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Abstract

Spectral decomposition of the Koopman operator is attracting attention as a tool
for the analysis of nonlinear dynamical systems. Dynamic mode decomposition
is a popular numerical algorithm for Koopman spectral analysis; however, we
often need to prepare nonlinear observables manually according to the underlying
dynamics, which is not always possible since we may not have any a priori
knowledge about them. In this paper, we propose a fully data-driven method for
Koopman spectral analysis based on the principle of learning Koopman invariant
subspaces from observed data. To this end, we propose minimization of the residual
sum of squares of linear least-squares regression to estimate a set of functions that
transforms data into a form in which the linear regression fits well. We introduce
an implementation with neural networks and evaluate performance empirically
using nonlinear dynamical systems and applications.

1 Introduction

A variety of time-series data are generated from nonlinear dynamical systems, in which a state evolves
according to a nonlinear map or differential equation. In summarization, regression, or classification
of such time-series data, precise analysis of the underlying dynamical systems provides valuable
information to generate appropriate features and to select an appropriate computation method. In
applied mathematics and physics, the analysis of nonlinear dynamical systems has received significant
interest because a wide range of complex phenomena, such as fluid flows and neural signals, can
be described in terms of nonlinear dynamics. A classical but popular view of dynamical systems
is based on state space models, wherein the behavior of the trajectories of a vector in state space is
discussed (see, e.g., [1]). Time-series modeling based on a state space is also common in machine
learning. However, when the dynamics are highly nonlinear, analysis based on state space models
becomes challenging compared to the case of linear dynamics.

Recently, there is growing interest in operator-theoretic approaches for the analysis of dynamical
systems. Operator-theoretic approaches are based on the Perron–Frobenius operator [2] or its adjoint,
i.e., the Koopman operator (composition operator) [3], [4]. The Koopman operator defines the
evolution of observation functions (observables) in a function space rather than state vectors in a state
space. Based on the Koopman operator, the analysis of nonlinear dynamical systems can be lifted
to a linear (but infinite-dimensional) regime. Consequently, we can consider modal decomposition,
with which the global characteristics of nonlinear dynamics can be inspected [4], [5]. Such modal
decomposition has been intensively used for scientific purposes to understand complex phenomena
(e.g., [6]–[9]) and also for engineering tasks, such as signal processing and machine learning. In fact,
modal decomposition based on the Koopman operator has been utilized in various engineering tasks,
including robotic control [10], image processing [11], and nonlinear system identification [12].
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One of the most popular algorithms for modal decomposition based on the Koopman operator is
dynamic mode decomposition (DMD) [6], [7], [13]. An important premise of DMD is that the target
dataset is generated from a set of observables that spans a function space invariant to the Koopman
operator (referred to as Koopman invariant subspace). However, when only the original state vectors
are available as the dataset, we must prepare appropriate observables manually according to the
underlying nonlinear dynamics. Several methods have been proposed to utilize such observables,
including the use of basis functions [14] and reproducing kernels [15]. Note that these methods work
well only if appropriate basis functions or kernels are prepared; however, it is not always possible to
prepare such functions if we have no a priori knowledge about the underlying dynamics.

In this paper, we propose a fully data-driven method for modal decomposition via the Koopman
operator based on the principle of learning Koopman invariant subspaces (LKIS) from scratch using
observed data. To this end, we estimate a set of parametric functions by minimizing the residual sum
of squares (RSS) of linear least-squares regression, so that the estimated set of functions transforms
the original data into a form in which the linear regression fits well. In addition to the principle of
LKIS, an implementation using neural networks is described. Moreover, we introduce empirical
performance of DMD based on the LKIS framework with several nonlinear dynamical systems and
applications, which proves the feasibility of LKIS-based DMD as a fully data-driven method for
modal decomposition via the Koopman operator.

