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1 Algorithm and main theorem

For analytical concreteness, our technical results in the following are based on the real Gaussian
model. For readability and future reference, we begin with repeating our model, notation, and main
assumptions: Consider first the noiseless case

ψi = |a∗ix|, 1 ≤ i ≤ m (1)

in which x ∈ Rn is the wanted unknown signal, and the sampling/feature vectors {ai ∈ Rn}1≤i≤m
are drawn independently and identically from the n-dimensional real Gaussian distribution, i.e., i.i.d.
ai ∼ N (0, In). This is also referred to as the real Gaussian model in the literature.

For notational convenience, let A := [a1 · · ·am]
∗
, and ψ := [ψ1 · · · ψm]

∗
. Assume that the

(phaseless) quadratic system (1) admits a unique solution, which indeed holds with high probability as
long asm ≥ 2n−1 generic measurements are taken [1]. Throughout our subsequent analysis, fix x to be
any solution of the given system in (1). If x obeys the system in (1), so does −x; i.e., the solution set in
the real case is {x,−x}. We focus on x without loss of generality, rather than−x. Introduce the notion
of Euclidean distance of any estimate z to the solution set: dist(z, x) := min{‖z+x‖, ‖z−x‖} for real
signals; and dist(z, x) := minφ∈[0,2π)

∥∥z − xeiφ
∥∥ for complex ones [2]. Define the indistinguishable

global phase factor for real-valued signals [2]

φ(z) :=

{
0, ‖z − x‖ ≤ ‖z + x‖
π, otherwise.

(2)

Hereafter, we always assume φ (z) = 0; and z is replaced by e−jφ(z)z otherwise. For simplicity of
presentation however, the constant phase adaptation term will be dropped whenever it is clear from
the context.

Algorithm 1 and Theorem 1 in the paper are repeated next for future reference.

Theorem 1 (Exact recovery). Consider m noiseless measurements ψ = |Ax| for an arbitrary
x ∈ Rn. If the data size m ≥ c0|S| ≥ c1n and the step size µ ≤ µ0 , then with probability at least
1− c3e−c2m, the reweighted amplitude flow’s estimates zt in Algorithm 1 obey

dist(zt,x) ≤ 1

10
(1− ν)t‖x‖, t = 0, 1, . . . (5)

1



Algorithm 1 Reweighted Amplitude Flow

1: Input: Data {(ai;ψi}1≤i≤m; maximum no. of iterations T ; step size µt = 2/6 for real/complex
Gaussian model; weighting parameters |S| = b3m/13c, βi = 10, and γ = 0.5.

2: Obtain S to include indices associated with the |S| largest entries among {ψi}1≤i≤m.

3: Initialize z0 :=
√∑m

i=1 ψ
2
i/m z̃0 with z̃0 being the unit principal eigenvector of

Y :=
1

m

m∑
i=1

w0
i aia

∗
i , with w0

i :=

{
ψγi , i ∈ S⊆M
0, otherwise

. (3)

4: Loop: for t = 0 to T − 1

zt+1 = zt − µt

m

m∑
i=1

wti

(
a∗i z

t − ψi
a∗i z

t

|a∗i zt|

)
ai (4)

where wti :=
|a∗i z

t|/ψi
|a∗i z

t|/ψi+βi
for all 1 ≤ i ≤ m.

5: Output: zT .

where c0, c1, c2, c3 > 0, 0 < ν < 1, and µ0 > 0 are numerical constants depending on the choice of
algorithmic parameters |S|, β, γ, and µ.

2 Proofs

To prove Theorem 1, this section establishes a few lemmas and the main ideas, while technical
details are posponed to the Appendix. Relative to the state-of-the-art [2], [5], [11], [10], [8], both the
weighted maximal correlation initialization and the reweighted objective function in this paper are
novel, and hence, new proof techniques to handle the reweighting, nonsmoothness, and nonconvexity
are required. Nonetheless, part of the proof is built upon those in [2], [11], [10], [4].

The proof of Theorem 1 comprises two independent parts: Section 2.1 demonstrates the theoretical
performance of the proposed initialization, which essentially achieves any given constant relative
error as soon as the number of equations is on the order of the number of unknowns, that is, m ≥ c1n
for some constant c1 > 0. Under such a sample complexity, Section 2.2 shows that RAF converges to
the true signal x exponentially fast whenever the initial estimate enjoys a small constant relative
error, namely, dist(z0,x) ≤ ρ‖x‖ as in (5).

2.1 Weighted maximal correlation initialization

This section is devoted to establishing theoretical guarantees for the proposed weighted maximal
correlation initialization, which is summarized in the following proposition. An alternative approach
may be found in [6].

Proposition 1. For arbitrary x ∈ Rn, consider the noiseless measurements ψi = |a∗ix|, 1 ≤ i ≤ m.

If m ≥ c0|S| ≥ c1n, then with probability exceeding 1− c′3e−c
′
2m, the initialization z0 returned by the

weighted maximal correlation method in Step 3 of Algorithm 1 satisfies

dist(z0,x) ≤ ρ‖x‖ (6)
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for ρ = 1/10 or any sufficiently small positive number. Here, c0, c1, c
′
2, c
′
3 > 0 are certain universal

constants.

