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Abstract
This paper examines the equilibrium convergence properties of no-regret learning
with exponential weights in potential games. To establish convergence with mini-
mal information requirements on the players’ side, we focus on two frameworks:
the semi-bandit case (where players have access to a noisy estimate of their payoff
vectors, including strategies they did not play), and the bandit case (where players
are only able to observe their in-game, realized payoffs). In the semi-bandit case,
we show that the induced sequence of play converges almost surely to a Nash
equilibrium at a quasi-exponential rate. In the bandit case, the same result holds for
ε-approximations of Nash equilibria if we introduce an exploration factor ε > 0
that guarantees that action choice probabilities never fall below ε. In particular, if
the algorithm is run with a suitably decreasing exploration factor, the sequence of
play converges to a bona fide Nash equilibrium with probability 1.

1 Introduction

Given the manifest complexity of computing Nash equilibria, a central question that arises is whether
such outcomes could result from a dynamic process in which players act on empirical information
on their strategies’ performance over time. This question becomes particularly important when the
players’ view of the game is obstructed by situational uncertainty and the “fog of war”: for instance,
when deciding which route to take to work each morning, a commuter is typically unaware of how
many other commuters there are at any given moment, what their possible strategies are, how to
best respond to their choices, etc. In fact, in situations of this kind, players may not even know that
they are involved in a game; as such, it does not seem reasonable to assume full rationality, common
knowledge of rationality, flawless execution, etc. to justify the Nash equilibrium prediction.

A compelling alternative to this “rationalistic” viewpoint is provided by the framework of online
learning, where players are treated as oblivious entities facing a repeated decision process with a
priori unknown rules and outcomes. In this context, when the players have no Bayesian prior on their
environment, the most widely used performance criterion is that of regret minimization, a worst-case
guarantee that was first introduced by Hannan [1], and which has given rise to a vigorous literature at
the interface of optimization, statistics and theoretical computer science – for a survey, see [2, 3]. By
this token, our starting point in this paper is the following question:

If all players of a repeated game follow a no-regret algorithm,
does the induced sequence of play converge to Nash equilibrium?

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



For concreteness, we focus on the exponential weights (EW) scheme [4–7], one of the most popular
and widely studied algorithms for no-regret learning. In a nutshell, the main idea of the method
is that the optimizing agent tallies the cumulative payoffs of each action and then employs a pure
strategy with probability proportional to the exponential of these cumulative “scores”. Under this
scheme, players are guaranteed a universal, min-max O(T 1/2) regret bound (with T denoting the
horizon of play), and their empirical frequency of play is known to converge to the game’s set of
coarse correlated equilibria (CCE) [8].

In this way, no-regret learning would seem to provide a positive partial answer to our original
question: coarse correlated equilibria are indeed learnable if all players follow an exponential weights
learning scheme. On the flip side however, the set of coarse correlated equilibria may contain highly
non-rationalizable strategies, so the end prediction of empirical convergence to such equilibria is
fairly lax. For instance, in a recent paper, Viossat and Zapechelnyuk constructed a 4 × 4 variant
of Rock-Paper-Scissors with a coarse correlated equilibrium that assigns positive weight only on
strictly dominated strategies [9]. Even more recently, [10] showed that the mean dynamics of the
exponential weights method (and, more generally, any method “following the regularized leader”)
may cycle in perpetuity in zero-sum games, precluding any possibility of convergence to equilibrium
in this case. Thus, in view of these negative results, a more calibrated answer to the above question is
“not always”: especially when the issue at hand is convergence to a Nash equilibrium (as opposed to
coarser notions), “no regret” is a rather loose guarantee.

Paper outline and summary of results. To address the above limitations, we focus on two issues:

a) Convergence to Nash equilibrium (as opposed to correlated equilibria, coarse or otherwise).

b) The convergence of the actual sequence of play (as opposed to empirical frequencies).

The reason for focusing on the actual sequence of play is that time-averages provide a fairly weak
convergence mode: a priori, a player could oscillate between non-equilibrium strategies with subopti-
mal payoffs, but time-averages might still converge to equilibrium. On the other hand, convergence
of the actual sequence of play both implies empirical convergence and also guarantees that players
will be playing a Nash equilibrium in the long run, so it is a much stronger notion.

To establish convergence, we focus throughout on the class of potential games [11] that has found
widespread applications in theoretical computer science [12], transportation networks [13], wireless
communications [14], biology [15], and many other fields. We then focus on two different feedback
models: in the semi-bandit framework (Section 3), players are assumed to have some (possibly
imperfect) estimate of their payoff vectors at each stage, including strategies that they did not play; in
the full bandit framework (Section 4), this assumption is relaxed and players are only assumed to
observe their realized, in-game payoff at each stage.

Starting with the semi-bandit case, our main result is that under fairly mild conditions for the errors
affecting the players’ observations (zero-mean martingale noise with tame second-moment tails),
learning with exponential weights converges to a Nash equilibrium of the game with probability 1
(or to an ε-equilibrium if the algorithm is implemented with a uniform exploration factor ε > 0).1
We also show that this convergence occurs at a quasi-exponential rate, i.e. much faster than the
algorithm’s O(

√
T ) regret minimization rate would suggest.

These conclusions also apply to the bandit framework when the algorithm is run with a positive
exploration factor ε > 0. Thus, by choosing a sufficiently small exploration factor, the end state of
the EW algorithm in potential games with bandit feedback is arbitrarily close to a Nash equilibrium.

On the other hand, extending the stochastic approximation and martingale limit arguments that
underlie the bandit analysis to the ε = 0 case is not straightforward. However, by letting the
exploration factor go to zero at a suitable rate (similar to the temperature parameter in simulated
annealing schemes), we are able to recover convergence to the game’s exact Nash set (and not
an approximation thereof). We find this property particularly appealing for practical applications
because it shows that equilibrium can be achieved in a wide class of games with minimal information
requirements.

1Having a exploration factor ε > 0 simply means here that action selection probabilities never fall below ε.

2



Related work. No-regret learning has given rise to a vast corpus of literature in theoretical computer
science and machine learning, and several well-known families of algorithms have been proposed
for that purpose. The most popular of these methods is based on exponential/multiplicative weight
update rules, and several variants of this general scheme have been studied under different names in
the literature (Hedge, EXP3, etc.) [4–7].

When applied to games, the time-average of the resulting trajectory of play converges to equilibrium
in two-player zero-sum games [6, 16, 17] and the players’ social welfare approaches an approximate
optimum [18]. In a similar vein, focusing on the so-called “Hedge” variant of the multiplicative
weights (MW) algorithm, Kleinberg et al. [19] proved that the dynamics’ long-term limit in load
balancing games is exponentially better than the worst correlated equilibrium. The convergence rate
to approximate efficiency and to coarse correlated equilibria was further improved by Syrgkanis et al.
[20] for a wide class of N -player normal form games using a natural class of regularized learning
algorithms. This result was then extended to a class of games known as smooth games [21] with good
properties in terms of the game’s price of anarchy [22].

In the context of potential games, learning algorithms and dynamics have received signifcant attention
and considerable efforts have been devoted to studying the long-term properties of the players’ actual
sequence of play. To that end, Kleinberg et al. [23] showed that, after a polynomially small transient
stage, players end up playing a pure equilibrium for a fraction of time that is arbitrarily close to 1
with probability also arbitrarily close to 1. Mehta et al. [24] obtained a stronger result for (generic)
2-player coordination games, showing that the multiplicative weights algorithm (a linearized variant
of the EW algorithm) converges to a pure Nash equilibrium for all but a measure 0 of initial conditions.
More recently, Palaiopanos et al. [25] showed that the MW update rule converges to equilibrium
in potential games; however, if the EW algorithm is run with a constant step-size that is not small
enough, the induced sequence of play may exhibit chaotic behavior, even in simple 2× 2 games. On
the other hand, if the same algorithm is run with a decreasing step-size, Krichene et al. [26] showed
that play converges to Nash equilibrium in all nonatomic potential games with a convex potential
(and hence, in all nonatomic congestion games).

In the above works, players are assumed to have full (though possibly imperfect) knowledge of their
payoff vectors, including actions that were not chosen. Going beyond this semi-bandit framework,
Coucheney et al. [27] showed that a “penalty-regulated” variant of the EW algorithm converges to ε-
logit equilibria (and hence ε-approximate Nash equilibria) in congestion games with bandit feedback.
As in [26], the results of Coucheney et al. [27] employ the powerful ordinary differential equation
(ODE) method of Benaïm [28] which leverages the convergence of an underlying, continuous-time
dynamical system to obtain convergence of the algorithm at hand. We also employ this method to
compare the actual sequence of play to the replicator dynamics of evolutionary game theory [29];
however, finetuning the bias-variance trade-off that arises when estimating the payoff of actions that
were not employed is a crucial difficulty in this case. Overcoming this hurdle is necessary when
seeking convergence to actual Nash equilibria (as opposed to ε-approximations thereof), so a key
contribution of our paper is an extension of Benaïm’s theory to account for estimators with (possibly)
unbounded variance.

2 The setup

2.1 Game-theoretic preliminaries

An N -player game in normal form consists of a (finite) set of players N = {1, . . . , N}, each with a
finite set of actions (or pure strategies) Ai. The preferences of the i-th player for one action over
another are determined by an associated payoff function ui : A ≡

∏
iAi → R that maps the profile

(αi;α−i) of all players’ actions to the player’s reward ui(αi;α−i).2 Putting all this together, a game
will be denoted by the tuple Γ ≡ Γ(N ,A, u).

Players can also mix their strategies by playing probability distributions xi = (xiαi)αi∈Ai ∈ ∆(Ai)
over their action sets Ai. The resulting probability vector xi is called a mixed strategy and we write
Xi = ∆(Ai) for the mixed strategy space of player i. Aggregating over players, we also write
X =

∏
i Xi for the game’s strategy space, i.e. the space of all mixed strategy profiles x = (xi)i∈N .