2 Background

2.1 Koopman spectral analysis

We focus on a (possibly nonlinear) discrete-time autonomous dynamical system
xt+1 = f(xt), x ∈M, t ∈ T = {0} ∪ N, (1)

where M denotes the state space and (M,Σ, µ) represents the associated probability space. In
dynamical system (1), Koopman operator K [4], [5] is defined as an infinite-dimensional linear
operator that acts on observables g :M→ R (or C), i.e.,

Kg(x) = g(f(x)), (2)
with which the analysis of nonlinear dynamics (1) can be lifted to a linear (but infinite-dimensional)
regime. Since K is linear, let us consider a set of eigenfunctions {ϕ1, ϕ2, . . . } of K with eigenvalues
{λ1, λ2, . . . }, i.e., Kϕi = λiϕi for i ∈ N, where ϕ : M → C and λ ∈ C. Further, suppose
that g can be expressed as a linear combination of those infinite number of eigenfunctions, i.e.,
g(x) =

∑∞
i=1 ϕi(x)ci with a set of coefficients {c1, c2, . . . }. By repeatedly applyingK to both sides

of this equation, we obtain the following modal decomposition:

g(xt) =

∞∑
i=1

λtiϕi(x0)ci. (3)

Here, the value of g is decomposed into a sum of Koopman modes wi = ϕi(x0)ci, each of which
evolves over time with its frequency and decay rate respectively given by ∠λi and |λi|, since λi
is a complex value. The Koopman modes and their eigenvalues can be investigated to understand
the dominant characteristics of complex phenomena that follow nonlinear dynamics. The above
discussion can also be applied straightforwardly to continuous-time dynamical systems [4], [5].

Modal decomposition based on K, often referred to as Koopman spectral analysis, has been receiving
attention in nonlinear physics and applied mathematics. In addition, it is a useful tool for engineering
tasks including machine learning and pattern recognition; the spectra (eigenvalues) of K can be used
as features of dynamical systems, the eigenfunctions are a useful representation of time-series for
various tasks, such as regression and visualization, andK itself can be used for prediction and optimal
control. Several methods have been proposed to compute modal decomposition based on K, such
as generalized Laplace analysis [5], [16], the Ulam–Galerkin method [17], and DMD [6], [7], [13].
DMD, which is reviewed in more detail in the next subsection, has received significant attention and
been utilized in various data analysis scenarios (e.g., [6]–[9]).

Note that the Koopman operator and modal decomposition based on it can be extended to random
dynamical systems actuated by process noise [4], [14], [18]. In addition, Proctor et al. [19], [20]
discussed Koopman analysis of systems with control signals. In this paper, we primarily target
autonomous deterministic dynamics (e.g., Eq. (1)) for the sake of presentation clarity.
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2.2 Dynamic mode decomposition and Koopman invariant subspace

Let us review DMD, an algorithm for Koopman spectral analysis (further details are in the supple-
mentary). Consider a set of observables {g1, . . . , gn} and let g = [g1 · · · gn]

T be a vector-valued
observable. In addition, define two matrices Y0,Y1 ∈ Rn×m generated by x0, f and g, i.e.,

Y0 = [g(x0) · · · g(xm−1)] and Y1 = [g(f(x0)) · · · g(f(xm−1))] , (4)

where m+ 1 is the number of snapshots in the dataset. The core functionality of DMD algorithms
is computing the eigendecomposition of matrix A = Y1Y

†
0 [13], [21], where Y †0 is the Moore–

Penrose pseudoinverse of Y0. The eigenvectors of A are referred to as dynamic modes, and they
coincide with the Koopman modes if the corresponding eigenfunctions of K are in span{g1, . . . , gn}
[21]. Alternatively (but nearly equivalently), the condition under which DMD works as a numerical
realization of Koopman spectral analysis can be described as follows.

Rather than calculating the infinite-dimensional K directly, we can consider the restriction of K to
a finite-dimensional subspace. Assume the observables are elements of L2(M, µ). The Koopman
invariant subspace is defined as G ⊂ L2(M, µ) s.t. ∀g ∈ G, Kg ∈ G. If G is spanned by a finite
number of functions, then the restriction of K to G, which we denote K, becomes a finite-dimensional
linear operator. In the sequel, we assume the existence of such G. If {g1, . . . , gn} spans G, then
DMD’s matrixA = Y1Y

†
0 coincides withK ∈ Rn×n asymptotically, whereinK is the realization of

K with regard to the frame (or basis) {g1, . . . , gn}. For modal decomposition (3), the (vector-valued)
Koopman modes are given by w and the values of the eigenfunctions are obtained by ϕ = zHg,
where w and z are the right- and left-eigenvectors of K normalized such that wH

i zj = δi,j [14],
[21], and zH denotes the conjugate transpose of z.