Due to the homogeneity of (6) in x, it suffices to prove the results for the case of ‖x‖ = 1.
Assume first that the norm ‖x‖ = 1 is perfectly known, and z0 has already been scaled such that
‖z0‖ = 1. At the end of this section, this approximation error between the actually employed norm
estimate

√∑m
i=1 yi/m found based on the strong law of large numbers and the unknown norm ‖x‖ = 1

will be taken care of. For i.i.d. Gaussian random design vectors ai ∼ N (0, In) and any unit vector
x, there exists an orthogonal transformation denoted by U ∈ Rn×n such that x = Ue1. Since

|〈ai,x〉|2 = |〈ai,Ue1〉|2 = |〈U∗ai, e1〉|2
d
= |〈ai, e1〉|2 (7)

where
d
= means random quantities on both sides of the equality enjoy the same distribution, it is

thus without loss of generality to assume x = e1.
Since the norm ‖x‖ = 1 is assumed known, the weighted maximal correlation initialization in

Step 3 of Algorithm 1 finds the initial estimate z0 = z̃0 (the scaling factor is the exactly known norm
1 in this case) as the principal eigenvector of

Y :=
1

|S|
B∗B =

1

|S|
∑
i∈S

ψγi aia
∗
i (8)

where B :=
[
ψ
γ/2
i ai

]
i∈S is an |S| × n matrix, and S ( {1, 2, . . . ,m} includes the indices of the

|S| largest entities among all modulus data {ψi}1≤i≤m. The following result is key to proving
Proposition 1, whose proof is postponed to Section A.1 for readability.

Lemma 1. Consider m noiseless measurements ψi = |a∗ix|, 1 ≤ i ≤ m. For arbitrary x ∈ Rn of
unity norm, the next result holds for all unit vectors u ∈ Rn perpendicular to the vector x, namely,
for all vectors u ∈ Rn obeying u∗x = 0 and ‖u‖ = 1:

1

2

∥∥xx∗ − z0(z0)∗
∥∥2
F
≤ ‖Bu‖

2

‖Bx‖2
(9)

where z0 = z̃0 is given by

z̃0 := arg max
‖z‖=1

1

|S|
z∗B∗Bz. (10)

In the sequel, we start proving Proposition 1. The first step consists in upper-bounding the term
on the right-hand-side of (9). To be specific, the task involves upper bounding its numerator term,
and lower bounding its denominator term, which are summarized in Lemma 2 and Lemma 3, whose
proofs are deferred to Section A.2 and Section A.3, accordingly.

Lemma 2. In the setting of Lemma 1, if |S|/n ≥ c4, then the next

‖Bu‖2 ≤ 1.01
√

2γ/πΓ(γ+1/2)|S| (11)

holds with probability at least 1− 2e−cKn, where c4 and cK are some absolute constants.

Lemma 3. In the setting of Lemma 1, the following holds with probability exceeding 1− e−c
′
2m:∥∥Bx∥∥2 ≥ 0.99|S|

[
1 + log(m/|S|)

]
≥ 0.99 · 1.14γ |S|

[
1 + log(m/|S|)

]
(12)

provided that m ≥ c0|S| ≥ c1n for some absolute constants c0, c1, c
′
2 > 0.
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Putting the upper bound (11) and the lower bound (12) together, one arrives at∥∥Bu∥∥2∥∥Bx∥∥2 ≤ C

1 + log(m/|S|)

4
= κ (13)

where the constant C := 1.02 · 1.14−γ
√

2γ/πΓ(γ+1/2) and which holds with probability at least

1−2e−cKn−e−c
′
2m, with the proviso thatm ≥ c0|S| ≥ c1n for some universal constants c0, c1, c

′
2, cK >

0. Since m ≥ c1n, it is without loss of generality to rewrite the probability as 1−c′3e−c
′
2m for numerical

constants c′2, c
′
3 > 0. To have a sense of the size of the constant C, taking our default value γ = 0.5

for instance gives rise to C = 0.7854.
Observe that the bound κ in (13) can be made arbitrarily small through taking sufficiently large

m/|S| values (while maintaining |S|/n large enough as well based on Lemma 3). With no loss of
generality, let us work with κ := 0.001 in the following.

The wanted upper bound on the distance between the initialization z0 and the truth x can be
obtained based upon similar arguments found in [2, Section 7.8], which are detailed as follows. For
unit vectors x and z0, recall from (38) that

|x∗z0|2 = cos2 θ = 1− sin2 θ ≥ 1− κ, (14)

where 0 ≤ θ ≤ π/2 denotes the angle between the spaces spanned by z0 and x, therefore

dist2(z0, x) ≤ ‖z0‖2 + ‖x‖2 − 2|x∗z0|

≤
(
2− 2

√
1− κ

)
‖x‖2

≈ κ ‖x‖2 . (15)

As discussed prior to Lemma 1, the exact norm ‖x‖ = 1 is typically not known, and one

often scales the unit directional vector found in (10) by the norm estimate
√∑m

i=1
ψ2
i/m. Next the

approximation error between the estimated norm ‖z0‖ =
√∑m

i=1
ψ2
i/m and the true norm ‖x‖ = 1 is

accounted for. Recall from (10) that the direction of x is estimated to be z̃0 (of unity norm). Using
similar results in [2, Lemma 7.8 and Section 7.8], the following holds with high probability as long as
the ratio m/n exceeds some numerical constant

‖z0 − z̃0‖ = |‖z0‖ − 1| ≤ (1/20)‖x‖. (16)

Taking the inequalities in (15) and (16) together, it is safe to conclude that

dist(z0,x) ≤ ‖z0 − z̃0‖+ dist(z̃0,x) ≤ (1/10)‖x‖ (17)

which validates that the initialization satisfies the relative error dist(z0,x)/‖x‖ ≤ 1/10 for any x ∈ Rn

with probability at least 1 − c′3e−c
′
2m, provided that m ≥ c0|S| ≥ c1n holds for some numerical

constants c0, c1, c
′
2, c
′
3 > 0.