2In the above (αi;α−i) is shorthand for (α1, . . . , αi, . . . , αN ), used here to highlight the action of player i
against that of all other players.
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In this context (and in a slight abuse of notation), the expected payoff of the i-th player in the profile
x = (x1, . . . , xN ) is

ui(x) =
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )x1α1 · · ·xNαN . (2.1)

To keep track of the payoff of each pure strategy, we also write viαi(x) = ui(αi;x−i) for the payoff
of strategy αi ∈ Ai under the profile x ∈ X and

vi(x) = (viαi(x))αi∈Ai (2.2)

for the resulting payoff vector of player i. We thus have

ui(x) = 〈vi(x), xi〉 =
∑
αi∈Ai

xiαiviαi(x), (2.3)

where 〈v, x〉 ≡ v>x denotes the ordinary pairing between v and x.

The most widely used solution concept in game theory is that of a Nash equilibrium (NE), i.e. a state
x∗ ∈ X such that

ui(x
∗
i ;x
∗
−i) ≥ ui(xi;x∗−i) for every deviation xi ∈ Xi of player i and all i ∈ N . (NE)

Equivalently, writing supp(xi) = {αi ∈ Ai : xi > 0} for the support of xi ∈ Xi, we have the
characterization

viαi(x
∗) ≥ viβi(x∗) for all αi ∈ supp(x∗i ) and all βi ∈ Ai, i ∈ N . (2.4)

A Nash equilibrium x∗ ∈ X is further said to be pure if supp(x∗i ) = {α̂i} for some α̂i ∈ Ai and all
i ∈ N . In generic games (that is, games where small changes to any payoff do not introduce new
Nash equilibria or destroy existing ones), every pure Nash equilibrium is also strict in the sense that
(2.4) holds as a strict inequality for all αi 6= α̂i.

In our analysis, it will be important to consider the following relaxations of the notion of a Nash
equilibrium: First, weakening the inequality (NE) leads to the notion of a δ-equilibrium, defined here
as any mixed strategy profile x∗ ∈ X such that

ui(x
∗
i ;x
∗
−i) + δ ≥ ui(xi;x∗−i) for every deviation xi ∈ Xi and all i ∈ N . (NEδ)

Finally, we say that x∗ is a restricted equilibrium (RE) of Γ if

viαi(x
∗) ≥ viβi(x∗) for all αi ∈ supp(x∗i ) and all βi ∈ A′i, i ∈ N , (RE)

where A′i is some restricted subset of Ai containing supp(x∗i ). In words, restricted equilibria are
Nash equilibria of Γ restricted to subgames where only a subset of the players’ pure strategies are
available at any given moment. Clearly, Nash equilibria are restricted equilibria but the converse does
not hold: for instance, every pure strategy profile is a restricted equilibrium, but not necessarily a
Nash equilibrium.

Throughout this paper, we will focus almost exclusively on the class of potential games, which have
been studied extensively in the context of congestion, traffic networks, oligopolies, etc. Following
Monderer and Shapley [11], Γ is a potential game if it admits a potential function f :

∏
iAi → R

such that
ui(xi;x−i)− ui(x′i;x−i) = f(xi;x−i)− f(x′i;x−i), (2.5)

for all xi, x′i ∈ Xi, x−i ∈ X−i ≡
∏
j 6=i Xi, and all i ∈ N . A simple differentiation of (2.1) then

yields
vi(x) = ∇xiui(x) = ∇xif(x) for all i ∈ N . (2.6)

Obviously, every local maximizer of f is a Nash equilibrium so potential games always admit Nash
equilibria in pure strategies (which are also strict if the game is generic).

2.2 The exponential weights algorithm

Our basic learning framework is as follows: At each stage n = 1, 2, . . . , all players i ∈ N select an
action αi(n) ∈ Ai based on their mixed strategies; subsequently, they receive some feedback on their
chosen actions, they update their mixed strategies, and the process repeats.
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A popular (and very widely studied) class of algorithms for no-regret learning in this setting is the
exponential weights (EW) scheme introduced by Vovk [4] and studied further by Auer et al. [5],
Freund and Schapire [6], Arora et al. [7], and many others. Somewhat informally, the main idea
is that each player tallies the cumulative payoffs of each of their actions, and then employs a pure
strategy αi ∈ Ai with probability roughly proportional to the these cumulative payoff “scores”.
Focusing on the so-called “ε-HEDGE” variant of the EW algorithm [6], this process can be described
in pseudocode form as follows:

Algorithm 1 ε-HEDGE with generic feedback
Require: step-size sequence γn > 0, exploration factor ε ∈ [0, 1], initial scores Yi ∈ RAi .

1: for n = 1, 2, . . . do
2: for every player i ∈ N do
3: set mixed strategy: Xi ← εunifi +(1− ε) Λi(Yi);
4: choose action αi ∼ Xi;
5: acquire estimate v̂i of realized payoff vector vi(αi;α−i);
6: update scores: Yi ← Yi + γnv̂i;
7: end for
8: end for

Mathematically, Algorithm 1 represents the recursion

Xi(n) = ε unifi +(1− ε) Λi(Yi(n)),

Yi(n+ 1) = Yi(n) + γn+1v̂i(n+ 1),
(ε-Hedge)

where
unifi =

1

|Ai|
(1, . . . , 1) (2.7)

stands for the uniform distribution over Ai and Λi : RAi → Xi denotes the logit choice map

Λi(yi) =
(exp(yiαi))αi∈Ai∑
αi∈Ai exp(yiαi)

, (2.8)

which assigns exponentially higher probability to pure strategies with higher scores. Thus, action
selection probabilities under (ε-Hedge) are a convex combination of uniform exploration (with total
weight ε) and exponential weights (with total weight 1− ε).3 As a result, for ε ≈ 1, action selection
is essentially uniform; at the other extreme, when ε = 0, we obtain the original Hedge algorithm of
Freund and Schapire [6] with feedback sequence v̂(n) and no explicit exploration.

The no-regret properties of (ε-Hedge) have been extensively studied in the literature as a function
of the algorithm’s step-size sequence γn, exploration factor ε, and the statistical properties of the
payoff estimates v̂(n) – for a survey, we refer the reader to [2, 3]. In our convergence analysis, we
examine the role of each of these factors in detail, focusing in particular on the distinction between
“semi-bandit feedback” (when it is possible to estimate the payoff of pure strategies that were not
played) and “bandit feedback” (when players only observe the payoff of their chosen action).

3 Learning with semi-bandit feedback

3.1 The model

We begin with the semi-bandit framework, i.e. the case where each player has access to a possibly
imperfect estimate of their entire payoff vector at stage n. More precisely, we assume here that the
feedback sequence v̂i(n) to Algorithm 1 is of the general form

v̂i(n) = vi(αi(n);α−i(n)) + ξi(n), (3.1)

where (ξi(n))i∈N is a martingale noise process representing the players’ estimation error and
satisfying the following statistical hypotheses:

3Of course, the exploration factor ε could also be player-dependent. For simplicity, we state all our results
here with the same ε for all players.
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1. Zero-mean:

E[ξi(n) | Fn−1] = 0 for all n = 1, 2, . . . (a.s.). (H1)

2. Tame tails:

P(‖ξi(n)‖2∞ ≥ z | Fn−1) ≤ A/zq for some q > 2, A > 0, and all n = 1, 2, . . . (a.s.). (H2)

In the above, the expectation E[ · ] is taken with respect to some underlying filtered probability space
(Ω,F , (Fn)n∈N,P) which serves as a stochastic basis for the process (α(n), v̂(n), Y (n), X(n))n≥1.4
In words, Hypothesis (H1) simply means that the players’ feedback sequence v̂(n) is conditionally
unbiased with respect to the history of play, i.e.

E[v̂i(n) | Fn−1] = vi(X(n− 1)), for all n = 1, 2, . . . (a.s.). (3.2a)

Hypothesis (H2) further implies that the variance of the estimator v̂ is conditionally bounded, i.e.

Var[v̂(n) | Fn−1] ≤ σ2 for all n = 1, 2, . . . (a.s.). (3.2b)

By Chebyshev’s inequality, an estimator with finite variance enjoys the tail bound P(‖ξi(n)‖∞ ≥
z | Fn−1) = O(1/z2). At the expense of working with slightly more conservative step-size policies
(see below), much of our analysis goes through with this weaker requirement for the tails of ξ. How-
ever, the extra control provided by the O(1/zq) tail bound simplifies the presentation considerably,
so we do not consider this relaxation here. In any event, Hypothesis (H2) is satisfied by a broad range
of error noise distributions (including all compactly supported, sub-Gaussian and sub-exponential
distributions), so the loss in generality is small compared to the gain in clarity and concision.

3.2 Convergence analysis

With all this at hand, our main result for the convergence of (ε-Hedge) with semi-bandit feedback of
the form (3.1) is as follows:
Theorem 1. Let Γ be a generic potential game and suppose that Algorithm 1 is run with i) semi-
bandit feedback satisfying (H1) and (H2); ii) a nonnegative exploration factor ε ≥ 0; and iii) a
step-size sequence of the form γn ∝ 1/nβ for some β ∈ (1/q, 1]. Then:

1. X(n) converges (a.s.) to a δ-equilibrium of Γ with δ ≡ δ(ε)→ 0 as ε→ 0.

2. If limn→∞X(n) is an ε-pure state of the form x∗i = εunifi +(1− ε)eα̂i for some α̂ ∈ A,
then α̂ is a.s. a strict equilibrium of Γ and convergence occurs at a quasi-exponential rate:

Xiα̂i(n) ≥ 1− ε− be−c
∑n
k=1 γk for some positive b, c > 0. (3.3)

Corollary 2. If Algorithm 1 is run with assumptions as above and no exploration (ε = 0), X(n)
converges to a Nash equilibrium with probability 1. Moreover, if the limit of X(n) is pure and β < 1,
we have

Xiα̂i(n) ≥ 1− be−cn
1−β

for some positive b, c > 0. (3.4)

Sketch of the proof. The proof of Theorem 1 is fairly convoluted, so we relegate the details to the
paper’s technical appendix and only present here a short sketch thereof.