Here, an important problem in the practice of DMD arises, i.e., we often have no access to g that
spans a Koopman invariant subspace G. In this case, for nonlinear dynamics, we must manually
prepare adequate observables. Several researchers have addressed this issue; Williams et al. [14]
leveraged a dictionary of predefined basis functions to transform original data, and Kawahara [15]
defined Koopman spectral analysis in a reproducing kernel Hilbert space. Brunton et al. [22] proposed
the use of observables selected in a data-driven manner [23] from a function dictionary. Note that, for
these methods, we must select an appropriate function dictionary or kernel function according to the
target dynamics. However, if we have no a priori knowledge about them, which is often the case,
such existing methods do not have to be applied successfully to nonlinear dynamics.

3 Learning Koopman invariant subspaces

3.1 Minimizing residual sum of squares of linear least-squares regression

In this paper, we propose a method to learn a set of observables {g1, . . . , gn} that spans a Koopman
invariant subspace G, given a sequence of measurements as the dataset. In the following, we
summarize desirable properties for such observables, upon which the proposed method is constructed.
Theorem 1. Consider a set of square-integrable observables {g1, . . . , gn}, and define a vector-
valued observable g = [g1 · · · gn]

T. In addition, define a linear operator G whose matrix form
is given asG =

(∫
M(g ◦ f)gHdµ

) (∫
M ggHdµ

)†
. Then, ∀x ∈M, g(f(x)) = Gg(x) if and only

if {g1, . . . , gn} spans a Koopman invariant subspace.

Proof. If ∀x ∈M, g(f(x)) = Gg(x), then for any ĝ =
∑n
i=1 aigi ∈ span{g1, . . . , gn},

Kĝ =

n∑
i=1

aigi(f(x)) =

n∑
j=1

(
n∑
i=1

aiGi,j

)
gj(x) ∈ span{g1, . . . , gn},

where Gi,j denotes the (i, j)-element ofG; thus, span{g1, . . . , gn} is a Koopman invariant subspace.
On the other hand, if {g1, . . . , gn} spans a Koopman invariant subspace, there exists a linear operator
K such that ∀x ∈ M, g(f(x)) = Kg(x); thus,

∫
M(g ◦ f)gHdµ =

∫
MKggHdµ. Therefore, an

instance of the matrix form of K is obtained in the form ofG.

According to Theorem 1, we should obtain g that makes g ◦ f −Gg zero. However, such problems
cannot be solved with finite data because g is a function. Thus, we give the corresponding empirical
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risk minimization problem based on the assumption of ergodicity of f and the convergence property
of the empirical matrix as follows.
Assumption 1. For dynamical system (1), the time-average and space-average of a function g :
M→ R (or C) coincide in m→∞ for almost all x0 ∈M, i.e.,

lim
m→∞

1

m

m−1∑
j=0

g(xj) =

∫
M
g(x)dµ(x), for almost all x0 ∈M.

Theorem 2. Define Y0 and Y1 by Eq. (4) and suppose that Assumption 1 holds. If all modes are
sufficiently excited in the data (i.e., rank(Y0) = n), then matrixA = Y1Y

†
0 almost surely converges

to the matrix form of linear operator G in m→∞.
Proof. From Assumption 1, 1

mY1Y
H
0 and 1

mY0Y
H
0 respectively converge to

∫
M(g ◦ f)gHdµ and∫

M ggHdµ for almost all x0 ∈M. In addition, since the rank of Y0Y
H
0 is always n, ( 1

mY0Y
H
0 )† con-

verges to (
∫
M ggHdµ)† in m→∞ [24]. Consequently, in m→∞, A =

(
1
mY1Y

H
0

) (
1
mY0Y

H
0

)†
almost surely converges toG, which is the matrix form of linear operator G.