2.2 Exact Phase Retrieval from Noiseless Data

It has been demonstrated that the initial estimate z0 obtained by means of the weighted maximal
correlation initialization strategy, i.e., Step 3 of Algorithm 1, has at most a constant relative error
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to the globally optimal solution x, i.e., dist(z0,x) ≤ (1/10)‖x‖. In the sequel, we demonstrate that
starting from such an initial point, our RAF iterates converge with high probability at an exponential
rate to the global optimum x, namely, dist(zt,x) ≤ (1/10)ct‖x‖ for some constant 0 < c < 1
depending on the step size µ > 0, the weighting parameter βi ≡ β, and the data {(ai;ψi)}1≤i≤m.
This is indeed concerned with the second part of Theorem 1. To this end, it suffices to show that the
iterative updates of RAF, namely, Step 4 of Algorithm 1 is locally contractive within a small enough
neighboring region of the truth x. Recall first that RAF’s update is based on the reweighted gradient

∇`rw(z) :=
1

m

m∑
i=1

wi

(
a∗i z − ψi

a∗i z

|a∗i z|

)
ai

=
1

m

m∑
i=1

wi

(
a∗i z − |a∗ix|

a∗i z

|a∗i z|

)
ai (18)

for judiciously designed weights

wi =
1

1 + β/(|a∗i z|/|a∗i x|)
, 1 ≤ i ≤ m (19)

in which the dependence of pertinent terms on the iterate index t is ignored for notational brevity.

Proposition 2 (Local error contraction). For arbitrary x ∈ Rn, consider m noise-free measurements
ψi = |a∗ix|, 1 ≤ i ≤ m. There exist some numerical constants c1, c

′′
2 , c
′′
3 > 0, and 0 < ν < 1 such

that the following holds with probability exceeding 1− c′′3e−c
′′
2m

dist2(z − µ∇`rw(z), x) ≤ (1− ν)dist2(z, x) (20)

for all x, z ∈ Rn obeying dist(z, x) ≤ (1/10)‖x‖, provided that m ≥ c1n and that the constant step
size 0 < µ ≤ µ0, where µ0 is some numerical constant depending on the weighting parameter β > 0
and the data {(ai;ψi)}1≤i≤m.

Proposition 2 essentially illustrates that the distance of RAF’s successive iterates to the global
optimum x decreases monotonically once the algorithm’s iterate zt enters a relatively small neighboring
region around the truth x. This small-size neighborhood is commonly known as the basin of attraction,
and has been widely discussed in recent nonconvex optimization works; see, for instance, [2], [11],
[10]. Expressed differently, RAF’s iterates will stay within the region and will be attracted towards
the global optimum x exponentially fast as soon as it lands within the basin of attraction. To
substantiate Proposition 2, recall the useful analytical tool of the local regularity condition [2], which
plays a key role in establishing geometric or linear convergence to the global optimum for nonconvex
optimization schemes [2], [8], [11], [10], [9].

For RAF in the present work, the reweighted gradient ∇`rw(z) defined in (18) is said to obey the
local regularity condition, or LRC(µ, λ, ε) for some constant λ > 0, if the following inequality

〈∇`rw(z), h〉 ≥ µ

2
‖∇`rw(z)‖2 +

λ

2
‖h‖2 (21)

holds for all z ∈ Rn such that ‖h‖ = ‖z − x‖ ≤ ε ‖x‖ for some constant 0 < ε < 1, where the ball
given by ‖z − x‖ ≤ ε ‖x‖ is the so-termed basin of attraction.

Realizing h := z − x, some algebraic manipulations in conjunction with the regularity condition
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in (21) gives rise to

dist2(z − µ∇`rw(z), x) = ‖z − µ∇`rw(z)− x‖2

= ‖h‖2 − 2µ 〈h,∇`rw(z)〉+ ‖µ∇`rw(z)‖2 (22)

≤ ‖h‖2 − 2µ

(
µ

2
‖∇`rw(z)‖2 +

λ

2
‖h‖2

)
+ ‖µ∇`rw(z)‖2

= (1− λµ) ‖h‖2 = (1− λµ) dist2(z, x) (23)

for all points z adhering to the relative error ‖h‖ ≤ ε ‖x‖. It is self-evident that if the regularity
condition LRC(µ, λ, ε) can be established for RAF, our ultimate goal of proving the local error
contraction in (20) follows straightforwardly upon letting ν := λµ.

2.2.1 Proof of the local regularity condition in (21)

The first step of proving the local regularity condition in (21) is to control the size of the reweighted
gradient ∇`rw(z), i.e., to upper bound the last term in (22). Note that the reweighted gradient can
be rewritten in a compact matrix-vector representation

∇`rw(z) =
1

m

m∑
i=1

wi

(
a∗i z − |a∗ix|

a∗i z

|a∗i z|

)
ai
4
=

1

m
diag(w)Av (24)

where diag(w) ∈ Rn×n is a diagonal matrix holding entries of w := [w1 · · · wm]∗ ∈ Rm on its main

diagonal, and v := [v1 · · · vm]∗ ∈ Rm with vi := a∗i z − |a∗ix|
a∗i z
|a∗i z|

. Using the definition of induced

matrix 2-norm (or the matrix spectral norm), it is easy to check that

‖∇`rw(z)‖ =

∥∥∥∥ 1

m
diag(w)Av

∥∥∥∥
≤ 1

m
‖diag(w)‖ · ‖A‖ · ‖v‖

≤ 1 + δ′√
m
‖v‖ (25)

where we have used the inequalities ‖diag(w)‖ ≤ 1 due to wi ≤ 1 for all 1 ≤ i ≤ m, and ‖A‖ ≤
(1 + δ′)

√
m for some constant δ′ > 0 according to [7, Theorem 5.32], provided that m/n is sufficiently

large.
The task therefore remains to bound ‖v‖ in (25), which is addressed next. To this end, notice

that

‖v‖2 =

m∑
i=1

(
a∗i z − |a∗ix|

a∗i z

|a∗i z|

)2

≤
m∑
i=1

(|a∗i z| − |a∗ix|)
2

≤
m∑
i=1

(a∗i z − a∗ix)
2

=

m∑
i=1

(a∗ih)2 ≤ (1 + δ′′)2m‖h‖2 (26)

for some numerical constant δ′′ > 0, where the last can be obtained using [3, Lemma 3.1] and which
holds with probability at least 1− e−c2m as long as m > c1n holds true.
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Combing the results in (25) and (26) and taking δ > 0 larger than the constant (1+δ′)(1+δ′′)−1,
the size of the reweighted gradient ∇`rw(z) can be bounded as follows

‖∇`rw(z)‖ ≤ (1 + δ)‖h‖ (27)

which holds with probability 1− e−c2m, with a proviso that m/n exceeds some numerical constant
c1 > 0. This result indeed suggests that the reweighted gradient of the objective function L(z) or
the search direction employed in RAF algorithm is well behaved, implying that the function value
along the iterates does not change too much.

