proof appears in Appendix A.
Lemma (16). Let F be a family of scoring rules generated by a symmetric strictly proper scoring

rule f , and let � be the scoring rule gap of F . In the worst case, MW with any scoring rule f
0

from

F with ⌘ 2 (0, 1
2 ) can do no better than

M
(T ) �

✓
2 +

1

d��1e

◆
·m(T )

i .

Proof Sketch. Let a, ⌘ be the parameters of f 0 in the family F , as in Definition 24. Fix T sufficiently
large and an integer multiple of 2d��1e+1, and let e1, e2, and e3 be three experts. For t = 1, ...,↵ ·T
where ↵ = 2d��1e

2d��1e+1 such that ↵T is an even integer, let p(t)1 = 1
2 , p(t)2 = 0, and p

(t)
3 = 1. Fix any

tie-breaking rule for the algorithm. Realization r
(t) is always the opposite of what the algorithm

chooses.

Let M (t) be the loss of the algorithm up to time t, and let m(t)
i be the loss of expert i. We first

show that at t0 = ↵T , m(t0)
1 = m

(t0)
2 = m

(t0)
3 = ↵T

2 and M
(t0) = ↵T . The latter part is obvious

as r
(t) is the opposite of what the algorithm chooses. That m(t0)

1 = ↵T
2 is also obvious as it

adds a loss of 1
2 at each time step. To show that m(t0)

2 = m
(t0)
3 = ↵T

2 we do induction on the
number of time steps, in steps of two. The induction hypothesis is that after an even number of
time steps, m(t)

2 = m
(t)
3 and that w(t)

2 = w
(t)
3 . Initially, all weights are 1 and both experts have

loss of 0, so the base case holds. Consider the algorithm after an even number t time steps. Since
w

(t)
2 = w

(t)
3 , p(t)3 = 1 � p

(t)
2 , and p

(t)
1 = 1

2 we have that
P3

i=1 w
(t)
i p

(t)
i =

P3
i=1 w

(t)
i (1 � p

(t)
i )

and hence the algorithm will use its tie-breaking rule for its next decision. Thus, either e2 or e3 is
wrong. Wlog lets say that e2 was wrong (the other case is symmetric), so m

(t+1)
2 = 1 + m

(t+1)
3 .

Now at time t + 1, w(t+1)
2 = (1 � ⌘)w(t+1)

3 < w
(t+1)
3 . Since e1 does not express a preference,

and e3 has a higher weight than e2, the algorithm will follow e3’s advice. Since the realization
r
(t+1) is the opposite of the algorithms choice, this means that now e3 incurs a loss of one. Thus
m

(t+2)
2 = m

(t+1)
2 and w

(t+2)
2 = w

(t+1)
2 and m

(t+2)
3 = 1 + m

(t+1)
3 = m

(t+2)
2 . The weight of

expert e2 is w(t+2)
2 = aa(1 � ⌘)w(t)

2 and the weight of expert e3 is w(t+2)
3 = a(1 � ⌘)aw(t)

3 . By
the induction hypothesis w(t)

2 = w
(t)
3 , hence w

(t+2)
2 = w

(t+2)
3 , and since we already showed that

m
(t+2)
2 = m

(t+2)
3 , this completes the induction.

Now, for t = ↵T + 1, ..., T , we let p(t)1 = 1, p(t)2 = 0, p(t)3 = 1
2 and r

(t) = 0. So henceforth
e3 does not provide information, e1 is always wrong, and e2 is always right. If we can show
that the algorithm will always follow e1, then the best expert is e2 with a loss of m

(T )
2 = ↵T

2 ,
while the algorithm has a loss of M

(T ) = T . If this holds for ↵ < 1 this proves the claim.
So what’s left to prove is that the algorithm will always follow e1. Note that since p

(t)
3 = 1

2 it
contributes equal amounts to

P3
i=1 w

(t)
i p

(t)
i and

P3
i=1 w

(t)
i (1� p

(t)
i ) and is therefore ignored by the

algorithm in making its decision. So it suffices to look at e1 and e2. The algorithm will pick 1 iffP3
i=1 w

(t)
i (1� p

(t)
i ) 

P3
i=1 w

(t)
i p

(t)
i , which after simplifying becomes w(t)

1 > w
(t)
2 .