Since A = Y1Y
†
0 is the minimum-norm solution of the linear least-squares regression from the

columns of Y0 to those of Y1, we constitute the learning problem to estimate a set of function that
transforms the original data into a form in which the linear least-squares regression fits well. In
particular, we minimize RSS, which measures the discrepancy between the data and the estimated
regression model (i.e., linear least-squares in this case). We define the RSS loss as follows:

LRSS(g; (x0, . . . ,xm)) =
∥∥∥Y1 − (Y1Y

†
0 )Y0

∥∥∥2
F
, (5)

which becomes zero when g spans a Koopman invariant subspace. If we implement a smooth
parametric model on g, the local minima of LRSS can be found using gradient descent. We adopt g
that achieves a local minimum of LRSS as a set of observables that spans (approximately) a Koopman
invariant subspace.

3.2 Linear delay embedder for state space reconstruction

In the previous subsection, we have presented an important part of the principle of LKIS, i.e.,
minimization of the RSS of linear least-squares regression. Note that, to define RSS loss (5), we need
access to a sequence of the original states, i.e., (x0, . . . ,xm) ∈ Mm+1, as a dataset. In practice,
however, we cannot necessarily observe full states x due to limited memory and sensor capabilities.
In this case, only transformed (and possibly degenerated) measurements are available, which we
denote y = ψ(x) with a measurement function ψ :M→ Rr. To define RSS loss (5) given only
degenerated measurements, we must reconstruct the original states x from the actual observations y.

Here, we utilize delay-coordinate embedding, which has been widely used for state space reconstruc-
tion in the analysis of nonlinear dynamics. Consider a univariate time-series (. . . , yt−1, yt, yt+1, . . . ),
which is a sequence of degenerated measurements yt = ψ(xt). According to the well-known
Taken’s theorem [25], [26], a faithful representation of xt that preserves the structure of the state
space can be obtained by x̃t =

[
yt yt−τ · · · yt−(d−1)τ

]T
with some lag parameter τ and

embedding dimension d if d is greater than 2 dim(x). For a multivariate time-series, embedding
with non-uniform lags provides better reconstruction [27]. For example, when we have a two-
dimensional time-series yt = [y1,t y2,t]

T, an embedding with non-uniform lags is similar to
x̃t =

[
y1,t y1,t−τ11 · · · y1,t−τ1d1 y2,t y2,t−τ21 · · · y2,t−τ2d2

]T
with each value of τ and

d. Several methods have been proposed for selection of τ and d [27]–[29]; however, appropriate
values may depend on the given application (attractor inspection, prediction, etc.).

In this paper, we propose to surrogate the parameter selection of the delay-coordinate embedding by
learning a linear delay embedder from data. Formally, we learn embedder φ such that

x̃t = φ(y
(k)
t ) = Wφ

[
yT
t yT

t−1 · · · yT
t−k+1

]T
, Wφ ∈ Rp×kr, (6)

where p = dim(x̃), r = dim(y), and k is a hyperparameter of maximum lag. We estimate weight
Wφ as well as the parameters of g by minimizing RSS loss (5), which is now defined using x̃ instead
of x. Learning φ from data yields an embedding that is suitable for learning a Koopman invariant
subspace. Moreover, we can impose L1 regularization on weightWφ to make it highly interpretable
if necessary according to the given application.
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Figure 1: An instance of LKIS framework, in which g and h are implemented by MLPs.

3.3 Reconstruction of original measurements

Simple minimization of LRSS may yield trivial g, such as constant values. We should impose some
constraints to prevent such trivial solutions. In the proposed framework, modal decomposition is
first obtained in terms of learned observables g; thus, the values of g must be back-projected to the
space of the original measurements y to obtain a physically meaningful representation of the dynamic
modes. Therefore, we modify the loss function by employing an additional term such that the original
measurements y can be reconstructed from the values of g by a reconstructor h, i.e., y ≈ h(g(x̃)).
Such term is given as follows:

Lrec(h, g; (x̃0, . . . , x̃m)) =

m∑
j=0

‖yj − h(g(x̃j))‖2 , (7)

and, if h is a smooth parametric model, this term can also be reduced using gradient descent. Finally,
the objective function to be minimized becomes

L(φ, g,h; (y0, . . . ,ym)) = LRSS(g,φ; (x̃k−1, . . . , x̃m)) + αLrec(h, g; (x̃k−1, . . . , x̃m)), (8)

where α is a parameter that controls the balance between LRSS and Lrec.