In order to prove the LRC, it suffices to show that the reweighted gradient ∇`rw(z) ensures
sufficient descent, that is, there exists a numerical constant c > 0 such that along the search direction
∇`rw(z) the following uniform lower bound holds

〈∇`rw(z), h〉 ≥ c‖h‖2 (28)

which will be addressed in this section. Formally, this can be summarized in the following proposition,
whose proof is provided in Appendix A.4.

Proposition 3. Fixing any sufficiently small constant ε > 0, consider the noise-free measurements
ψi = |a∗ix|, 1 ≤ i ≤ m. There exist some numerical constants c1, c

′
2, c
′
3 > 0 such that the following

holds with probability at least 1− c′3e−c
′
2m:

〈h,∇`rw(z)〉 ≥
[

1− ζ1 − ε
1 + β(1 + η)

− 2(ζ2 + ε)− 2(0.1271− ζ2 + ε)

1 + β/k

]
‖h‖2 (29)

for all x, z ∈ Rn obeying ‖h‖ ≤ 1
10‖x‖, provided that m/n is large enough, and that β > 0 is small

enough.

Taking the results in (29) and (27) together back to (21), one concludes that the local regularity
condition holds for µ and λ obeying the following

1− ζ1 − ε
1 + β(1 + η)

− 2(ζ2 + ε)− 2(0.1271− ζ2 + ε)

1 + β/k
≥ µ

2
(1 + δ)2 +

λ

2
. (30)

For instance, take β = 2, k = 5, η = 0.5, and ε = 0.001, we have ζ1 = 0.8897 and ζ2 = 0.0213, thus
asserting that 〈`rw(z),h〉 ≥ 0.1065‖h‖2. Setting further δ = 0.001 leads to

0.1065 ≥ 0.501µ+ 0.5λ (31)

which concludes the proof of the local regularity condition in (21). Moreover, the local error
contraction in (20) follows from substituting the local regularity condition into (23), hence validating
Proposition 2.

A Proof details

By homogeneity, it suffices to work with the case where ‖x‖ = 1.
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A.1 Proof of Lemma 1

It is easy to check that

1

2

∥∥xx∗ − z0(z0)∗
∥∥2
F

=
1

2
‖x‖4 +

1

2
‖z0‖4 − |x∗z0|2

= 1− |x∗z0|2

= 1− cos2 θ (32)

where 0 ≤ θ ≤ π/2 denotes the angle between the hyperplanes spanned by x and z0. Letting
(z0)⊥ ∈ Rn be a unit vector orthogonal to z0 and have a nonnegative inner-product with x, then x
can be uniquely expressed as a linear communication of z0 and (z0)⊥, yielding

x = z0 cos θ + (z0)⊥ sin θ. (33)

Likewise, introduce the unit vector x⊥ to be orthogonal to x and to have a nonnegative inner-product
with (z0)⊥. Therefore, x⊥ can be uniquely written as

x⊥ := −z0 sin θ + (z0)⊥ cos θ. (34)

Recall from (10) (after ignoring the normalization factor 1/|S|) that z0 is the solution to the
principal component analysis (PCA) problem

z0 := arg max
‖z‖=1

z∗B∗Bz. (35)

Therefore, it holds that B∗Bz0 = λ1z
0, where λ1 > 0 is the largest eigenvalue of B∗B. Multiplying

(33) and (34) by B from the left gives rise to

Bx = Bz0 cos θ +B(z0)⊥ sin θ, (36a)

Bx⊥ = −Bz0 sin θ +B(z0)⊥ cos θ. (36b)

Taking the 2-norm square of both sides in (36a) and (36b) yields

‖Bx‖2 = ‖Bz0‖2 cos2 θ + ‖B(z0)⊥‖2 sin2 θ, (37a)

‖Bx⊥‖2 = ‖Bz0‖2 sin2 θ + ‖B(z0)⊥‖2 cos2 θ, (37b)

where the cross-terms disappear due to (z0)∗B∗B(z0)⊥ = λ1(z0)∗(z0)⊥ = 0 according to the
definition of (z0)⊥.

With the relationships established in (37), construct now the following

‖Bx‖2 sin2 θ − ‖Bx⊥‖2

= (‖Bz0‖2 cos2 θ + ‖B(z0)⊥‖2 sin2 θ) sin2 θ − (‖Bz0‖2 sin2 θ + ‖B(z0)⊥‖2 cos2 θ)

=
(
‖Bz0‖2 cos2 θ − ‖Bz0‖2 + ‖B(z0)⊥‖2 sin2 θ

)
sin2 θ − ‖B(z0)⊥‖2 cos2 θ

=
(
‖B(z0)⊥‖2 − ‖Bz0‖2

)
sin4 θ − ‖B(z0)⊥‖2 cos2 θ

≤ 0

where B∗B � 0, so ‖B(z0)⊥‖2 − ‖Bz0‖2 ≤ 0 holds for any unit vector (z0)⊥ ∈ Rn because z0

maximizes the term in (10), hence yielding

sin2 θ = 1− cos2 θ ≤ ‖Bx
⊥‖2

‖Bx‖2
. (38)

Plugging (32) into above, (9) can be proved by simply letting u = x⊥.
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A.2 Proof of Lemma 2

Let {b∗i }1≤i≤|S| denote rows of B ∈ R|S|×n, which are obtained by scaling rows of AS := {a∗i }i∈S ∈
R|S|×n, the submatrix of A by the weights {ψγi }i∈S accordingly [cf. (8)]. Since x = e1, then
ψ = |Ae1| = |A1|, namely, the index set S depends only on the first column of A, and is independent
of the other columns ofA. In this direction, partition accordinglyAS := [AS1 A