Our main tool is the so-called ordinary differential equation (ODE) method, a powerful stochastic
approximation scheme due to Benaïm and Hirsch [28, 30]. The key observation is that the mixed strat-
egy sequence X(n) generated by Algorithm 1 can be viewed as a “Robbins–Monro approximation”
(an asymptotic pseudotrajectory to be precise) of the ε-perturbed exponential learning dynamics

ẏi = vi(x),

xi = εunifi +(1− ε) Λi(yi),
(XLε)

By differentiating, it follows that xi(t) evolves according to the ε-perturbed replicator dynamics

ẋiα =
(
xiα − |Ai|−1ε

)[
viα(x)− (1− ε)−1

∑
β∈Ai

(xiβ − |Ai|−1ε)viβ(x)
]
, (RDε)

4Notation-wise, this means that the players’ actions at stage n are drawn based on their mixed strategies at
stage n− 1. This slight discrepancy with the pseudocode representation of Algorithm 1 is only done to simplify
notation later on.
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which, for ε = 0, boil down to the ordinary replicator dynamics of Taylor and Jonker [29]:

ẋiα = xiα[viα(x)− 〈vi(x), xi〉], (RD)

A key property of the replicator dynamics that readily extends to the ε-perturbed variant (RDε) is that
the game’s potential f is a strict Lyapunov function – i.e. f(x(t)) is increasing under (RDε) unless
x(t) is stationary. By a standard result of Benaïm [28], this implies that the discrete-time process
X(n) converges (a.s.) to a connected set of rest points of (RDε), which are themselves approximate
restricted equilibria of Γ.

Of course, since every ε-pure point of the form (εunifi +(1 − ε)eαi)i∈N is also stationary under
(RDε), the above does not imply that the limit of X(n) is an approximate equilibrium of Γ. To rule
out non-equilibrium outcomes, we first note that the set of rest points of (RDε) is finite (by genericity),
so X(n) must converge to a point. Then, the final step of our convergence proof is provided by a
martingale recurrence argument which shows that when X(n) converges to a point, this limit must be
an approximate equilibrium of Γ. Finally, the rate of convergence (3.3) is obtained by comparing the
payoff of a player’s equilibrium strategy to that of the player’s other strategies, and then “inverting”
the logit choice map to translate this into an exponential decay rate for ‖Xiα̂i(n)− x∗‖.

We close this section with two remarks on Theorem 1. First, we note that there is an inverse
relationship between the tail exponent q in (H2) and the decay rate β of the algorithm’s step-size
sequence γn ∝ n−β . Specifically, higher values of q imply that the noise in the players’ observations
is smaller (on average and with high probability), so players can be more aggressive in their choice
of step-size. This is reflected in the lower bound 1/q for β and the fact that the players’ rate of
convergence to Nash equilibrium increases for smaller β; in particular, (3.3) shows that Algorithm 1
enjoys a convergence bound which is just shy of O(exp(−n1−1/q)). Thus, if the noise process ξ is
sub-Gaussian/sub-exponential (so q can be taken arbitrarily large), a near-constant step-size sequence
(small β) yields an almost linear convergence rate.

Second, if the noise process ξ is “isotropic” in the sense of Benaïm [28, Thm. 9.1], the instability of
non-pure Nash equilibria under the replicator dynamics can be used to show that the limit of X(n) is
pure with probability 1.5 When this is the case, the quasi-exponential convergence rate (3.3) becomes
universal in that it holds with probability 1 (as opposed to conditioning on limn→∞X(n) being
pure). We find this property particularly appealing for practical applications because it shows that
equilibrium is reached exponentially faster than the O(1/

√
n) worst-case regret bound of (ε-Hedge)

would suggest.

4 Payoff-based learning: the bandit case

We now turn to the bandit framework, a minimal-information setting where, at each stage of the
process, players only observe their realized payoffs

ûi(n) = ui(αi(n);α−i(n)). (4.1)

In this case, players have no clue about the payoffs of strategies that were not chosen, so they must
construct an estimator for their payoff vector, including its missing components. A standard way to
do this is via the bandit estimator

v̂iαi(n) =
1(αi(n) = αi)

P(αi(n) = αi | Fn−1)
· ûi(n) =

{
ûi(n)/Xiαi(n− 1) if αi = αi(n),
0 otherwise.

(4.2)

Indeed, a straightforward calculation shows that

E[v̂iαi(n) | Fn−1] =
∑

α−i∈A−i

X−i,α−i(n− 1)
∑
βi∈Ai

Xiβi(n− 1)
1(αi = βi)

Xiαi(n− 1)
ui(βi;α−i)

= ui(αi;X−i(n− 1))

= viαi(X(n− 1)), (4.3)

5Specifically, we refer here to the so-called “folk theorem” of evolutionary game theory which states that x∗

is asymptotically stable under (RD) if and only if it is a strict Nash equilibrium of Γ [15]. The extension of this
result to the ε-replicator system (RDε) is immediate.
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so the estimator (4.2) is unbiased in the sense of (H1)/(3.2a). On the other hand, a similar calculation
shows that the variance of v̂iαi(n) grows as O(1/Xiαi(n− 1)), implying that (H2)/(3.2b) may fail
to hold if the players’ action selection probabilities become arbitrarily small.

Importantly, this can never happen if (ε-Hedge) is run with a strictly positive exploration factor ε > 0.
In that case, we can show that the bandit estimator (4.2) satisfies both (H1) and (H2), leading to the
following result:

Theorem 3. Let Γ be a generic potential game and suppose that Algorithm 1 is run with i ) the bandit
estimator (4.2); ii) a strictly positive exploration factor ε > 0; and iii) a step-size sequence of the
form γn ∝ 1/nβ for some β ∈ (0, 1]. Then:

1. X(n) converges (a.s.) to a δ-equilibrium of Γ with δ ≡ δ(ε)→ 0 as ε→ 0.

2. If limn→∞X(n) is an ε-pure state of the form x∗i = εunifi +(1− ε)eα̂i for some α̂ ∈ A,
then α̂ is a.s. a strict equilibrium of Γ and convergence occurs at a quasi-exponential rate:

Xiα̂i(n) ≥ 1− ε− be−c
∑n
k=1 γk for some positive b, c > 0. (4.4)

Proof. Under Algorithm 1, the estimator (4.2) gives

‖v̂i(n)‖ =
|ûi(n)|

Xiαi(n−1)(n)
≤ |ui(αi(n);α−i(n))|

ε
≤ umax

ε
, (4.5)

where umax = maxi∈N maxα1∈A1 · · ·maxαN∈AN ui(α1, . . . , αN ) denotes the absolute maximum
payoff in Γ. This implies that (H2) holds true for all q > 2, so our claim follows from Theorem 1.

Theorem 3 shows that the limit of Algorithm 1 is closer to the Nash set of the game if the exploration
factor ε is taken as small as possible. On the other hand, the crucial limitation of this result is that it
does not apply to the case ε = 0 which corresponds to the game’s bona fide Nash equilibria. As we
discussed above, the reason for this is that the variance of v̂(n) may grow without bound if action
choice probabilities become arbitrarily small, in which case the main components of our proof break
down.

With this “bias-variance” trade-off in mind, we introduce below a modified version of Algorithm 1
with an “annealing” schedule for the method’s exploration factor:

Algorithm 2 Exponential weights with annealing
Require: step-size sequence γn > 0, vanishing exploration factor εn > 0, initial scores Yi ∈ RAi

1: for n = 1, 2, . . . do
2: for every player i ∈ N do
3: set mixed strategy: Xi ← εn unifi +(1− εn) Λi(Yi);
4: choose action αi ∼ Xi and receive payoff ûi ← ui(αi;α−i);
5: set v̂iαi ← ûi/Xiαi and v̂iβi ← 0 for βi 6= αi;
6: update scores: Yi ← Yi + γnv̂i;
7: end for
8: end for

Of course, the convergence of Algorithm 2 depends heavily on the rate at which εn decays to 0
relative to the algorithm’s step-size sequence γn. This can be seen clearly in our next result:

Theorem 4. Let Γ be a generic potential game and suppose that Algorithm 1 is run with i ) the bandit
estimator (4.2); ii) a step-size sequence of the form γn ∝ 1/nβ for some β ∈ (1/2, 1]; and iii) a
decreasing exploration factor εn ↓ 0 such that

lim
n→∞

γn
ε2
n

= 0,

∞∑
n=1

γ2
n

εn
<∞, and lim

n→∞

εn − εn+1

γ2
n

= 0. (4.6)

Then, X(n) converges (a.s.) to a Nash equilibrium of Γ.
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The main challenge in proving Theorem 4 is that, unless the “innovation term” Ui(n) = v̂i(n) −
vi(X(n− 1)) has bounded variance, Benaïm’s general theory does not imply that X(n) forms an
asymptotic pseudotrajectory of the underlying mean dynamics – here, the unperturbed replicator
system (RD). Nevertheless, under the summability condition (4.6), it is possible to show that this is
the case by using a martingale limit argument based on Burkholder’s inequality. Furthermore, under
the stated conditions, it is also possible to show that, if X(n) converges, its limit is necessarily a
Nash equilibrium of Γ. Our proof then follows in roughly the same way as in the case of Theorem 1;
for the details, we refer the reader to the appendix.

We close this section by noting that the summability condition (4.6) imposes a lower bound on the
step-size exponent β that is different from the lower bound in Theorem 3. In particular, if β = 1/2,
(4.6) cannot hold for any vanishing sequence of exploration factors εn ↓ 0. Given that the innovation
term Ui is bounded, we conjecture that this sufficient condition is not tight and can be relaxed further.
We intend to address this issue in future work.