At time step t, w
(t)
1 =

�
a(1 + ⌘(f( 12 )� 1))

�↵T
(a · (1 � ⌘))t�↵T and w

(t)
2 =

(a(1� ⌘))
↵T
2 a

↵T
2 +t�↵T .
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We have that w(t)
1 is decreasing faster in t than w

(t)
2 . So if we can show that w(T )

1 � w
(T )
2 for some

↵ < 1, then e2 will incur a total loss of ↵T/2 while the algorithm incurs a loss of T and the statement
is proved. This is shown in the appendix.

As a consequence of Lemma 16, we can calculate lower bounds for specific strictly proper scoring
rules. For example, the spherical rule used in Section 3 is a symmetric strictly proper scoring rule
with a gap parameter � =

p
2
2 � 1

2 , and hence 1/d��1e = 1
5 .

Corollary 28. In the worst case, the deterministic algorithm based on the spherical rule in Section 3

has

M
(T ) �

�
2 + 1

5

�
m

(T )
i .

We revisit the scoring rule gap parameter again in Appendix G when we discuss considerations for
selecting different scoring rules.

D.2 Beyond Symmetric Strictly Proper Scoring Rules

We now extend the lower bound example to cover arbitrary strictly proper scoring rules. As in the
previous subsection, we consider properties of normalized scoring rules to provide lower bounds that
are independent of learning rate, but the properties in this subsection have a less natural interpretation.

For arbitrary strictly proper scoring rule f
0, let f be the corresponding normalized scoring rule, with

parameters a and ⌘. Since f is normalized, max{f(0, 0), f(1, 1)} = 1 and min{f(0, 1), f(1, 0)} =
0. We consider 2 cases, one in which f(0, 0) = f(1, 1) = 1 and f(0, 1) = f(1, 0) = 0 which is
locally symmetric, and the case where at least one of those equalities does not hold.

The semi-symmetric case. If it is the case that f has f(0, 0) = f(1, 1) = 1 and f(0, 1) =
f(1, 0) = 0, then f has enough symmetry to prove a variant of the lower bound instance discussed
just before. Define the semi-symmetric scoring rule gap as follows.
Definition 29 (Semi-symmetric Scoring Rule Gap). The ‘semi-symmetric’ scoring rule gap µ of
family F with normalized generator f is µ = 1

2

�
f( 12 , 0) + f( 12 , 1)

�
� 1

2 .

Like the symmetric scoring rule gap, µ > 0 by definition, as there needs to be a strict incentive
to report 1

2 for experts with b
(t)
i = 1

2 . Next, observe that since f( 12 , 0), f(
1
2 , 1) 2 [0, 1] and

f( 12 , 0) + f( 12 , 1) = 1 + 2µ, it must be that f( 12 , 0) · f(
1
2 , 1) � 2µ. Using this it follows that:

�
1 + ⌘(f( 12 , 0)� 1)

� �
1 + ⌘(f( 12 , 1)� 1)

�

= 1 + ⌘ ·
�
f( 12 , 0) + f( 12 , 1)� 2

�
+ ⌘

2
�
f( 12 , 0) · f(

1
2 , 1)� f( 12 , 0)� f( 12 , 1) + 1

�

= 1 + ⌘ · (1 + 2µ� 2) + ⌘
2
�
f( 12 , 0) · f(

1
2 , 1)� 2µ

�

� 1� ⌘(1� 2µ) + ⌘
2 (2µ� 2µ)

= 1� ⌘ + 2µ⌘ (7)

Now this can be used in the same way as we proved the setting before:
Lemma 30. Let F be a family of scoring rules generated by a normalized strictly proper scoring

rule f , with f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0). In the worst case, MW with any scoring rule f
0

from F with ⌘ 2 (0, 1
2 ) can do no better than

M
(T ) �

✓
2 +

1

dµ�1e

◆
·m(T )

i .

Proof Sketch. Take the same instance as used in Lemma 16, with ↵ = 2dµ�1e
2dµ�1e+1 . The progression of

the algorithm up to t = ↵T is identical in this case, as expert e1 is indifferent between outcomes, and
f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) for experts e2 and e3. What remains to be shown is that the
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weight of e1 will be higher at time T . At time T the weights of e1 and e2 are:

a
�T

w
(T )
1 =

�
1 + ⌘(f( 12 , 0)� 1)

�↵T
2
�
1 + ⌘(f( 12 , 1)� 1)

�↵T
2 (1� ⌘)(1�↵)T

a
�T

w
(T )
2 = (1� ⌘)

↵T
2 .