S
r ], whereAS1 ∈ R|S|×1

denotes the first column of AS , and ASr ∈ R|S|×(n−1) collects the remaining ones. Likewise, partition
B = [B1 Br] with B1 ∈ R|S|×1 and Br ∈ R|S|×(n−1). By the argument above, rows of AS are
mutually independent, and they follow i.i.d. Gaussian distribution with mean 0 and covariance
matrix In−1. Furthermore, the weights ψγi = |a∗i e1|γ = |ai,1|γ , ∀i ∈ S are also independent of the
entries in AS , where we recall that ψ[m] ≤ · · · ≤ ψ[2] ≤ ψ[1] represents the sorted sequence. As a
consequence, rows of Br are mutually independent of each other, and one can explicitly write its i-th
row as br,i = |a∗[i]e1|

γ/2a[i],\1 = |a[i],1|γ/2a[i],\1, where a[i],\1 ∈ Rn−1 is obtained through removing the

first entry of a[i]. It is easy to verify that E[br,i] = 0, and E[br,ib
∗
r,i] = CγIn−1, where the constant

Cγ :=
√

2γ/πΓ(γ+1/2)‖x‖γ =
√

2γ/πΓ(γ+1/2), and Γ(·) is the Gamma function.
Given x∗x⊥ = e∗1x

⊥ = 0, one can write x⊥ = [0 r∗]∗ with any unit vector r ∈ Rn−1, hence

‖Bx⊥‖2 = ‖B[0 r∗]∗‖2 = ‖Brr‖2 (39)

with independent subgaussian rows br,i = |aj,1|γ/2aj,\1 if 0 ≤ γ ≤ 1. Standard concentration
results on the sum of random positive semi-definite matrices composed of independent non-isotropic
subgaussian rows [7, Remark 5.40.1] assert that∥∥∥∥ 1

|S|
B∗rBr − CγIn−1

∥∥∥∥ ≤ δ (40)

holds with probability at least 1− 2e−cKn provided that |S|/n is larger than some positive constant.
Here, δ > 0 is a numerical constant that can take arbitrarily small values, and cK > 0 is a constant
depending on δ. With no loss of generality, take δ := 0.01Cγ in (40). For any unit vector r ∈ Rn−1,
the following holds with probability at least 1− 2e−cKn∥∥∥∥ 1

|S|
r∗B∗rBrr − Cγr∗r

∥∥∥∥ ≤ δr∗r = δ (41)

or
‖Brr‖2 = r∗B∗rBrr ≤ 1.01Cγ |S. (42)

Taking the last back to (39) confirms that

‖Bx⊥‖2 ≤ 1.01Cγ |S| (43)

holds with probability at least 1 − 2e−cKn if |S|/n exceeds some constant. Note that cK depends
on the maximum subgaussian norm of the rows bi in Br, and we assume without loss of generality
cK ≥ 1/2. Therefore, one confirms that the numerator ‖Bu‖2 in (9) is upper bounded via replacing
x⊥ with u in (43).

A.3 Proof of Lemma 3

This section is devoted to obtaining a meaningful lower bound for the denominator ‖Bx‖2 in (12).
Note first that

‖Bx‖2 =

|S|∑
i=1

‖b∗ix‖2 =

|S|∑
i=1

ψγ[i]|a
∗
[i]x|

2 =

|S|∑
i=1

|a∗[i]x|
2+γ .

9



Taking without loss of generality x = e1, the term on the right side of the last equality reduces to

‖Bx‖2 =

|S|∑
i=1

|a[i],1|2+γ . (44)

Since a[i],1 follows the standard normal distribution, the probability density function (pdf) of random
variables |a[i],1|2+γ can be given in closed form as

p(t) =

√
2

π
· 1

2 + γ
t−

1+γ
2+γ e−

1
2 t

2
2+γ

, t > 0 (45)

which is rather complicated and whose cumulative density function (cdf) does not come in closed-form
in general. Therefore, instead of dealing with the pdf in (45) directly, we shall take a different route
by deriving a lower bound that is a bit looser yet suffices for our purpose, which is detailed as follows.

Since |a[|S|],1| ≤ · · · ≤ |a[2],1| ≤ |a[1],1|, then it holds for all 1 ≤ i ≤ |S| that |a[i],1|2+γ ≥
|a[|S|],1|γa2[i],1, therefore yielding

‖Bx‖2 =

|S|∑
i=1

|a[i],1|2+γ ≥ |a[|S|],1|γ
|S|∑
i=1

a2[i],1. (46)

Hence, we next demonstrate that deriving a lower bound for ‖Bx‖2 suffices to derive a lower bound
for the summation on the right hand side above. The latter can be achieved by appealing to a result
in [10, Lemma 3], which for completeness is included in the following.

Lemma 4. For arbitrary unit vector x ∈ Rn, let ψi = |a∗ix|, 1 ≤ i ≤ m be m noiseless measurements.

Then with probability at least 1− e−c
′
2m, the following holds:

|S|∑
i=1

a2[i],1 ≥ 0.99|S|
[
1 + log(m/|S|)

]
(47)

provided that m ≥ c0|S| ≥ c1n for some numerical constants c0, c1, c
′
2 > 0.