3.4 Implementation using neural networks

In Sections 3.1–3.3, we introduced the main concepts for the LKIS framework, i.e., RSS loss
minimization, learning the linear delay embedder, and reconstruction of the original measurements.
Here, we demonstrate an implementation of the LKIS framework using neural networks.

Figure 1 shows a schematic diagram of the implementation of the framework. We model g and h
using multi-layer perceptrons (MLPs) with a parametric ReLU activation function [30]. Here, the
sizes of the hidden layer of MLPs are defined by the arithmetic means of the sizes of the input and
output layers of the MLPs. Thus, the remaining tunable hyperparameters are k (maximum delay
of φ), p (dimensionality of x̃), and n (dimensionality of g). To obtain g with dimensionality much
greater than that of the original measurements, we found that it was useful to set k > 1 even when
full-state measurements (e.g., y = x) were available.

After estimating the parameters of φ, g, and h, DMD can be performed normally by using the values
of the learned g, defining the data matrices in Eq. (4), and computing the eigendecomposition of
A = Y1Y

†
0 ; the dynamic modes are obtained byw, and the values of the eigenfunctions are obtained

by ϕ = zHg, where w and z are the right- and left-eigenvectors ofA. See Section 2.2 for details.

In the numerical experiments described in Sections 5 and 6, we performed optimization using first-
order gradient descent. To stabilize optimization, batch normalization [31] was imposed on the
inputs of hidden layers. Note that, since RSS loss function (5) is not decomposable with regard to
data points, convergence of stochastic gradient descent (SGD) cannot be shown straightforwardly.
However, we empirically found that the non-decomposable RSS loss was often reduced successfully,
even with mini-batch SGD. Let us show an example; the full-batch RSS loss (denoted L?RSS) under the
updates of the mini-batch SGD are plotted in the rightmost panel of Figure 4. Here, L?RSS decreases
rapidly and remains small. For SGD on non-decomposable losses, Kar et al. [32] provided guarantees
for some cases; however, examining the behavior of more general non-decomposable losses under
mini-batch updates remains an open problem.

4 Related work

The proposed framework is motivated by the operator-theoretic view of nonlinear dynamical systems.
In contrast, learning a generative (state-space) model for nonlinear dynamical systems directly has
been actively studied in machine learning and optimal control communities, on which we mention a
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Figure 3: (left) Data generated from system (9)
and white Gaussian observation noise and (right)
the estimated Koopman eigenvalues. LKIS-DMD
successfully identifies the eigenvalues even with
the observation noise.

few examples. A classical but popular method for learning nonlinear dynamical systems is using an
expectation-maximization algorithm with Bayesian filtering/smoothing (see, e.g., [33]). Recently,
using approximate Bayesian inference with the variational autoencoder (VAE) technique [34] to learn
generative dynamical models has been actively researched. Chung et al. [35] proposed a recurrent
neural network with random latent variables, Gao et al. [36] utilized VAE-based inference for neural
population models, and Johnson et al. [37] and Krishnan et al. [38] developed inference methods for
structured models based on inference with a VAE. In addition, Karl et al. [39] proposed a method to
obtain a more consistent estimation of nonlinear state space models. Moreover, Watter et al. [40]
proposed a similar approach in the context of optimal control. Since generative models are intrinsically
aware of process and observation noises, incorporating methodologies developed in such studies to
the operator-theoretic perspective is an important open challenge to explicitly deal with uncertainty.

We would like to mention some studies closely related to our method. After the first submission of
this manuscript (in May 2017), several similar approaches to learning data transform for Koopman
analysis have been proposed [41]–[45]. The relationships and relative advantages of these methods
should be elaborated in the future.