5 Conclusion and perspectives

The results of the previous sections show that no-regret learning via exponential weights enjoys
appealing convergence properties in generic potential games. Specifically, in the semi-bandit case,
the sequence of play converges to a Nash equilibrium with probability 1, and convergence to pure
equilibria occurs at a quasi-exponential rate. In the bandit case, the same holds true for O(ε)-
equilibria if the algorithm is run with a positive mixing factor ε > 0; and if the algorithm is run with
a decreasing mixing schedule, the sequence of play converges to an actual Nash equilibrium (again,
with probability 1). In future work, we intend to examine the algorithm’s convergence properties
in other classes of games (such as smooth games), extend our analysis to the general “follow the
regularized leader” (FTRL) class of policies (of which EW is a special case), and to examine the
impact of asynchronicities and delays in the players’ feedback/update cycles.
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A Learning with semi-bandit feedback

This section is devoted to the proof of Theorem 1. In Section 3, the recursion equation of Algorithm 1
depends on ε parameter. In this section, each player i can have its own mixing factor εi. This choice is
done in order to simplify the notation in Sections 3 and 4. Thus the recursion equation of Algorithm 1
can be rewritten as

Xi(n) = εi/|Ai|1 + (1− εi) Λi(Yi(n)),

Yi(n+ 1) = Yi(n) + γn+1v̂i(n+ 1),
(ε-Hedge)

To perform this, we introduce some other discrete-time process (XΛ
i (n))n∈N to help with this proof.

XΛ
i (n) =

1

(1− εi)
(Xi(n)− εi/|Ai|1)

By definition, we have Xi(n) = εi/|Ai|1 + (1− εi)XΛ
i (n). Besides,

Observation 5. For any n ∈ N, ‖X(n)−XΛ(n)‖2 ≤ Nε, where ε = maxi∈N
εi√
|Ai|

.

Moreover, we can establish an other relation between these two discrete-time processes:

Lemma 6. If (XΛ(n))n∈N converges to a Nash equilibrium x∗, then (X(n))n∈N, defined in (ε-
Hedge), converges to a δ(ε)-Nash equilibrium with ε = maxi∈N

εi
|Ai| and δ(ε) such that if ε tends to

0, then δ(ε) also tends to 0.

Proof. If (XΛ(n))n∈N converges to a point x∗, then (X(n))n∈N also converges to a limit x̂. Obser-
vation 5 gives us that ‖X(n)−XΛ(n)‖2 ≤ Nε, by continuity, ‖x∗ − x̂‖2 ≤ Nε.
It remains to show that if the two mixed strategy profiles p and p′ are such that ‖p− p′‖2 ≤ ε then
‖ui(p)− ui(p′)‖2 ≤ δ(ε)

2 , for any player i ∈ N .

|ui(p)− ui(p′)| = |
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )(p1α1
· · · pNαN − p′1α1

· · · p′NαN )|

≤
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )|(p1α1 · · · pNαN − p′1α1
· · · p′NαN )|

≤
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )|(p1α1
· · · pNαN − (p1α1

− ε) · · · (pNαN − ε))|

≤
∑
α1∈A1

· · ·
∑

αN∈AN

ui(α1, . . . , αN )

N∑
k=1

(−ε)k
(
N

k

)
=
δ(ε)

2
(A.1)

Moreover, observe that if ε→ 0, then δ(ε)
2 → 0, and |ui(p)− ui(p′)| → 0.

Assume that (XΛ(n))n∈N converges to a Nash equilibrium x∗. By definition, for all xi ∈ Xi, i ∈ N
ui(x

∗
i ;x
∗
−i) ≥ ui(xi;x

∗
−i). In addition, we have ‖x∗ − x̂‖2 ≤ Nε and ‖(xi, x∗−i)− (xi, x̂−i)‖2 ≤

Nε ∀xi ∈ Xi .

ui(x̂i; x̂−i) +
δ(Nε)

2
≥ ui(x∗i ;x∗−i) ≥ ui(xi;x∗−i) ≥ ui(xi; x̂−i)−

δ(Nε)

2
ui(x̂i; x̂−i) + δ(Nε) ≥ ui(xi; x̂−i) for all x∗i ∈ Xi, i ∈ N

(A.2)

So, the latter equation corresponds to the definition of δ(ε)-equilibrium. We can conclude that
(X(n))n∈N converges to a δ(ε)-Nash equilibrium with δ(ε).
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The remainder of this section is devoted to prove the convergence results of ε-HEDGE Algorithm,
and it is split into two parts according to the feedback assumption. The proof is based on Benaim’s
study of stochastic approximations [28]. We follow 4 points:

1. Show that X is an asymptotic pseudo trajectory of a continuous dynamics,

2. Show that the potential function of the game is strict Lyapunov function of the dynamics,

3. Show that X converges toward a rest point of the dynamics,

4. Show that if X converges toward a point it is a Nash Equilibrium.

For the first step, we focus on the sequences (Xi(n))n∈N and its linear interpolation (xi(t)). We also
define the continuous variables, xΛ

iα(t) = xiα(t)−εi/|A|i
1−εi and yiα(t) such that xΛ

iα(t) = Λi(yiα(t)),
with the same relations as the corresponding discret processes. We will prove that the sequences
(Xi(n))n∈N correspond to some classical family of stochastic approximation algorithms so-called
Approximate Robbins-Monro algorithm.

Definition 7 (Approximate Robbins-Monro conditions). The general stochastic approximation
algorithm x(n+ 1) = x(n) + γn(F (x(n)) +Un + βn) is said to be an approximate Robbins-Monro
algorithm if:

• F : Rm → Rm is a continuous map;

• Un ∈ Rm are perturbations and Un is a martingale difference noise;

• {γn}n≥1 is a given sequence of nonnegative numbers such that
∑
k γk = ∞ and

limn→∞ γn = 0;

• limn→∞ bn = 0 almost surely.

Then, we will prove that the interpolated process of the sequences (Xi(n))n∈N is an asymptotic
pseudo trajectory of the solutions of the following ordinary differential equation.

ẋiα =
(
xiα − |Ai|−1εi

)[
viα(x)− (1− εi)−1

∑
β∈Ai

(xiβ − |Ai|−1εi)viβ(x)
]

=
(
1− εi

)
xΛ
iα

[
viα(x)−

∑
β∈Ai

xΛ
iβviβ(x)

] (A.3)

To proceed, recall the definition of the asymptotic pseudo-trajectory.

Definition 8 (Asymptotic Pseudo-trajectories). Given a flow φ : R×M →M, (n, x)→ φ(n, x) =
φn(x) such that φ0 = Identity and φn+α = φn ◦ φα, a continuous function X : R → M is an
asymptotic pseudo-trajectory if

limn→∞sup0≤k≤T d((X(n+ k), φh(X(n)) = 0 for any T > 0 (A.4)

Proposition 9. Suppose that Algorithm 1 is run with i ) semi-bandit feedback satisfying (H1) and (H2);
ii) a nonnegative mixing factor ε ≥ 0; and iii) a step-size sequence of the form γn ∝ 1/nβ for
some β ∈ (1/q, 1]. The interpolated process of the sequences (Xi(n))n∈N is an asymptotic pseudo
trajectory of the solutions of the following ordinary differential equation

ẋiα =
(
xiα − |Ai|−1εi

)[
viα(x)− (1− εi)−1

∑
β∈Ai

(xiβ − |Ai|−1εi)viβ(x)
]
, (RDε)

Proof. The proof of Proposition 9 can be split into two parts. First, we will prove that the stochastic
process {Xi(n)}n∈N given by Algorithm 1 is an approximate Robbins-Monro algorithm. Second,
we will conclude by applying some classical results in [28].

Observe that for any i ∈ N , for any α, β, β′ ∈ Ai, xΛ
iα = Λiα(yi) = exp(yiα)∑

s∈Ai
exp(yiα) , we have

∂ Λiα(yi)
∂yiβ

= xΛ
iα(1s=β−xΛ

iβ), and ∂2 Λiα(yi)
∂yiβ∂yiβ′

= xΛ
iα

(
1α=β=β′ − 1α=βx

Λ
iβ′ − xΛ

iβ(1α=β′ + 1β=β′ − 2xΛ
iβ′)

)
.
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Using Taylor’s Remainder Theorem, let us rewrite the equation Xiα(n + 1) = εi
|Ai| + (1 −

εi) Λiα(Yi(n+ 1)) as

Xiα(n+ 1) =
εi
|Ai|

+ (1− εi) Λiα(Yi(n) + γn+1v̂i(n+ 1))

=
εi
|Ai|

+ (1− εi) Λiα(Yi(n))

+ (1− εi)γn+1

(
∇ΛT

iα(Yi(n))v̂i(n+ 1) +
1

2
γn+1v̂

T
i (n+ 1) Hess Λiα(ψi(n))v̂i(n+ 1)

)
= Xiα(n) + (1− εi)γn+1

(
∇ΛT

iα(Yi(n))v̂i(n+ 1) +
γn+1

2
v̂T
i (n+ 1) Hess Λiα(ψi(n))v̂i(n+ 1)

)
= Xiα(n) + (1− εi)γn+1

(
∇ΛT

iα(Yi(n))vi(X(n)) +∇ΛT
iα(Yi(n))(v̂i(n+ 1)− vi(X(n))) + γn+1an+1

)
(A.5)

where∇Λiα is the gradient vector of Λiα,∇ΛT
iα is its transposed, Hess Λiα is the Hessian matrix

of Λiα, ψi(n) is in the line segment going out from Yi(n) to the point Yi(n + 1), and an+1 =
1
2 v̂

T
i (n+ 1)HessΛiα(ψi(n))v̂i(n+ 1).

Next, we focus on γnan (corresponding to parameter bn in Definition 7). Since ∂2 Λiα(yi)
∂yiβ∂yiβ′

=

xΛ
iα

(
1α=β=β′ − 1α=βx

Λ
iβ′ − xΛ

iβ(1α=β′ + 1β=β′ − 2xΛ
iβ′)
)

, all components of HessΛiα(ψi(n))

are bounded. So, the limit of γnan (when n→∞) depends on the limit of ||v̂iα(n)||2.

Let Eiα,n be the event ||v̂iα(n)||2 ≥ nα for 1
q < α < 1

p , with q defined in Hypothesis (H2) and p

such that γn = O(1/n
1
p ).

Hypothesis (H2) gives us that

∞∑
n=0

P(Eiα,n) =

∞∑
n=0

P(‖v̂iα(n)‖2 ≥ nα | Fn−1) =

∞∑
n=0

O(
1

nqα
) <∞ (A.6)

The Borel-Cantelli lemma gives us that Eiα,n is true for only a finite number of n ∈ N. Therefore for
n > maxm∈N{m;∃i ∈ N , α ∈ Ai, Eiα,m is true}, ||v̂iα(n)||2 < nα. By assumption, γn = o(nb)
for any b > −1/p. In particular, γn = o(n−α) so limn→∞ anγn = 0.