Combining the results in Lemma 4 and (46) together, one further establishes that

‖Bx‖2 ≥ |a[|S|],1|γ
|S|∑
i=1

a2[i],1 ≥ |a[|S|],1|
γ · 0.99|S|

[
1 + log(m/|S|)

]
. (48)

The task remains to estimate the size of |a[|S|],1|, which we recall is the |S|-th largest among the m
independent realizations {ψi = |ai,1|}1≤i≤m. Taking γ = −1 in (45) gives the pdf of the half-normal
distribution

p(t) =

√
2

π
e−

1
2 t

2

, t > 0 (49)

whose corresponding cdf is
F (τ) = erf(τ/

√
2). (50)

Setting F (τ|S|) := 1 − |S|/m or using the complementary cdf |S|/m := erfc(τ/
√
2) based on the

complementary error function gives rise to an estimate of the size of the |S|-th largest [or equivalently,
the (m− |S|)-th smallest] entry in the m realizations, namely

τ|S| =
√

2 erfc−1(|S|/m) (51)

10



where erfc−1(·) represents the inverse complementary error function. In the sequel, we show that the
deviation of the |S|-th largest realization ψ|S| from its expected value τ|S| found above is bounded
with high probability.

For random variable ψ = |a| with a obeying the standard Gaussian distribution, consider the
event ψ ≤ τ|S| − δ for fixed constant δ > 0. Define the indicator random variable χ = 1{ψ≤τ|S|−δ},
whose expectation can be obtained by substituting τ = τ|S| − δ into the pdf in (50)

E[χi] = erf(τ|S|−δ/
√
2). (52)

Consider now the m independent copies {χi = 1{ψi≤τ|S|−δ}}1≤i≤m of χ, and the following holds

P(ψ|S| ≤ τ|S| − δ) = P
( m∑
i=1

χi ≤ m− |S|
)

= P
( 1

m

m∑
i=1

(
χi − E[χi]

)
≤ 1− |S|

m
− E[χi]

)
. (53)

Clearly, random variables χi are bounded, so they are sub-gaussian [7]. For notational brevity,
let t := 1− |S|/m− E[χi] = 1− |S|/m− erf(τ|S|−δ/

√
2). Appealing to a large deviation inequality for

sums of independent sub-gaussian random variables, one establishes that

P(ψ|S| ≤ τ|S| − δ) = P
( 1

m

m∑
i=1

(
χi − E[χi]

)
≤ 1− |S|

m
− E[χi]

)
≤ e−c5mt

2

(54)

where c5 > 0 is some absolute constant. On the other hand, using the definition of the error function
and properties of integration gives rise to

t = 1− |S|/m− erf(τ|S|−δ/
√
2) =

2√
π

∫ τ|S|/
√

2

(τ|S|−δ)/
√

2

e−s
2

ds ≥
√

2

π
δe−

τ2|S|
2 ≥

√
2

π
δ. (55)

Taking the results in (54) and (55) together, one concludes that fixing any constant δ > 0, the
following holds with probability at least 1− e−c

′
2m:

ψ|S| ≥ τ|S| − δ ≥
√

2 erfc−1(|S|/m)− δ

where the constant c′2 := 2/π · c5δ2. Furthermore, choosing without loss of generality δ := 0.01τ|S|
above leads to ψ|S| ≥ 1.4 erfc−1(|S|/m).

Substituting the last inequality into (48) and under our working assumption |S|/m ≤ 0.25, one
readily obtains that

‖Bx‖2 ≥ [1.4 erfc−1(|S|/m)]γ · 0.99|S|
[
1 + log(m/|S|)

]
≥ 0.99 · 1.14γ |S|

[
1 + log(m/|S|)

]
(56)

which holds with probability exceeding 1− e−c
′
2m for some absolute constant c′2 > 0, concluding the

proof of Lemma 3.

A.4 Proof of Proposition 3

To proceed, let us introduce the following events for all 1 ≤ i ≤ m:

Di :=
{

(a∗ix)(a∗i z) < 0
}

(57)

Ei :=

{
|a∗i z|
|a∗ix|

≥ 1

1 + η

}
(58)
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for some fixed constant η > 0, in which the former corresponds to the gradients involving wrongly

estimated signs, namely,
a∗i z
|a∗i z|

6= a∗ix
|a∗ix|

, and the second will be useful for deriving error bounds. Based

on the definition of Di and with 1Di denoting the indicator function of the event Di, we have

〈`rw(z),h〉 =
1

m

m∑
i=1

wi

(
a∗i z − |a∗ix|

a∗i z

|a∗i z|

)
(a∗ih)

=
1

m

m∑
i=1

wi

(
a∗ih+ a∗ix− |a∗ix|

a∗i z

|a∗i z|

)
(a∗ih)

=
1

m

m∑
i=1

wi(a
∗
ih)2 +

1

m

m∑
i=1

2wi
(
a∗ix

)
(a∗ih)1Di

≥ 1

m

m∑
i=1

wi(a
∗
ih)2 − 1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di . (59)

In the following, we will derive a lower bound for the term on the right hand side of (59). To
be specific, a lower bound for the first term 1

m

∑m
i=1 wi(a

∗
ih)2 and an upper bound for the second

term 1
m

∑m
i=1 2wi

∣∣a∗ix∣∣∣∣a∗ih∣∣1Di will be obtained, which occupies Lemmas 5 and 6, with their proofs
postponed to Appendix A.5 and Appendix A.6, respectively.

Lemma 5. Fix any η, β > 0. For any sufficiently small constant ε > 0, the following holds with
probability at least 1− 2e−c5ε

2m:

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1− ζ1 − ε

1 + β(1 + η)

∥∥h∥∥2 (60)

with wi = 1
1+β/(|a∗i z|/|a∗i x|)

for all 1 ≤ i ≤ m, provided that m/n > (c6 ·ε−2 log ε−1) for certain numerical

constants c5, c6 > 0.