Similarly to the symmetric case, wee know that w(T )
1 > w

(T )
2 if we can show that

�
1 + ⌘(f( 12 , 0)� 1)

�dµ�1e �
1 + ⌘(f( 12 , 1)� 1)

�dµ�1e
(1� ⌘) > (1� ⌘)dµ

�1e
.

By (7), it suffices to show that (1� ⌘ + 2µ⌘)dµ
�1e (1�⌘) > (1� ⌘)dµ

�1e, which holds by following
the derivation in the proof of Lemma 16 given in the appendix, starting at (4).

The asymmetric case. We finally consider the setting where the weight-update rule is not symmet-
ric, nor is it symmetric evaluated only at the extreme reports. The lower bound that we show is based
on the amount of asymmetry at these extreme points, and is parametrized as follows.
Definition 31. Let c > d be parameters of a normalized strictly proper scoring rule f , such that
c = 1�max{f(0, 1), f(1, 0)} and d = 1�min{f(0, 0), f(1, 1)}.

Scoring rules that are not covered by Lemmas 16 or 30 must have either c < 1 or d > 0 or both. The
intuition behind the lower bound instance is that two experts who have opposite predictions, and are
alternatingly right and wrong, will end up with different weights, even though they have the same
loss. We use this to show that eventually one expert will have a lower loss, but also a lower weight,
so the algorithm will follow the other expert. This process can be repeated to get the bounds in the
Lemma below. The proof of the lemma appears in the appendix.
Lemma 32. Let F be a family of scoring rules generated by a normalized strictly proper scoring rule

f , with not both f(0, 0) = f(1, 1) and f(0, 1) = f(1, 0) and parameters c and d as in Definition 31.

In the worst case, MW with any scoring rule f
0

from F with ⌘ 2 (0, 1
2 ) can do no better than

M
(T ) �

⇣
2 + max{ 1�c

2c ,
d

4(1�d)}
⌘
·m(T )

i .

Theorem 14 now follows from combining the previous three lemmas.

Proof of Theorem 14. Follows from combining Lemmas 16, 30 and 32.

E The Cost of Selfish Experts for Non-IC Algorithms

What about non-incentive-compatible algorithms? Could it be that, even with experts reporting
strategically instead of honestly, there is a deterministic no 2-regret algorithm (or a randomized
algorithm with vanishing regret), to match the classical results for honest experts? Proposition 11
shows that the standard algorithm fails to achieve such a regret bound, but maybe some other non-IC
algorithm does?

Typically, one would show that this is not the case by a “revelation principle” argument: if there
exists some (non-IC) algorithm A with good guarantees, then we can construct an algorithm B which
takes private values as input, and runs algorithm A on whatever reports a self-interested agent would
have provided to A. It does the strategic thinking for agents, and hence B is an IC algorithm with the
same performance as A. This means that generally, whatever performance is possible with non-IC
algorithms can be achieved by IC algorithms as well, thus lower bounds for IC algorithms translate
to lower bounds for non-IC algorithms. In our case however, the reports impact both the weights
of experts as well as the decision of the algorithm simultaneously. Even if we insist on keeping the
weights in A and B the same, the decisions of the algorithms may still be different. Therefore, rather
than relying on a simulation argument, we give a direct proof that, under mild technical conditions,
non-IC deterministic algorithms cannot be no 2-regret.13 As in the previous section, we focus on

13Similarly to Price of Anarchy (PoA) bounds, e.g. [Roughgarden and Tardos, 2007], the results here show the
harm of selfish behavior. Unlike PoA bounds, our results are for dominant, though non-IC, strategies, rather than
weaker equilibrium concepts such as the Nash equilibrium and our results are additive rather than multiplicative.
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deterministic algorithms; Section F translates these lower bounds to randomized algorithms, where
they imply that no vanishing-regret algorithms exist.

The following definition captures how players are incentivized to report differently from their beliefs.
Definition 33 (Rationality Function). For a weight update function f , let ⇢f : [0, 1] ! [0, 1] be the
function from beliefs to predictions, such that reporting ⇢f (b) is rational for an expert with belief b.

We restrict our attention here on rationality functions that are proper functions, meaning that each
belief leads to a single prediction. Note that for incentive compatible weight update functions, the
rationality function is simply the identity function.