5 Numerical examples

In this section, we provide numerical examples of DMD based on the LKIS framework (LKIS-DMD)
implemented using neural networks. We conducted experiments on three typical nonlinear dynamical
systems: a fixed-point attractor, a limit-cycle attractor, and a system with multiple basins of attraction.
We show the results of comparisons with other recent DMD algorithms, i.e., Hankel DMD [46], [47],
extended DMD [14], and DMD with reproducing kernels [15]. The detailed setups of the experiments
discussed in this section and the next section are described in the supplementary.

Fixed-point attractor Consider a two-dimensional nonlinear map on xt = [x1,t x2,t]
T:

x1,t+1 = λx1,t, x2,t+1 = µx2,t + (λ2 − µ)x21,t, (9)
which has a stable equilibrium at the origin if λ, µ < 1. The Koopman eigenvalues of system (9)
include λ and µ, and the corresponding eigenfunctions are ϕλ(x) = x1 and ϕµ(x) = x2 − x21,
respectively. λiµj is also an eigenvalue with corresponding eigenfunction ϕiλϕ

j
µ. A minimal

Koopman invariant subspace of system (9) is span{x1, x2, x21}, and the eigenvalues of the Koopman
operator restricted to such subspace include λ, µ and λ2. We generated a dataset using system (9)
with λ = 0.9 and µ = 0.5 and applied LKIS-DMD (n = 4), linear Hankel DMD [46], [47] (delay 2),
and DMD with basis expansion by {x1, x2, x21}, which corresponds to extended DMD [14] with a
right and minimal observable dictionary. The estimated Koopman eigenvalues are shown in Figure 2,
wherein LKIS-DMD successfully identifies the eigenvalues of the target invariant subspace. In
Figure 3, we show eigenvalues estimated using data contaminated with white Gaussian observation
noise (σ = 0.1). The eigenvalues estimated by LKIS-DMD coincide with the true values even with
the observation noise, whereas the results of DMD with basis expansion (i.e., extended DMD) are
directly affected by the observation noise.

Limit-cycle attractor We generated data from the limit cycle of the FitzHugh–Nagumo equation
ẋ1 = x31/3 + x1 − x2 + I, ẋ2 = c(x1 − bx2 + a), (10)

where a = 0.7, b = 0.8, c = 0.08, and I = 0.8. Since trajectories in a limit-cycle are periodic, the
(discrete-time) Koopman eigenvalues should lie near the unit circle. Figure 4 shows the eigenvalues
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estimated by LKIS-DMD (n = 16), linear Hankel DMD [46], [47] (delay 8), and DMDs with
reproducing kernels [15] (polynomial kernel of degree 4 and RBF kernel of width 1). The eigenvalues
produced by LKIS-DMD agree well with those produced by kernel DMDs, whereas linear Hankel
DMD produces eigenvalues that would correspond to rapidly decaying modes.

Multiple basins of attraction Consider the unforced Duffing equation

ẍ = −δẋ− x(β + αx2), x = [x ẋ]
T
, (11)

where α = 1, β = −1, and δ = 0.5. States x following (11) evolve toward [1 0]
T or [−1 0]

T

depending on which basin of attraction the initial value belongs to unless the initial state is on
the stable manifold of the saddle. Generally, a Koopman eigenfunction whose continuous-time
eigenvalue is zero takes a constant value in each basin of attraction [14]; thus, the contour plot of
such an eigenfunction shows the boundary of the basins of attraction. We generated 1,000 episodes
of time-series starting at different initial values uniformly sampled from [−2, 2]2. The left plot in
Figure 5 shows the continuous-time Koopman eigenvalues estimated by LKIS-DMD (n = 100), all
of which correspond to decaying modes (i.e., negative real parts) and agree with the property of the
data. The center plot in Figure 5 shows the true basins of attraction of (11), and the right plot shows
the estimated values of the eigenfunction corresponding to the eigenvalue of the smallest magnitude.
The surface of the estimated eigenfunction agrees qualitatively with the true boundary of the basins
of attractions, which indicates that LKIS-DMD successfully identifies the Koopman eigenfunction.

6 Applications

The numerical experiments in the previous section demonstrated the feasibility of the proposed
method as a fully data-driven method for Koopman spectral analysis. Here, we introduce practical
applications of LKIS-DMD.