Now we turn to the second term in (59). For ease of exposition, let us first introduce the following
events

Bi :=
{
|a∗ix| < |a∗ih| ≤ (k + 1)|a∗ix|

}
(61)

Oi :=
{

(k + 1)|a∗ix| < |a∗ih|
}

(62)
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for all 1 ≤ i ≤ m and some fixed constant k > 0. The second term can be bounded as follows

1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di ≤ 1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{(a∗i z)(a∗ix)<0}

=
1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{(a∗ih)(a∗ix)+(a∗ix)

2<0}

≤ 1

m

m∑
i=1

wi
[
(a∗ix)2 + (a∗ih)2

]
1{|a∗ix|<|a∗ih|}

≤ 2

m

m∑
i=1

wi(a
∗
ih)21{|a∗ix|<|a∗ih|}

=
2

m

m∑
i=1

wi(a
∗
ih)21{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|}

+
2

m

m∑
i=1

wi(a
∗
ih)21{(k+1)|a∗ix|<|a∗ih|}

=
2

m

m∑
i=1

wi(a
∗
ih)21Bi +

2

m

m∑
i=1

wi(a
∗
ih)21Oi (63)

where the first equality is derived by substituting z = h+ x according to the definition of h, the
second event suffices for (a∗ih)(a∗ix) + (a∗ix)2 < 0, and the second equality follows from writing
the indicator function 1{|a∗ix|<|a∗ih|} as the summation of two indicator functions of two events
1{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|} and 1{|a∗ih|>(k+1)|a∗ix|}.

The task so far remains to derive upper bounds for the two terms on the right side of (63), which
leads to Lemma 6.

Lemma 6. Fixing some k > 0, define ζ2 to be the maximum of E[wi] in (72) for % = 0.01 and
ν = 0.1, which depends only on k. For any ε > 0, if m/n > c′1nε

−2 log ε−1, the following hold

simultaneously with probability at least 1− c′3e−c
′
2ε

2m:

1

m

m∑
i=1

wi(a
∗
ih)21Oi ≤ (ζ2 + ε)‖h‖2 (64)

and
1

m

m∑
i=1

wi(a
∗
ih)21Bi ≤

0.1271− ζ2 + ε

1 + β/k
‖h‖2 (65)

for all h ∈ Rn obeying ‖h‖/‖x‖ ≤ 1/10, where c′1, c
′
2, c
′
3 > 0 are some absolute constants.

For a few k values, the corresponding ξ2 values are listed as follows: When k ∈ {1, 2, 3, 4, 5, 9, 10},
then ξ2 takes values in {0.0639, 0.0426, 0.0320, 0.0256, 0.0213,
0.0128, 0.0116} accordingly.

Taking the results in (60), (63), and (64)-(65) established in Lemmas 5 and 6 back into (59), we
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conclude that

〈`rw(z),h〉 ≥ 1

m

m∑
i=1

wi(a
∗
ih)21Ei −

1

m

m∑
i=1

2wi
∣∣a∗ix∣∣∣∣a∗ih∣∣1Di

≥ 1− ζ1 − ε
1 + β(1 + η)

‖h‖2 − 2(ζ2 + ε)‖h‖2 − 2(0.1271− ζ2 + ε)

1 + β/k
‖h‖2

=

[
1− ζ1 − ε

1 + β(1 + η)
− 2(ζ2 + ε)− 2(0.1271− ζ2 + ε)

1 + β/k

]
‖h‖2 (66)

which will be rendered positive, if β > 0 is small enough, and parameters η > 0, k > 0 are suitably
chosen.

A.5 Proof of Lemma 5

Plugging in the weighting parameters wi = 1
1+β/(|a∗i z|/|a∗i x|)

and based on the definition of Ei, the first

term in (59) can be lower bounded as follows

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1

m

m∑
i=1

1

1 + β/(|a∗i z|/|a∗i x|)
(a∗ih)21Ei (67)

≥ 1

m

m∑
i=1

1

1 + β(1 + η)
(a∗ih)21{ |a∗

i
z|

|a∗
i
x|≥

1
1+η

}
=

1

1 + β(1 + η)
· 1

m

m∑
i=1

(a∗ih)21Ei (68)

where the first inequality arises from excluding some nonnegative terms from the left hand side,
and the second one replaced the ratio |a

∗
i z|/|a∗ix| in the weights by its lower bound 1/1+η because the

weights are monotonically increasing functions of the ratios |a
∗
i z|/|a∗ix|. Using the result in Lemma 7,

the last term in (68) can be further bounded by

1

m

m∑
i=1

wi(a
∗
ih)2 ≥ 1

1 + β(1 + η)
· 1

m

m∑
i=1

(a∗ih)21Ei ≥
1− ζ1 − ε

1 + β(1 + η)
‖h‖2 (69)

for any fixed sufficiently small constant ε > 0, which holds with probability at least 1− 2e−c5ε
2m, if

m > (c6 · ε−2 log ε−1)n.

A.6 Proof of Lemma 6

The proof is adapted from that of [11, Lemma 3]. We first prove the bound (64) for any fixed h
obeying ‖h‖ ≤ ‖x‖/10, and subsequently develop a uniform bound at the end of this section. The
bound (65) can be derived directly from subtracting the bound in (64) with k from that bound with
k = 0, followed by an application of the Bernstein-type sub-exponential tail bound [7]. Hence, we
only discuss the first bound (64). Because of the discontinuity hence non-Lipschitz of the indicator
functions, let us approximate them by a sequence of auxiliary Lipschitz functions. Specifically, with
some constant % > 0, define for all 1 ≤ i ≤ m the ensuing continuous functions

χi(s) :=


s, s > (1 + k)2(a∗ix)2
1
% [s−(k+1)2(a∗ix)

2]

+(k+1)2(a∗ix)
2,

(1− %)(k + 1)2(a∗ix)2 ≤ s ≤ (k + 1)2(a∗ix)2

0, otherwise.