Xiα(n+ 1) = Xiα(n) + (1− εi)γn+1

XΛ
iα(n)

viα(X(n))−
∑
β∈Ai

viβ(X(n))XΛ
iβ(n)


+(1−εi)γn+1

XΛ
iα(n)(v̂iα(n+ 1)− viα(X(n))−

∑
β∈Ai

XΛ
iβ(n)[v̂iβ(n+ 1)− viβ(X(n))]) + γnan


Let Uiα,n = (1− εi)XΛ

iα(n)(v̂iα(n+ 1)− viα(X(n))−
∑
β∈Ai X

Λ
iβ(n)[v̂iβ(n+ 1)− viβ(X(n))]).

Recall that (3.2a) and (3.2b) can be deduced from Hypotheses (H1) (H2). We get

1. E[Uiα,n|Fn−1] = 0 for all n

2. E[‖Uiα,n‖2] <∞ for all n

So, Uiα,n is a martingale difference noise.

Since the function which to xiα associates
(
1− ε

)
xΛ
iα

[
viα(x)−

∑
β∈Ai x

Λ
iβviβ(x)

]
is a continuous

map, we can conclude that the stochastic process {Xi(n)}n∈N is an approximate Robbins-Monro
algorithm.
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Second, Remark 4.5 and Propositions 4.2 and 4.1 of [28] allow us to conclude that the interpolated
process of the sequences (Xi(n))n∈N is an asymptotic pseudo trajectory of the solutions of ODE
(RDε).

Dynamics (RDε) can be viewed as a ε-perturbed variant of the replicator dynamics. that readily
extends to the ε-perturbed variant (RDε). Moreover, the replicator dynamics have some good property
in potential games. The next theorem expresses this property in our context:
Proposition 10. Let Γ be a generic potential game. The potential function f of Γ is a strict increasing
Lyapunov function of the flow inducted by the dynamics (RDε).

Proof. We consider the variation of f . We have

ḟ(x) =
∑
i∈N

∑
α∈Ai

∂f

∂xiα
(x)ẋiα

=
∑
i∈N

vT
i (x(t))ẋi(t)

=
∑
i∈N

∑
α∈Ai

viα(x(t))ẋiα(t)

=
∑
i∈N

∑
α∈Ai

(1− εi)viα(x(t))xΛ
iα(t)

viα(x(t))−
∑
β∈Ai

viβ(x(t))xΛ
iβ(t)


=
∑
i∈N

∑
α∈Ai

∑
β∈Ai,β>α

(1− εi)xΛ
iα(t)xΛ

iβ(t)[viα(x(t))− viβ(x(t))]2

The second equation is obtained by definitions of potential game and dynamic (RDε) (definition of
ẋiα). From the latter equation, we can conclude that ḟ(x) ≥ 0.

Now we show that the rest points x of dynamics (RDε) are such that ḟ(x) = 0. Since ḟ(x) =∑
i∈N

∑
α∈Ai

∂f
∂xiα

(x)ẋiα, ḟ(x) = 0 when x is a rest point (ẋ = 0 ).

Conversely, we will prove that ḟ(x) = 0 implies that x is a rest point of dynamics (RDε).

Observe that ḟ(x) = 0 implies that for all players i in N , and pure strategies α and β in Ai we have
xΛ
iα = 0 or xΛ

iβ = 0 or viα(x) = viβ(x).

Since the dynamics (RDε) is ẋiα = (1− εi)xΛ
iα

(
viα(x)−

∑
β∈Ai viβ(x)xΛ

iβ

)
, if for all players i

in N , and pure strategies α and β in Ai we have xΛ
iα = 0 or xΛ

iβ = 0, then we can deduce ẋiα = 0.
Otherwise, if viα(x) = viβ(x) for all α and β in Ai such that xΛ

iα 6= 0 and xΛ
iβ 6= 0, we have then

ẋiα = 0

To conclude, f is increasing, and its derivative is null if and only if it is evaluated on a rest point of
the dynamics (RDε). f is a strict increasing Lyapunov function of the dynamics (RDε).

Proposition 11. Let Γ be a generic potential game. Suppose that Algorithm 1 is run with i) semi-
bandit feedback satisfying (H1) and (H2); ii ) a nonnegative mixing factor ε ≥ 0; and iii ) a step-size
sequence of the form γn ∝ 1/nβ for some β ∈ (1/q, 1]. The interpolated process of the sequences
(Xi(n))n∈N converges to a rest point of RDε.

Proof. We showed that under theses assumptions, (Xi(n))n∈N is a pseudo asymptotic trajectory of
the flow induced by the dynamics RDε.

We now show that RDε has a finite number of rest points. When ∀i ∈ N , εi = 0, we have xΛ = x.
Thus, we obtain from the previous proof that x is a rest point of RDε if and only if∑

i∈N

∑
α∈Ai

∑
β∈Ai,β>α

(1− εi)xiα(t)xiβ(t)[viα(x(t))− viβ(x(t))]2 = 0 (A.7)
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So x is a rest point of RDε if and only if viα(x(t)) = viβ(x(t)) ∀α, β ∈ supp(xi). Therefore x is
a rest point of RDε if and only if it is a restricted equlibrium. The game is finite so they are a finite
number of game restrictions. Each restricted game is a finite, generic, potential game so it has a finite
number of Nash-equilibrium.

Now we address the other case : ∃i ∈ N , εi 6= 0. Thus, x is a rest point of RDε if and only
if viα(x(t)) = viβ(x(t)) ∀α, β ∈ supp(xΛ

i ). Let suppi be the cardinal of supp(xΛ
i ). For each

player i, we have suppi − 1 unknown coordinates corresponding to the xΛ
i non-zero coordinates.

Thus, suppi−1 independent equations corresponding to viα(x(t)) = viβ(x(t)) ∀α, β ∈ supp(xΛ
i )

because the game is generic. Such a system has only an unique solution. Therefore for each possible
support of x there is only one rest point, and dynamics RDε has a finite number of rest points.

Corollary 6.6 of [28] allows to conclude that the continous-time process xi(t) converges to a rest
point of RDε.

In order to prove Point 1 of Theorem 1, we need to have the following technical result. This lemma is
about the properties on rationality properties (such as comparaisons among strategies corresponding
to the elimination of dominated strategies).
Lemma 12. Suppose that Algorithm 1 is run with i ) semi-bandit feedback satisfying (H1) and (H2);
ii ) a nonnegative mixing factor ε ≥ 0; and iii ) a step-size sequence of the form γn ∝ 1/nβ for some
β ∈ (1/q, 1]. If there exists some a > 0 such that vβ(x) − vα(x) ≥ a for all x ∈ X then for all
c ∈ (0, a), there exists some n0 such that Yβ(n)− Yα(n) ≥ c

∑n
k=1 γk for all n ≥ n0 (a.s.).

Proof. Let ζk = v̂β(k) − vβ(X(k − 1)) − [v̂α(k) − vα(X(k − 1))]. By assumption there exists
a > 0 such that vβ(X)− vα(X) ≥ a for all X ∈ X . Then,

Yβ(n)− Yα(n) = Yβ(0)− Yα(0) +

n∑
k=1

γk (v̂β(k)− v̂α(k))

= Yβ(0)− Yα(0) +

n∑
k=1

γk [vβ(X(k − 1))− vα(X(k − 1))] +

n∑
k=1

γkζk

≥ Yβ(0)− Yα(0) +

n∑
k=1

γk

[
a+

∑n
k=1 γkζk∑n
k=1 γk

]
.

(A.8)

Now we will prove that
∑n
k=1 γkζk∑n
k=1 γk

→ 0.

The reformulation of Hypothesis (H1) gives :

E[ζk|Fk−1] = E[ξβ(k) + vβ(s(k))− vβ(X(k − 1))− ξα(k)− vα(α(k)) + vα(X(k − 1))|Fk−1]

= E[ξβ(k)− ξα(k)|Fk−1] + E[vβ(α(k))|Fk−1]− vβ(X(k − 1))− E[vα(α(k))|Fk−1] + vα(X(k − 1))

= 0
(A.9)

ζk is Fk-measurable, meaning that it is fully determined by the information of Fk.

With Sn =
∑n
k=1 γkζk, it follows that

E[Sk|Fk−1] = γkE[ζk|Fk−1] + E[Sk−1|Fk−1] = Sk−1 (A.10)

Therefore {Sn =
∑n
k=1 γkζk,Fn, n ≥ 1} is a martingale, in addition as γt depends only on n and it

is positive, Un =
∑n
k=1 γk is a nondecreasing sequence of positive random variable such that Un is

Fn−1-measurable for each n. In addition β ≤ 1 gives us that limn→∞Un =∞.

We focus now on proving the last hypothesis of Theorem 2.18 of [31], i.e.,
∑∞
k=1

E(‖γkζk‖2|Fk−1)
U2
k

<

∞. First we show that E[‖ζ(k)‖2|Fk−1] ≤ 4σ2:

E[‖ζ(k)‖2|Fk−1] = E[‖v̂β(k)− vβ(X(k − 1))− [v̂α(k)− vα(X(k − 1))]‖2|Fk−1]

= 2E[‖v̂β(k)− vβ(X(k − 1))‖2|Fk−1] + 2E[‖v̂α(k)− vα(X(k − 1))‖2|Fk−1]

≤ 4σ2

(A.11)
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according to Equation (3.2b). Second, γt is decreasing so Un =
∑n
k=1 γk ≥ nγn and U−2

n ≤ 1
n2γ2

n
.