In this section we show that for any deterministic prediction algorithm for which the rationality
function is continuous or not strictly increasing, the worst-case loss of the algorithm is bounded away
from twice the true loss of the best expert.14 We start with a proof that any algorithm with non-strictly
increasing rationality function must have worst-case loss strictly more than twice the best expert in
hindsight. Conceptually, the proof is a generalization of the proof for Proposition 11.
Lemma 34. Let f be a weight update function with a non-strictly increasing rationality function ⇢f ,

such that there exists b1 < b2 with ⇢f (b1) � ⇢f (b2). For every deterministic algorithm, in the worst

case

M
(T ) � (2 + |b2 � b1|)m(T )

i .

Proof. Fix, f , b1 and b2 such that ⇢f (b1) � ⇢f (b2) with b1 < b2. Let ⇡1 = ⇢f (b1), ⇡2 = ⇢f (b2),
b0 = 1� b2+b1

2 , and ⇡0 = ⇢f (b0).

Let there be two experts e0 and e1. Expert e0 always predicts ⇡0 with belief b0. If ⇡1 = ⇡2, e1
predicts ⇡1 (similar to Proposition 11, we first fix the predictions of e1, and will give consistent beliefs
later). Otherwise ⇡1 > ⇡2, and expert e1 has the following beliefs (and corresponding predictions) at
time t:

b
(t)
1 =

8
<

:
b1 if w(t)

0 ⇡0+w(t)
1 ⇡2

w(t)
0 +w(t)

1

� 1
2

b2 otherwise

The realizations are opposite of the algorithm’s decisions.

We now fix the beliefs of e1 in the case that ⇡1 = ⇡2. Whenever r(t) = 1, set expert e1’s belief to b2,
and whenever r(t) = 0, set her belief to b1. Note that the beliefs indeed lead to the predictions she
made, by the fact that ⇡1 = ⇢f (b1) = ⇢f (b2).

For the case where ⇡1 > ⇡2, if (w(t)
0 ⇡0 + w

(t)
1 ⇡2)/(w

(t)
0 + w

(t)
1 ) � 1

2 then e1’s belief will be b1

leading to a report of ⇡1 and as ⇡1 > ⇡2 it must hold that (w(t)
0 ⇡0+w

(t)
1 ⇡1)(w

(t)
0 +w

(t)
1 ) > 1

2 , hence
the algorithm will certainly choose 1, so the realization is 0. Conversely, if (w(t)

0 ⇡0 +w
(t)
1 ⇡2)(w

(t)
0 +

w
(t)
1 ) < 1

2 , then the belief of e1 will be b2 and her report will lead the algorithm to certainly choose
0, so the realization is 1. So in all cases, if the realization is 1, then the belief of expert e1 is b2 and
otherwise it is b1.

The total number of mistakes M (T ) for the algorithm after T time steps is T by definition. Every
time the realization was 1, e0 will incur loss of b1+b2

2 and e1 incurs a loss of 1� b2, for a total loss of
1� b2 +

b1+b2
2 = 1� b2�b1

2 . Whenever the realization was 0, e0 incurs a loss of 1� b1+b2
2 and e1

incurs a loss of b1 for a total loss of 1� b1+b2
2 + b1 = 1� b2�b1

2 .

So the total loss for both of the experts is
�
1� b2�b1

2

�
· T , so the best expert in hindsight has

m
(T )
i  1

2

�
1� b2�b1

2

�
· T . Rewriting yields the claim.

For continuous rationality functions, we can generalize the results in Section D using a type of
simulation argument. First, we address some edge cases.
Proposition 35. For a weight update function f with continuous strictly increasing rationality

function ⇢f ,

14This is true even when the learning rate is parameterized similarly to Definition 24, as the rationality function
does not change for different learning rates due to the linearity of the expectation operator.
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1. the regret is unbounded unless ⇢f (0) <
1
2 < ⇢(1); and

2. if ⇢f (b) = 1
2 for b 6= 1

2 , the worst-case loss of the algorithm satisfies M
(T ) �

(2 + |b� 1/2|)m(T )
i .

Proof. First, assume that it does not hold that ⇢f (0) < 1
2 < ⇢f (1). Since ⇢f (0) < ⇢f (1) by virtue

of ⇢f being strictly increasing, it must be that either 1
2  ⇢f (0) < ⇢f (1) or ⇢f (0) < ⇢f (1)  1

2 .
Take two experts with b

(t)
1 = 0 and b

(t)
2 = 1. Realizations are opposite of the algorithm’s predictions.