(70)
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Clearly, all χi(s)’s are random Lipschitz functions with constant 1/%. Furthermore, it is easy to verify
that

|a∗ih|21{(k+1)|a∗ix|<|a∗ih|} ≤ χi(|a
∗
ih|2) ≤ |a∗ih|21{√1−%(k+1)|a∗ix|<|a∗ih|}. (71)

Given that the second term involves the addition event Gi in (58), define wi :=
|a∗ih|

2

‖h‖2 1{√1−%(k+1)|a∗ix|<|a∗ih|}

for 1 ≤ i ≤ m, and also ν := ‖h‖
‖x‖ for notational convenience. If f(τ1, τ2) denotes the density of two

joint Gaussian random variables with correlation constant ρ = h∗x
‖h‖‖x‖ ∈ (−1, 1), then the expectation

of wi can be obtained based on the conditional expectation

E[wi] =

∫ ∞
−∞

E[wi|a∗ix = τ1‖x‖,a∗ih = τ1‖h‖]f(τ1, τ2)dτ1dτ2

=

∫ ∞
−∞

∫ ∞
−∞

τ22 1{√1−%(k+1)|τ1|<|τ2|ν}f(τ1, τ2)dτ1dτ2

=
1√
2π

∫ ∞
0

τ22 exp(−τ
2
2/2)

[
erf

(
(ν/[
√
1−%(k+1)]− ρ)τ2√

2(1− ρ2)

)

+ erf

(
(ν/[
√
1−%(k+1)] + ρ)τ2√

2(1− ρ2)

)]
dτ2 (72)

:= ζ2. (73)

It is not difficult to see that E[wi] = 0 for ρ = ±1, and E[wi] is continuous over ρ ∈ (−1, 1) due
to the integration property of continuous functions over a continuous interval. Although the last
term in (72) can not be expressed in closed-form, it can be evaluated numerically. Note first that
for fixed parameters % > 0 and ν ≤ 0.1, the integration above is monotonically decreasing in k ≥ 0,
and achieves the maximum at k = 0. For parameter values k = 5, ν = 0.1 and % = 0.01, Fig. 1
plots E[wi] as a function of ρ, whose maximum ζ2 = 0.0213. is achieved at ρ = 0. Further from the
integration in (72), for fixed k ≥ 0, E[wi] is a monotonically increasing function of both ν and %, it is
therefore safe to conclude that for all 0 < ν ≤ 0.1, and % = 0.01, we have

E[wi] ≤ ζ2 = 0.0213. (74)

Hence, it is safe to conclude that E[χi(|a∗ih|2)] ≤ 0.0213‖h‖2 for ν < 0.1, % = 0.01, and k = 5. Since
[χi(|a∗ih|2’s are sub-exponential with sub-exponential norm of the order O(‖h‖2), Bernstein-type
sub-exponential tail bound [7] confirms that

p

(
1

m

m∑
i=1

χi(|a∗ih|2)

‖h‖2
> (ζ2 + ε)

)
< e−c7mε

2

(75)

for some numerical constant ε > 0, provided that ‖h‖ ≤ ‖x‖/10. Finally, due to the fact that wi ≤ 1
for all 1 ≤ i ≤ m, the following holds

1

m

m∑
i=1

wiχi(|a∗ih|2) < (ζ2 + ε)‖h‖2 (76)

with probability at least 1− e−c7mε
2

.
We have proved the bound in (64) for a fixed vector h, and the uniform bound for all vectors h

obeying ‖h‖ ≤ ‖x‖/10 can be obtained by similar arguments in the proof [11, Lemma 9] with only
minor changes in the constants.
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Figure 1: The expectation E[wi] as a function of ρ over [−1, 1].

Regarding the second bound (65), it is easy to see that

1

m

m∑
i=1

|a∗ih|21{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|} =
1

m

m∑
i=1

|a∗ih|21{|a∗ix|<|a∗ih|}

− 1

m

m∑
i=1

|a∗ih|21{(k+1)|a∗ix|<|a∗ih|}

≤ (0.1271− ζ2 + ε)‖h‖2 (77)

where the last inequality follows from subtracting the bound in (64) of k from that corresponding
to k = 0. To account for the weights wi = 1

1+β/(|a∗i z|/|a∗i x|)
, first notice that a∗ih = a∗i z − a∗ix, and

that our second bound works with (a∗i z)(a∗ix) < 0 in (59), hence
|a∗i z|
|a∗ix|

≤ |a
∗
ih|
|a∗ix|

− 1. Recall that the

second bound (65) assumes the event {|a∗ix| < |a∗ih| ≤ (k+ 1)|a∗ix|}, implying
|a∗i z|
|a∗ix|

≤ |a
∗
ih|
|a∗ix|

−1 ≤ k.

Further, because wi is monotonically increasing in
|a∗i z|
|a∗ix|

, then wi ≤ 1
1+β/k . Taking this result back to

(77) yields

1

m

m∑
i=1

wi|a∗ih|21{|a∗ix|<|a∗ih|≤(k+1)|a∗ix|} ≤
0.1271− ζ2 + ε

1 + β/k
‖h‖2 (78)

which proves the second bound in (65).

Lemma 7. ([10, Lemma 5]) Fix η ≥ 1/2 and ρ ≤ 1/10, and let Ei be defined in (57).
For independent random variables Y ∼ N (0, 1) and Z ∼ N (0, 1), define

ζ1 := 1−min

{
E

[
1{
| 1−ρρ +Y

Z |≥
√

1.01
ρ(1+η)

}] , E

[
Z21{

| 1−ρρ +Y
Z |≥

√
1.01

ρ(1+η)

}]} . (79)
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Fixing any ε > 0 and for any h satisfying ‖h‖/‖x‖ ≤ ρ, the next holds with probability 1− 2e−c5ε
2m:

1

m

m∑
i=1

(a∗ih)
2 1Ei ≥ (1− ζ1 − ε) ‖h‖2 (80)

provided that m > (c6 · ε−2 log ε−1)n for some universal constants c5, c6 > 0.

To have an estimate of the size of ξ1 in (79), if γ = 0.7 and ρ = 1/10, we have E

[
1{
| 1−ρρ +Y

Z |≥
√

1.01
ρ(1+γ)

}] ≈
0.9216, and E

[
Z21{

| 1−ρρ +Y
Z |≥

√
1.01

ρ(1+γ)

}] ≈ 0.9908, hence leading to ζ1 ≈ 0.0784.
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