Therefore
∞∑
k=1

E(‖γkζk‖2|Fk−1)

U2
k

<

∞∑
k=1

γ2
k4σ2

k2γ2
k

= 4σ2
∞∑
k=1

1

k2
<∞ (A.12)

Therefore all hypotheses are fulfilled and

lim
n→∞

∑n
k=1 γkζk∑n
k=1 γk

= 0 (a.s.) (A.13)

So for all c ∈ (0, a) there exist some t0 such that −
∑n
k=1 γkζk∑n
k=1 γk

≤ Yβ(0)−Yα(0)∑n
k=1 γk

+ a− c for all t > t0.
Putting that in (A.8) we have :

Yβ(n)− Yα(n) ≥ c
n∑
k=1

γk for all t ≥ t0 (a.s.) (A.14)

Now, we will prove the convergence of the discrete-time process (Xi(n))n∈N.
Theorem 1 (Part 1). Let Γ be a generic potential game. Suppose that Algorithm 1 is run with
i) semi-bandit feedback satisfying (H1) and (H2); ii) a nonnegative mixing factor ε ≥ 0; and iii) a
step-size sequence of the form γn ∝ 1/nβ for some β ∈ (1/q, 1]. X(n) converges (a.s.) to a
δ-equilibrium of Γ with δ ≡ δ(ε)→ 0 as ε→ 0.

Proof. When X(n) converges, XΛ(n) also converges (by definition). Applying Lemma 6, it suffices
to prove that if XΛ(n) converges to x∗ then x∗ is Nash Equilibrium. We prove by contradiction that
(XΛ(n))n∈N converges to x∗ a Nash Equilibrium. Assume that x∗ is not a Nash Equilibrium. By
definition, we have

∃i ∈ N ,∃β ∈ Ai, β 6∈ supp(x∗i ), s.t., viβ(x∗) > viα(x∗),∀s ∈ supp(x∗i ).

By continuity of utility u, there is a neighborhood U of x∗ and a > 0 such that:

∃i ∈ N ,∃β ∈ Ai, β 6∈ supp(x∗i ), s.t., viβ(XΛ) − viα(XΛ) > a, ∀α ∈ supp(x∗i ), XΛ ∈ U For ε
small enough and for all n big enough, X(n) ∈ U because ‖X(n) − x∗‖ ≤ ‖X(n) −XΛ(n)‖ +
‖XΛ(n) − x∗‖ ≤ Nε + ‖XΛ(n) − x∗‖. So, ∃i ∈ N ,∃β ∈ Ai, β 6∈ supp(x∗i ), s.t., viβ(X(n)) −
viα(X(n)) > a,∀s ∈ supp(x∗i ) Using Lemma 12, for n0 big enough and n ≥ n0:

Yiβ(n)− Yiα(n) ≥ C + b

n∑
t=n0

γn →∞ (A.15)

Thus Xiβ(n)
Xiα(n) = exp (Yiβ(n)− Yiα(n))→∞.

Xiα(n) → 0 and α is not in the support of x∗i which is a contradiction. Therefore x∗ is a Nash
Equilibrium and x∗ is a δ(ε)-Nash Equilibrium.

Finally, we will prove the convergence rate of the discrete-time process (Xi(n))n∈N corresponding
to Part 2 of Theorem 1.
Theorem 1 (Part 2). Let Γ be a generic potential game and suppose that Algorithm 1 is run with
i) semi-bandit feedback satisfying (H1) and (H2); ii) a nonnegative mixing factor ε ≥ 0; and iii) a
step-size sequence of the form γn ∝ 1/nβ for some β ∈ (1/q, 1]. . Then If limn→∞X(n) is an
ε-pure state of the form x∗i = ε/|Ai|1+(1−ε)eα̂i for some α̂ ∈ A, then α̂ is a.s. a strict equilibrium
of Γ and convergence occurs at a quasi-exponential rate:

Xiα̂i(n) ≥ 1− ε− be−c
∑n
k=1 γk for some positive b, c > 0. (4.4)

Proof. We will focus on the sequence (XΛ
i (n))n∈N and its limit x∗. From the proof of Theorem 1

(Part 1), x∗ is a Nash equilibrium. By continuity of u, there is a neighborhood U of x∗ and a′ > 0
such that:
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∀i ∈ N ,∀β ∈ Ai, β 6= α∗i , viα∗i (x)− viβ(x) > a′, x ∈ U .

Therefore, for ε small enough and for all n big enough, X(n) ∈ U because ‖X(n) − x∗‖ ≤
‖X(n) − XΛ(n)‖ + ‖XΛ(n) − x∗‖ ≤ Nε + ‖X(n) − x∗‖. So, ∃i ∈ N,∃β ∈ Ai, β /∈
supp(x∗i ), s.t., viβ(XΛ(n)) − viα(XΛ(n)) > a, ∀α ∈ supp(x∗i ) Using Lemma 12 for n0 big
enough:

Yiα∗(n)− Yiα(n) ≥ C + b

n∑
k=n0

γk

So, by computation, we can deduce that

∑
s∈Ai,α6=α̂

exp(Yiα(n)− Yiα̂(n)) ≤
∑

s∈Ai,α6=α̂

exp(−Cn0
−

n∑
k=n0

γka) ≤ C exp(−
n∑

k=n0

γka)

where we set C = |Ai| exp(−Ct0). Now, we will focus on xΛ
α̂(n).

XΛ
iα̂(n) =

exp(Yiα̂(n))∑
s∈A

exp(Yiα(n))
=

1∑
s∈Ai

exp(Yiα(n)− Yiα̂(n))

=
1

1 +
∑

s∈Ai,s 6=α̂

exp(Yiα(n)− Yiα̂(n))

≥ 1

1 + C exp(−
∑n
k=n0

γka)

The first equation is due to the relation exp a
exp b = 1

exp a−b . The second equation is obtained by
the fact that exp(exp(Yiα̂(n) − Yiα̂(n))) = 1. Since for any z > 0, 1

1+z ≥ 1 − z, we obtain
1−XΛ

iα̂(n) ≤ C exp(−
∑n
k=n0

γka). And, the theorem holds since |XΛ
iα̂(n)−Xiα̂(n)| ≤ ε.

B Learning with bandit feedback

We begin our proof of Theorem 4 with some general properties of approximate Robbins–Monro
algorithms. To state them, let F : Rm → Rm be a continuous map and consider a Robbins-Monro
algorithm of the form

xn+1 − xn = γn+1 (F (xn) + Un+1 + bn+1) (B.1)

where

• {γn}n≥1 is a given sequence of nonnegative numbers such that
∑∞
n=1 γn =

∞, limn→∞ γn = 0,

• Un ∈ Rm are martingale difference perturbations ,i.e., E[Un+1 | Fn] = 0 and E
[
‖Un‖2

]
<

∞∀n,

• bn ∈ Rm is an error term such that limn→∞ bn = 0 with probability 1.

We define:

• τ0 = 0 and τn =
∑n
i=1 γi for n ≥ 1,

• m : R+ → N by m(t) = sup{k ≥ 0 : t ≥ τk},

• U : R+ → N by U(τn + s) = Un+1, for all 0 ≥ s > γn+1,

• γ : R+ → N by γ(τn + s) = γn+1, for all 0 ≥ s > γn+1,
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In order to prove that such an algorithm is an asymptotic pseudo trajectories of a given flow it is impor-
tant to prove that for any T > 0, limt→∞ supm(t)<h≤m(t+T )‖

∑h−1
i=m(t) γi+1 (Ui+1 + bi+1)‖ = 0

with probability 1.
Lemma 13. Let {xn} be a sequence given by (B.1). Suppose that:∑

n

γ
(1+ q

2 )
n+1 E[‖Un+1‖q] <∞ for a q ≥ 2

Then, for any T > 0, limt→∞ supm(t)<h≤m(t+T )‖
∑h−1
i=m(t) γi+1 (Ui+1 + bi+1)‖ = 0 with proba-

bility 1.

Proof of Lemma 13. To begin, observe that:

sup
m(t)<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1 (Ui+1 + bi+1)‖ ≤ sup
m(t)<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1Ui+1‖

+ sup
m(t)<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1bi+1‖

≤ sup
m(t)<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1Ui+1‖

+ (T + 1) max
m(t)<h≤m(t+T )

bh+1

By definition, T maxm(t)<h≤m(t+T ) bh+1 goes to 0. Thus, it remains to prove that
limt→∞ supm(t)<h≤m(t+T )‖

∑h−1
i=m(t) γi+1Ui+1‖ = 0 with probability 1.

For any t ≥ 0 Burkholder’s inequality implies that, for some universal constant Cq > 0:

E

 sup
m(kT )<h≤m((k+1)T )

‖
h−1∑

i=m(kT )

γi+1Ui+1‖q
 ≤ Cq E


m((k+1)T )−1∑

i=m(kT )

γ2
i+1‖Ui+1‖2


q
2

 (B.2)

If q = 2 we directly obtain:

E

 sup
m(kT )<h≤m((k+1)T )

‖
h−1∑

i=m(kT )

γi+1Ui+1‖2
 ≤ C2

m((k+1)T )−1∑
i=m(kT )

γ2
i+1 E

[
‖Ui+1‖2

]
For q > 2 we need the Hölder’s inequality :∑

i

xiyi ≤

(∑
i

xui

) 1
u
(∑

i

y
u
u−1

i

)u−1
u

which applied to xi = α1−δ
i |βi| and yi = αδi gives for any αi ≥ 0, βi ∈ R, u > 1 and 0 < δ < 1:(∑
i

|αiβi|

)u
≤

(∑
i

α
δu
u−1

i

)u−1∑
i

α
(1−δ)u
i |βi|u (B.3)

Suppose q > 2 we apply B.3 to the second member of B.2 with u = q
2 , δ = q−2

2q , αi = γ2
i+1 and

βi = ‖Ui+1‖2:

E

 sup
m(kT )<h≤m((k+1)T )

‖
h−1∑

i=m(kT )

γi+1Ui+1‖q
 ≤ Cq E


m((k+1)T )−1∑

i=m(kT )

γi+1


q
2−1

m((k+1)T )−1∑
i=m(kT )

γ
q
2 +1
i+1 ‖Ui+1‖q


≤ CqT

q
2−1

m((k+1)T )−1∑
i=m(kT )

γ
q
2 +1
i+1 E[‖Ui+1‖q]

(B.4)
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Therefore, for q ≥ 2, we have

E

 sup
m(kT )<h≤m((k+1)T )

‖
h−1∑

i=m(kT )

γi+1Ui+1‖q
 ≤ CqT q

2−1

m((k+1)T )−1∑
i=m(kT )

γ
q
2 +1
i+1 E[‖Ui+1‖q]. (B.5)

Let E(k, ε) be the event A(kt, T ) = supm(kt)<h≤m(kt+T )‖
∑h−1
i=m(t) γi+1Ui+1‖ > ε, for ε > 0.