Chaotic time-series prediction Prediction of a chaotic time-series has received significant interest
in nonlinear physics. We would like to perform the prediction of a chaotic time-series using DMD,
since DMD can be naturally utilized for prediction as follows. Since g(xt) is decomposed as∑n
i=1 ϕi(xt)ci and ϕ is obtained by ϕi(xt) = zHi g(xt) where zi is a left-eigenvalue ofK, the next

step of g can be described in terms of the current step, i.e., g(xt+1) =
∑n
i=1 λi(z

H
i g(xt))ci. In
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Figure 6: The left plot shows RMS errors from
1- to 30-step predictions, and the right plot
shows a part of the 30-step prediction obtained
by LKIS-DMD on (upper) the Lorenz-x series
and (lower) the Rossler-x series.

Figure 7: The top plot shows the raw time-series
obtained by a far-infrared laser [50]. The other plots
show the results of unstable phenomena detection,
wherein the peaks should correspond to the occur-
rences of unstable phenomena.

addition, in the case of LKIS-DMD, the values of g must be back-projected to y using the learned h.
We generated two types of univariate time-series by extracting the {x} series of the Lorenz attractor
[48] and the Rossler attractor [49]. We simulated 25,000 steps for each attractor and used the first
10,000 steps for training, the next 5,000 steps for validation, and the last 10,000 steps for testing
prediction accuracy. We examined the prediction accuracy of LKIS-DMD, a simple LSTM network,
and linear Hankel DMD [46], [47], all of whose hyperparameters were tuned using the validation set.
The prediction accuracy of every method and an example of the predicted series on the test set by
LKIS-DMD are shown in Figure 6. As can be seen, the proposed LKIS-DMD achieves the smallest
root-mean-square (RMS) errors in the 30-step prediction.
Unstable phenomena detection One of the most popular applications of DMD is the investigation
of the global characteristics of dynamics by inspecting the spatial distribution of the dynamic modes.
In addition to the spatial distribution, we can investigate the temporal profiles of mode activations by
examining the values of corresponding eigenfunctions. For example, assume there is an eigenfunction
ϕλ�1 that corresponds to a discrete-time eigenvalue λ whose magnitude is considerably smaller
than one. Such a small eigenvalue indicates a rapidly decaying (i.e., unstable) mode; thus, we can
detect occurrences of unstable phenomena by observing the values of ϕλ�1. We applied LKIS-DMD
(n = 10) to a time-series generated by a far-infrared laser, which was obtained from the Santa Fe
Time Series Competition Data [50]. We investigated the values of eigenfunction ϕλ�1 corresponding
to the eigenvalue of the smallest magnitude. The original time-series and values of ϕλ�1 obtained
by LKIS-DMD are shown in Figure 7. As can be seen, the activations of ϕλ�1 coincide with
sudden decays of the pulsation amplitudes. For comparison, we applied the novelty/change-point
detection technique using one-class support vector machine (OC-SVM) [51] and direct density-ratio
estimation by relative unconstrained least-squares importance fitting (RuLSIF) [52]. We computed
AUC, defining the sudden decays of the amplitudes as the points to be detected, which were 0.924,
0.799, and 0.803 for LKIS, OC-SVM, and RuLSIF, respectively.

7 Conclusion

In this paper, we have proposed a framework for learning Koopman invariant subspaces, which
is a fully data-driven numerical algorithm for Koopman spectral analysis. In contrast to existing
approaches, the proposed method learns (approximately) a Koopman invariant subspace entirely
from the available data based on the minimization of RSS loss. We have shown empirical results for
several typical nonlinear dynamics and application examples.

We have also introduced an implementation using multi-layer perceptrons; however, one possible
drawback of such an implementation is the local optima of the objective function, which makes
it difficult to assess the adequacy of the obtained results. Rather than using neural networks, the
observables to be learned could be modeled by a sparse combination of basis functions as in [23] but
still utilizing optimization based on RSS loss. Another possible future research direction could be
incorporating approximate Bayesian inference methods, such as VAE [34]. The proposed framework
is based on a discriminative viewpoint, but inference methodologies for generative models could be
used to modify the proposed framework to explicitly consider uncertainty in data.
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