Even though the experts have opposite beliefs, their predictions agree (potentially with one being
indifferent), so the algorithm will consistently pick the same prediction, whereas one of the two
experts will never make a mistake. Therefore the regret is unbounded.

As for the second statement. Since ⇢f (0) <
1
2 < ⇢f (1), there is some b such that ⇢f (b) = 1

2 .
Wlog, assume b <

1
2 (the other case is analogous). Since ⇢f is continuous and strictly increasing,

⇢f (
b+1/2

2 ) > 1
2 while b+1/2

2 <
1
2 . Take one expert e1 with belief b(t) = b+1/2

2 <
1
2 , who will predict

p
(t) = ⇢f (

b+1/2
2 ) > 1

2 . Realizations are opposite of the algorithms decisions, and the algorithms
decision is consistently 1, due to there only being one expert, and that expert putting more weight on
1. However, the absolute loss of the expert is only 1

2 � |b�1/2
2 at each time step. Summing over the

timesteps and rewriting yields the claim.

We are now ready to prove the main result in this section. The proof gives lower bound constants that
are similar (though not identical) to the constants given in Lemmas 16, 30 and 32, though due to a
reparameterization the factors are not immediately comparable.
Theorem 36. For a weight update function f with continuous strictly increasing rationality function

⇢f , with ⇢f (0) <
1
2 < ⇢f (1) and ⇢f (

1
2 ) =

1
2 , there is no deterministic no 2-regret algorithm.

Proof. Fix f with ⇢f (0) <
1
2 < ⇢f (1) and ⇢f (

1
2 ) =

1
2 . Define p = max{⇢f (0), 1� ⇢f (1)}, so that

p and 1� p are both in the image of ⇢f and the difference between p and 1� p is as large as possible.
Let b1 = ⇢

�1(p) and b2 = ⇢
�1(1� p) and observe that b1 <

1
2 < b2.

Next, we rewrite the weight-update function f in a similar way as the normalization procedure similar
to Definition 24: f(p, r) = a(1 + ⌘(f 0(p, r) � 1)). where max{f 0(p, 0), f 0(1 � p, 1)} = 1 and
min{f 0(p, 1), f 0(1 � p, 0)} = 0. Again we do this to prove bounds that are not dependent on any
learning rate parameter.

Note that the composition of ⇢f and f , namely f(⇢f (p), r) is a strictly proper scoring rule, since it
changes the prediction in the same way as the selfish expert would do. Since f(⇢f (p), r), it must
also be that f 0(⇢f (p), r) is a strictly proper scoring rule, since it is a positive affine transformation of
f � ⇢f .15

We now continue similarly to the lower bounds in Section D. We only treat the semi-symmetric and
asymmetric cases as the former includes the special case of the symmetric weight-update function.

For the semi-symmetric case, by definition f
0(⇢f (b1), 0) = f

0(⇢f (b2), 1) = 1 and f
0(p, 0), f 0(1�

p, 1)} = 1 and min{f 0(p, 1), f 0(1� p, 0) = 0. Because f
0 � ⇢f is a strictly proper scoring rule, the

following inequality holds:

1
2f

0(⇢f (
1
2 ), 0) +

1
2f

0(⇢f (
1
2 , 1)) + µ = 1

2f
0(⇢f (b1), 0) +

1
2f

0(⇢f (
1
2 , 1)) =

1
2

for some µ > 0, since an expert with belief ⇢f ( 12 ) must have a strict incentive to report this. Here µ

plays the same role as the semi-symmetric scoring rule gap.16

We now pitch three experts against each other in a similar lower bound instance as Lemma 30. For
the first stage, they have beliefs b(t)0 = 1

2 , b(t)1 = b1, b(t)2 = b2, so they have predictions p(t)0 = 1
2 ,

15And since f 0 is a positive affine transformation of f , the rationality function is unchanged due to the linearity
of the expectation operator.

16It is defined slightly differently though, as the image of ⇢f may not be [0, 1].
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p
(t)
1 = ⇢f (b1) = p, p(t)2 = ⇢f (b2) = 1� p. For the second stage, recall that either b1 = 0 or b2 = 1.