Doob’s martingal inequality yiels:

P(E(k, ε)) ≤ E[A(kT, T )q]

εq

So ∑
k∈N

P(E(k, ε)) ≤
∑
k≥0 E[A(kT, T )q]

εq

=
CqT

q
2−1

∑∞
i=0 γ

(q/2+1)
i+1 E

[
‖U i+1‖q

]
εq

<∞

(B.6)

By the Borel-Cantelli Lemma this proves that for all ε > 0:

P(lim sup
k→∞

E(k, ε)) = 0

with probability one. So for all ε the set of k such that so E(k, ε) is true is a null set.

Consider now E(n) = {k : E(k, 1
n ) is true}. For all n, E(n) is a null set. Therefore as a countable

union of null set
⋃
n∈NE(n) is a null set, so limk→∞A(kT, T ) = 0 with probability one.

On the other hand for kT ≤ t < (k + 1)T :

A(t, T ) = sup
m(t)<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1Ui+1‖q

≤ max

 sup
m(t)<h≤m((k+1)T )

‖
h−1∑
i=m(t)

γi+1Ui+1‖q, sup
m((k+1)T )<h≤m(t+T )

‖
h−1∑
i=m(t)

γi+1Ui+1‖q


= max( sup
m(t)<h≤m((k+1)T )

‖
h−1∑

i=m(kT )

γi+1Ui+1 −
m(t)−1∑
i=m(kT )

γi+1Ui+1‖q,

sup
m((k+1)T )<h≤m(t+T )

‖
m((k+1)T )−1∑
i=m(kT )

γi+1Ui+1 −
m(t)−1∑
i=m(kT )

γi+1Ui+1 +

h−1∑
i=m((k+1)T )

γi+1Ui+1‖q)

≤ 2A (kT, T ) +A ((k + 1)T, T )
(B.7)

This concludes the proof.

Now, let L = maxx∈X ,i∈N ui(x), and Ai = |Ai|.

v̂iαi(n) =
1αi=αi(n)

Xiαi(n− 1)
ui(α(n)) (B.8)

First it is useful to remark that we have :

E[v̂iαi(n) | Fn−1] = E
[
1αi=αi(n)

Xiαi(n− 1)
ui(α(n))

∣∣∣∣Fn−1

]
= viαi(X(n− 1))
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E
[
(v̂iαi(n)− viαi(X(n− 1)))

2
∣∣∣Fn−1

]
≤ 2E

[
1αi=αi(n)

Xiαi(n− 1)2
u2
i (α(n))

∣∣∣∣Fn−1

]
+ 2E

[
v2
iαi(X(n− 1))

∣∣Fn−1

]
≤ 2

L2Ai
εn−1

+ 2L2 = 2L2

(
1 +

Ai
εn−1

)
(B.9)

We begin by proving that when a strategies always leads to a better payoff, than an other its score
becomes higher. So omitting the player index we can prove the following Lemma.
Lemma 14. Suppose that Algorithm 1 is run with i) a bandit feedback estimator B.8; ii) a decreasing
step-size γn; iii) a decreasing mixing factor εn such that :

lim
n→∞

γn =∞ and
∞∑
n=1

1

εnn2
<∞ (B.10)

If there exists some µ > 0 and a set V ⊂ X such that vβ(x) − vα(x) ≥ µ for all x ∈ V and if
X(n) ∈ V , for all n, then for all c ∈ (0, µ), there exists some T0 such that Yβ(T ) − Yα(T ) ≥
c
∑T
n=1 γn for all T ≥ T0 (a.s.).

Proof. Proof of Lemma 14 Let ζk = v̂β(k)−vβ(X(k−1))−[v̂α(k)−vα(X(k−1))]. By assumption
there exists a > 0 such that vβ(x)− vα(x) ≥ a for all x ∈ V . Then,

Yβ(T )− Yα(T ) = cβα +

T∑
n=1

γn [v̂β(n)− v̂α(X(n− 1))]

= cβα +

T∑
n=1

γn [vβ(X(n− 1))− vα(X(n− 1))] +

T∑
n=1

γnζn (B.11)

≥ cβα + τT

[
µ+

∑T
n=1 γnζn
τT

]
(B.12)

where we set cβα = Yβ(0)− Yα(0) and τT =
∑T
n=1 γn.

The law of large numbers for martingale difference sequences [31, Theorem 2.18] gives

τ−1
T

∑T
n=1 γnζn → 0 (a.s.), provided that

∑∞
n=1

E[‖γnζn‖2|Fn−1]
τ2
n

<∞ and
∑∞
n=1 γn =∞.

We focus on an upper bound to E
[
‖γnζn‖2

∣∣Fn−1

]
, using (B.9) we obtain:

E
[
‖γnζn‖2

∣∣Fn−1

]
≤ 4γ2

n max
α∈A

E
[
(v̂α(n)− vα)

2
∣∣∣Fn−1

]
≤ 8L2γ2

n

(
A

εn−1
+ 1

) (B.13)

Using that τ2
n ≥ n2γ2

n we obtain:

E
[
‖γnζn‖2

∣∣Fn−1

]
τ2
n

≤ 8L2

n2

(
1 +

A

εn−1

)
and

T∑
n=1

E
[
‖γnζn‖2

∣∣Fn−1

]
τ2
n

≤ 8L2

(
T∑
n=1

1

n2
+

T∑
n=1

A

εn−1n2

)
= O(

T∑
n=1

1

εn−1n2
) <∞

We readily get τ−1
T

∑T
n=1 γnζn → 0 with probability 1. As a result, for all c ∈ (0, µ), there exists

some random (but a.s. finite) T0 such that if T ≥ T0, then Yβ(T )− Yα(T ) ≥ cτT .

With this auxiliary result at hand, our proof of Theorem 4 relies on the following four steps:
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1. Show that X is an asymptotic pseudo trajectory of a continuous dynamics (Proposition 17),

2. Show that the potential function of the game is a strict Lyapunov function of the dynamics
(Proposition 18),

3. Show that X converges towards a rest point of the dynamics (Proposition 19),

4. Show that if X converged toward a point it is a Nash Equilibrium (Proposition 20).

Definition 15 (Asymptotic Pseudo-trajectories). Given a flow φ : R×M →M, (n, x)→ φ(n, x) =
φn(x) such that φ0 = Identity and φn+α = φn ◦ φα, a continuous function X : R → M is an
asymptotic pseudo-trajectory if

limn→∞ sup
0≤k≤T

d((X(n+ k), φh(X(n)) = 0 for any T > 0 (B.14)

Before addressing the proof we show that specific conditions on the mixing factor and the step size,
guarantee a few important relations.

Lemma 16. Suppose that Algorithm 1 is run with i) the bandit estimator (B.8), ii) a step size sequence
γn decreasing to 0 and iii) a strictly positive mixing factor εn decreasing to 0 such that:

lim
n→∞

γn
ε2
n

= 0 ,
∞∑
n=1

γ2
n

εn
<∞ (B.15)

Then for all players i and α ∈ Ai, Uiα(n + 1) = ∇ΛT
iα(Yi(n)) (v̂i(n+ 1)− vi(X(n))), is a

martingale difference noise,
∑
n γ

2
n+1 E

[
‖Uiα(n+ 1)‖2

]
<∞ and limn→∞ γn+1v̂iα(n+ 1)2 = 0.

Proof. Proof of Lemma 16 For all players i ∈ N , and for all α ∈ Ai, Uiα(n) is a martin-
gale difference noise. In deed, E[Uiα(n+ 1) | Fn] = ∇ΛT

iα(Yi(n)) (vi(X(n))− vi(X(n))) =
0 (because E[v̂i(n+ 1) | Fn] = vi(X(n))), and by definition of the bandit estimator,
E
[
(v̂iαi(n+ 1)− viαi(X(n)))

2
∣∣∣Fn] is finite for all n, so E

[
‖Uiα(n+ 1)‖2

]
is also finite for

all n, so Uiα(n) is a martingale difference noise.

To prove that
∑
n γ

2
n+1 E

[
‖Uiα(n+ 1)‖2

]
< ∞ , remark that E

[
‖Uiα(n+ 1)‖2

∣∣Fn] = O( 1
εn

).

Therefore
∑∞
n=1

γ2
n

εn−1
<∞ allows us to conclude the second point.

For the last point, observe that v̂iα(n+1) = O( 1
ε2n

), so the hypothesis limn→∞
γn
ε2n−1

= 0 is sufficient

to conclude that limn→∞ γn+1v̂iα(n+ 1)2 = 0.