In the former case, b(t)0 = 1, b(t)1 = 0, b(t)2 = 1
2 and r

(t) = 0 and in the latter case b
(t)
0 = 0, b(t)1 = 1,

b
(t)
2 = 1

2 and r
(t) = 1. We now show a bijection between the instance in Lemma 30 and this instance,

which establishes the lower bound for the semi-symmetric non-incentive compatible case. First of all,
note that the weights of each of the experts in the first stage is the same (up to the choice of a and ⌘,
and for now assuming that the algorithms choices and thus the realizations are the same):

w
(2t)
0 = a

2t
�
(1 + ⌘(f 0( 12 , 0)� 1))((1 + ⌘(f 0( 12 , 1)� 1))

�t

� a
2t(1� ⌘ + 2µ⌘)t (Follows from (7))

w
(2t)
1 = a

2t (1� ⌘))t

w
(2t)
1 = a

2t (1� ⌘))t

In the second stage expert e0 is always wrong and e1 is always right, and hence at time T the weights

Also note, that the predictions of e1 and e2 are opposite, i.e. p and 1� p, so the algorithm will follow
the expert which highest weight, meaning the algorithms decisions and the realizations are identical
to the instance in Lemma 30.

To complete the proof of the lower bound instance, we need to show that the total loss of e1 is the
same. During the first stage, alternatingly the true absolute loss of e1 is b1 and 1� b1, so after each 2
steps, her loss is 1. During the last stage, since her belief is certain (i.e. b0 if b1 = 0 or b2 if b2 = 1)
ans she is correct, she incurs no additional loss. Therefore the loss of the algorithm and the true loss
of e1 are the same as in Lemma 30, hence the loss of the algorithm is at least 1

dµ�1e times that of the
best expert in hindsight.

Finally, we consider the asymmetric case. We use a similar instance as Lemma 32 with two experts
e0, e1. If f 0(1� p, 0) = 0 we have b

(t)
0 = b1 and b

(t)
1 = b2, so p

(t)
0 = p and p

(t)
1 = 1� p, otherwise

the beliefs (and thus predictions) alternate. Again, the predictions are opposite of each other, and the
weights evolve identically (up to the choice of a and ⌘) as before. Again the loss up until the moment
that the same expert is chosen twice in a row is the same.

Once the same expert is chosen twice (after at most 2max{ c
1�c ,

1�d
d }+1) steps), it is not necessarily

the case that the total loss of one expert exceeds the other by 2, as the true beliefs are b1 and b2,
rather than 0 and 1. However, since at least either b1 = 0 or b2 = 1, and b1 <

1
2 < b2, the difference

in total absolute loss in this non-IC instance is at least half of the IC instance, so we lose at most
factor 1

2 in the regret bound, hence for the asymmetric case M (T ) �
⇣
2 + max{ 1�c

4c ,
d

8(1�d)}
⌘
m

(t)
i ,

completing the proof of the statement.

F Randomized Algorithms: Upper and Lower Bounds

F.1 Impossibility of Vanishing Regret

We now consider randomized online learning algorithms, which can typically achieve better worst-
case guarantees than deterministic algorithms. For example, with honest experts, there are randomized
algorithms with worst-case loss M (T ) 

⇣
1 +O

⇣
1p
T

⌘⌘
m

(T )
i , which means that the regret with

respect to the best expert in hindsight is vanishing as T ! 1. Unfortunately, the lower bounds in
Sections D and E below imply that no such result is possible for randomized algorithms.
Corollary 37. Any incentive compatible randomized weight-update algorithm or non-IC randomized

algorithm with continuous or non-strictly increasing rationality function cannot be no 1-regret.

Proof. We can use the same instances as for Theorems 14 and 36 and Lemma 34 (whenever the
algorithm was indifferent, the realizations were defined using the algorithm’s tie-breaker rule; in the
current setting simply pick any realization, say r

t = 1).

Whenever the algorithm made a mistake, it was because
P

i w
t
is

t
i � 1

2

P
i w

t
i . Therefore, in the

randomized setting, it will still incur an expected loss of at least 1
2 . Therefore the total expected loss of

the randomized algorithm is at least half that of the deterministic algorithm. Since the approximation
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factor for the latter is bounded away from 2 in all cases in Theorems 14 and 36 and Lemma 34, in
these cases the worst-case loss of a randomized algorithm satisfies M (T ) � (1 + ⌦(1))m(T )

i .

F.2 An Incentive-Compatible Randomized Algorithm for Selfish Experts

While we cannot hope to achieve a no-regret algorithm for online prediction with selfish experts, we
can do better than the deterministic algorithm from Section 3. We now focus on the more general
class of algorithms where the algorithm can make any prediction q

(t) 2 [0, 1] and incurs a loss of
|q(t) � r

(t)|. We give a randomized algorithm based on the Brier strictly proper scoring rule with loss
at most 2.62 times that of the best expert as T ! 1.

Perhaps the most natural choice for a randomized algorithm is to simply report a prediction of q(t) =Pn
i=1 w

(t)
i p

(t)
i /

Pn
j=1 w

(t)
j . However, this is problematic when the experts are highly confident and

correct in their predictions. By the definition of a (bounded) strictly proper scoring rule, d

dp(t)
i

f(p(t)i , 1)

is 0 at 1 (and similarly the derivative is 0 around 0 for a realization of 0). This means that experts that
are almost certain and correct will not have their weight reduced meaningfully, and so the proof that
uses the potential function does not go through.

This motivates looking for an algorithm where the sum of weights of experts is guaranteed to decrease
significantly whenever the algorithm incurs a loss. Consider the following generalization of RWM
that rounds predictions to the nearest integer if they are with ✓ of that integer.
Definition 38 (✓-randomized weighted majority). Let Ar be the class of algorithms that maintains

expert weights as in Definition 1. Let b(t) =
Pn

i=1
w(t)

iPn
j=1 w(t)

j

· p(t)i be the weighted predictions. For

parameter ✓ 2 [0, 1
2 ] the algorithm chooses 1 with probability

p
(t) =

8
<

:

0 if b(t)  ✓

b
(t) if ✓ < b

(t)  1� ✓

1 otherwise.

We call algorithms in Ar ✓-RWM algorithms. We’ll use a ✓-RWM algorithm with the Brier rule.
Recall that s(t)i = |p(t)i � r

(t)|; the Brier rule is defined as:

fBr(p
(t)
i , r

(t)) = 1� ⌘

 
(p(t)i )2 + (1� p

(t)
i )2 + 1

2
� (1� s

(t)
i )

!
. (8)

Theorem 39. Let A 2 Ar be a ✓-RWM algorithm with the Brier weight update rule fBr and

✓ = 0.382 and with ⌘ = O(1/
p
T ) 2 (0, 1

2 ). A has no 2.62-regret.

The proof appears in the appendix.

G Selecting a Strictly Proper Scoring Rule

When selecting a strictly proper scoring rule for an IC online prediction algorithm, different choices
may lead to very different guarantees. Many different scoring rules exist [McCarthy, 1956, Savage,
1971], and for discussion of selecting proper scoring rules in non-online settings, see also [Merkle
and Steyvers, 2013]. Figure 2 shows two popular strictly proper scoring rules, the Brier rule and the
spherical rule, along with the standard rule as comparison. Note that we have normalized all three
rules for easy comparison.

Firstly, we know that for honest experts, the standard rule performs close to optimally. For every � > 0

we can pick a learning rate ⌘ such that as T ! 1 the loss of the algorithm M
(T )  (2 + �)m(t)

i ,
while no algorithm could do better than M

(T )
< 2m(T )

i [Littlestone and Warmuth, 1994, Freund
and Schapire, 1997]. This motivates looking at strictly proper scoring rule that are “close” to the
standard update rule in some sense. In Figure 2, if we compare the two strictly proper scoring rules,
the spherical rule seems to follow the standard rule better than Brier does.
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Figure 2: Three different normalized weight-update rules for r(t) = 1. The line segment is the
standard update rule, the concave curve the Brier rule and the other curve the spherical rule.

A more formal way of look at this is to look at the scoring rule gap. In Figure 2 we marked the p = 1
2

location. Visually, the scoring rule gap � is the difference between a scoring rule and the standard
rule at p = 1

2 . Since the Brier score has a large scoring rule gap, we’re able to prove a strictly stronger
lower bound for it: the scoring rule gap � = 1

4 , hence MW with the Brier scoring rule cannot do
better than M

(T ) � (2 + 1
4 )m

(T )
i in the worst case, according to Lemma 16. Corollary 28 shows that

for the Spherical rule, this factor is 2 + 1
5 . The ability to prove stronger lower bounds for scoring

rules with larger gap parameter � is an indication that it is probably harder to prove strong upper
bounds for those scoring rules.
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