Proposition 17. Let Γ be a generic potential game and suppose that Algorithm 1 is run with i) the
bandit estimator (B.8), ii) a step size sequence γn decreasing to 0 and iii) a strictly positive mixing
factor εn decreasing to 0 such that:

∞∑
n=1

γn =∞ , lim
n→∞

γn
ε2
n

= 0 ,
∞∑
n=1

γ2
n

εn
<∞ and lim

n→∞

εn − εn+1

γn+1
= 0. (B.16)

Then, for all players i ∈ N , the interpolated process of the sequences (Xi(n))n∈N are asymptotic
pseudo trajectories of replicator dynamics:

ẋiα = xiα

viα(x)−
∑
β∈Ai

xiβviβ(x)

, (RD)

Proof. Proof of Proposition 17 Observe that for any i ∈ N , for any α, β, β′ ∈ Ai, Λiα(yi) =
exp(yiα)∑

s∈Ai
exp(yiα) , we have

∂ Λiα(yi)
∂yiβ

= Λiα(yi)(1α=β − Λiβ(yi)), and ∂2 Λiα(yi)
∂yiβ∂yiβ′

=

Λiα(yi) (1α=β=β′ − 1α=β Λiβ′(yi) − Λiβ(yi)(1α=β′ + 1β=β′ − 2 Λiβ′(yi))).
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Using Taylor’s Remainder Theorem, we rewrite the equation
Xiα(n+ 1) = εn+1

Ai
+ (1− εn+1) Λiα(Yi(n+ 1)) as

Xiα(n+ 1) =
εn+1

Ai
+ (1− εn+1) Λiα(Yi(n) + γn+1v̂i(n+ 1))

=
εn+1

Ai
+ (1− εn+1) Λiα(Yi(n))

+ (1− εn+1)γn+1

(
∇ΛT

iα(Yi(n))v̂i(n+ 1) +
1

2
γn+1v̂

T
i (n+ 1) Hess Λiα(ψi(n))v̂i(n+ 1)

)
= Xiα(n) + (εn+1 − εn)

(
1

Ai
− Λiα(Yi(n))

)
+ (1− εn+1)γn+1

(
∇ΛT

iα(Yi(n))v̂i(n+ 1) +
γn+1

2
v̂T
i (n+ 1) Hess Λiα(ψi(n))v̂i(n+ 1)

)
= Xiα(n) + (1− εn+1)γn+1

(
∇ΛT

iα(Yi(n))v̂i(n+ 1) + ain
)

= Xiα(n) + (1− εn+1)γn+1

(
∇ΛT

iα(Yi(n))vi(X(n)) +∇ΛT
iα(Yi(n)) (v̂i(n+ 1)− vi(X(n))) + ain

)
(B.17)

where∇Λiα is the gradient vector of Λiα,∇ΛT
iα is its transposed, Hess Λiα is the Hessian matrix

of Λiα, and ψi(n) is in the line segment going out from Yi(n) to the point Yi(n + 1) and ain =
γn+1

2 v̂T
i (n+ 1) Hess Λiα(ψi(n))v̂i(n+ 1) + εn+1−εn

(1−εn+1)γn+1

(
1
Ai
− Λiα(Yi(n))

)
.

Furthermore,∇ΛT
iα(Yi(n))vi(X(n)) = Λiα(Yi(n))

(
viα(X(n))−

∑
β∈Ai Λiβ(Yi(n))viβ(X(n))

)
and we can rewrite

Λiα(Yi(n)) =
Xiα(n)− εn

Ai

1− εn
= Xiα(n) +

εn
1− εn

(
Xiα(n)− 1

Ai

)
Therefore,

∇ΛT
iα(Yi(n))vi(X(n)) = Xiα

viα(X(n))−
∑
β∈Ai

Xiβ(n)viβ(X(n))


+

εn
1− εn

[∑
β∈Ai(Xiα(n) +Xiβ(n))viβ(X(n))

Ai

]

− 2
εn

1− εn

∑
β∈Ai

Xiα(n)Xiβ(n)viβ(X(n))


+

εn
1− εn

[
viα(X(n))Xiα(n)− viα(X(n))

Ai

]
− ε2

n

(1− εn)2

∑
β∈Ai

(
Xiα(n)− 1

Ai

)(
Xiβ(n)− 1

Ai

)
viβ(X(n))

(B.18)

Next, we focus on bin = ain + ∇ΛT
iα(Yi(n))vi(X(n)) −

Xiα

(
viα(X(n))−

∑
β∈Ai Xiβ(n)viβ(X(n))

)
and show that it con-

verges towards 0 as n grows. The term ∇ΛT
iα(Yi(n))vi(X(n)) =

Xiα

(
viα(X(n))−

∑
β∈Ai Xiβ(n)viβ(X(n))

)
goes to 0 because εn is decreasing. Since

∂2 Λiα(yi)
∂yiβ∂yiβ′

= Λiα(yi) (1α=β=β′ − 1α=β Λiβ′(yi)− Λiβ(yi)(1α=β′ + 1β=β′ − 2 Λiβ′(yi))), all

components of HessΛiα(ψi(n)) are bounded. In addition limn→∞
εn−εn+1

γn+1
= 0. So, the limit of

bin (when n→∞) depends on the limit of limn→∞ γn||v̂iα(n)||2 = 0 as proved in Lemma 16.

We can write the dynamics of Algorithm 1 in the form:

Xiα(n+ 1) = Xiα(n) + γn+1 (Fiα(n) + Uiα(n+ 1) + bin)
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where Fiα(n) = Xiα

(
viα(X(n))−

∑
β∈Ai Xiβ(n)viβ(X(n))

)
is the replicator dynamics, and

Uiα(n+ 1) = ∇ΛT
iα(Yi(n)) (v̂i(n+ 1)− vi(X(n))).

In Lemma 16 we also showed that Uiα(n) is a martingale difference noise and that∑
n γ

2
n+1 E

[
‖Un+1‖2

]
<∞. We apply Lemma 13, and Proposition 4.1 of [28] allows us to conclude

that the interpolated process of the sequences (Xi(n))n∈N are asymptotic pseudo trajectories of the
replicator dynamics.

Proposition 18. Let Γ be a generic potential game. The potential function f of Γ is a strict increasing
Lyapunov function of the flow inducted by the replicator dynamics.

Proof. Proof of Proposition 18 We consider the variation of f to show that f is an increasing function.
Using the definition of potential function, we have:

ḟ(x) =
∑
i∈N

∑
α∈Ai

∂f

∂xiα
(x)ẋiα

=
∑
i∈N

vT
i (x(t))ẋi(t)

=
∑
i∈N

∑
α∈Ai

viα(x(t))ẋiα(t)

=
∑
i∈N

∑
α∈Ai

viα(x(t))xiα(t)

viα(x(t))−
∑
β∈Ai

viβ(x(t))xiβ(t)


=
∑
i∈N

∑
α∈Ai

∑
β∈Ai,β>α

xiα(t)xiβ(t)[viα(x(t))− viβ(x(t))]2

≥ 0

(B.19)

Furthermore, when x is a rest point of the dynamics, ẋ = 0 and ḟ(x) = 0. Conversely, we prove that
ḟ(x) = 0 implies that x is a rest point of the dynamics.

Observe that ḟ(x) = 0 then for all players i inN , and for all pure strategies α and β inAi, xiα(t) = 0
or xiβ(t) = 0 or viα(x(t)) = viβ(x(t)). This also leads to ẋiα for all players i inN , and for all pure
strategies α in Ai. Therefore x is a rest point of the dynamics, and f is a strict increasing Lyapunov
function.

Proposition 19. Let Γ be a generic potential game and suppose that Algorithm 1 is run with i) the
bandit estimator (B.8), ii) a step size sequence γn decreasing to 0 and iii) a strictly positive mixing
factor εn decreasing to 0 such that:

∞∑
n=1

γn =∞ , lim
n→∞

γn
ε2
n

= 0 ,
∞∑
n=1

γ2
n

εn
<∞ and lim

n→∞

εn − εn+1

γn+1
= 0. (B.20)

Then interpolated process of the sequences X(n) converges (a.s.) to a rest point of the replicator
dynamics.

Proof. Proof of Proposition 19 We showed in Proposition 17 that under the same assumptions
interpolated process of the sequences X(n) is a pseudo asymptotic trajectory of the flow induced by
the replicator dynamics.

We now show that the replicator dynamics has a finite number of rest points. The dynamics is

ẋiα = xiα

viα(x)−
∑
β∈Ai

xiβviβ(x)


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So x is a rest point if and only if viβ(x) = viα(x),∀α, β ∈ supp(xi). Therefore x is a rest point of
the replicator dynamics if and only if it is a restricted Nash-equilibrium. The game is finite so they
are a finite number of game restrictions. Each restricted game is a finite, generic and potential game
so it has a finite number of Nash-equilibrium. Therefore the number of rest points is finite.

Corollary 6.6 of [28] allows to conclude that the linear interpolation of the sequences X(n) converges
(a.s.) to a rest point of the replicator dynamics.

Proposition 20. Suppose that Algorithm 1 is run with i) the bandit estimator (B.8), ii) a step size
sequence γn decreasing to 0 and iii) a strictly positive mixing factor εn decreasing to 0 such that:
∞∑
n=1

γn =∞ , lim
n→∞

γn
ε2
n

= 0 ,
∞∑
n=1

1

εnn2
<∞ ,

∞∑
n=1

γ2
n

εn
<∞ and lim

n→∞

εn − εn+1

γn+1
= 0. (B.21)

Then if X(n) converges, its limit is a Nash Equilibrium of the game.

Proof. Proof of Proposition 20 Let x∗ ∈ X such that limn→∞X(n) = x∗, we show by contradiction
that x∗ is a Nash Equilibrium. Suppose the contrary, by definition of a Nash Equilibrium we have :

∃i ∈ N ,∃β ∈ Ai, β /∈ supp(x∗i ), s.t., uiβ(x∗) > uiα(x∗),∀α ∈ supp(x∗i )

By continuity of the utility function u, there exists a neighborhood U of x∗ and a > 0 such that:

∃i ∈ N ,∃β ∈ Ai, β /∈ supp(x∗i ), s.t., uiβ(x)− uiα(x) > a,∀α ∈ supp(x∗i ),∀x ∈ U

For n big enough, X(n) ∈ U , so using Lemma 14, for n0 big enough and for n ≥ n0 we have :

Yiβ(T )− Yiα(T ) ≥ c
T∑
n=1

γn for all T ≥ T0 (a.s.).

Thus, with Xiα(T ) = ε(T )
Ai

+ (1− ε(T )) Λiα(Yi(T )) by definition, we get

Xα(T ) =
ε(T )

Ai
+ (1− ε(T ))

eYiα(T )∑
β′ e

Yiβ′ (T )

≤ ε(T )

Ai
+ (1− ε(T ))

eYiα(T )

eYiβ(T )

=
ε(T )

Ai
+ (1− ε(T )) eYiα(T )−Yiβ(T )

≤ ε(T )

Ai
+ (1− ε(T )) e−c

∑T
n=1 γn (a.s.),

(B.22)

So limT→∞Xiα(T ) = 0 which is a contradiction with α ∈ supp(x∗i ).
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