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A Experimental details

A.1 Discrete control

For experiments on the Atari Environment, we adopted the same input preprocessing procedure
as in [3], with a slight modification to the architecture. Specifically, we used a shared network
to parameterize the policy and value function: The first convolutional layer is of 32 filters of size
8× 8 with stride 4 followed by another convolutional layer with 64 filters of size 4× 4 and stride
2, followed by a final convolutional layer with 32 filters of size 3 × 3 with stride 1, followed by a
fully connected layer of size 512, followed by one softmax output layer that parameterizes the policy
and a linear output layer that predicts the value. We used 32 filters in the third convolutional layer
because we found that it saved time for computing the Fisher matrix inverse without any degradation
in performance. (One alternative would be to use the doubly factored approximation [1] with all 64
filters.) For the baseline A2C, we used the same architecture as in [3]. For TRPO, because of its high
per-iteration expense, we used a smaller architecture, with 2 convolutional layers followed by a fully
connected layer with 128 units. The first convolutional layer had 8 filters of size 8× 8 with stride 4,
followed by another convolutional layer with 16 filters of size 4× 4 with stride 2.

We tuned the maximum learning rate ηmax using a grid search over {0.7, 0.2, 0.07, 0.02} on the game
of Breakout, with the trust region radius δ set to 0.001. We used the same hyperparameters for all
Atari experiments. Both the baseline (A2C) and our method used a linear schedule for the learning
rate over the course of training, and entropy regularization with weight 0.01. Following [3], the agent
is trained on each game using 50 million time steps or 200 million frames. Unless otherwise stated,
we used a batch size of 640 for ACKTR, 80 for A2C, and 512 for TRPO. The batch sizes were chosen
to achieve better sample efficiency.

A.2 Continuous control

For experiments with low-dimensional state space as an input we used two separate neural networks
with 64 hidden units per layer in a two-layer network. We used Tanh and ELU [2] nonlinearities
for the policy network and value network, respectively, for all layers except the output layer, which
didn’t have any nonlinearity. The log standard deviation of a Gaussian policy was parameterized as a
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bias in a final layer of policy network that didn’t depend on input state. For all experiments, we used
ACKTR and A2C trained with batch sizes of 2500 and TRPO trained with a batch size of 25000. The
batch sizes were chosen to be consistent with the experimental design of the results provided by the
OpenAI team.

For experiments using pixels as an input we passed in a 42× 42 RGB image along with the previous
frame to a convolutional neural network. The two convolutional layers contained 32 filters of size
3 × 3 with stride of 2 followed by a fully connected layer of 256 hidden units. In contrast to
our Atari experiments, we found that separating the policy network and value function into two
separate networks resulted in better empirical performance in both ACKTR and A2C. We used ReLU
nonlinearity for the policy network and ELU [2] nonlinearity for the value function. We also found
that it is important to use orthogonal initialization for both networks, otherwise the A2C baseline
failed to improve its episode reward. All models were trained with batch size of 8000. We tuned
the maximum learning rate ηmax using a grid search over {0.3, 0.03, 0.003} on the tasks of Reacher
and Hopper, with the trust region radius δ set to 0.001. We fixed hyperparameters for all MuJoCo
experiments.

B Results on the remaining Atari games

In this section we present results on the rest of the Atari games in Table 1. The score reported for
our method is the mean of the last 100 episode rewards after 50 million time steps. Each episode is
started with 30 no-op actions. We find that there is no result reported in A3C [4] or A2C using the
same metric. Hence we compare our results with other Q-learning methods obtained from [5]. Due
to limited computational resources, we were only able to evaluate ACKTR on a subset of the games.
Our results are obtained with a single random seed and we have not tuned any hyperparameters.
Although we use only one random seed, our results are on par with Q-learning methods, which use
off-policy techniques such as experience replay. Q-learning methods usually take days to finish one
training, whereas our method takes only 16 hours on a modern GPU.
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Table 1: Raw scores across all games, starting with 30 no-op actions. Other scores from [5].

GAMES HUMAN DQN DDQN DUEL PRIOR. PRIOR. DUEL. ACKTR
Alien 7,127.7 1,620.0 3,747.7 4,461.4 4,203.8 3,941.0 3197.1
Amidar 1,719.5 978.0 1,793.3 2,354.5 1,838.9 2,296.8 1059.4
Assault 742.0 4,280.4 5,393.2 4,621.0 7,672.1 11,477.0 10,777.7
Asterix 8,503.3 4,359.0 17,356.5 28,188.0 31,527.0 375,080.0 31,583.0
Asteroids 47,388.7 1,364.5 734.7 2,837.7 2,654.3 1,192.7 34,171.6
Atlantis 29,028.1 279,987.0 106,056.0 382,572.0 357,324.0 395,762.0 3,433,182.0
Bank Heist 753.1 455.0 1,030.6 1,611.9 1,054.6 1,503.1 1,289.7
Battle Zone 37,187.5 29,900.0 31,700.0 37,150.0 31,530.0 35,520.0 8910.0
Beamrider 16,926.5 8,627.5 13,772.8 12,164.0 23,384.2 30,276.5 13,581.4
Berzerk 2,630.4 585.6 1,225.4 1,472.6 1,305.6 3,409.0 927.2
Bowling 160.7 50.4 68.1 65.5 47.9 46.7 24.3
Boxing 12.1 88.0 91.6 99.4 95.6 98.9 1.45
Breakout 30.5 385.5 418.5 345.3 373.9 366.0 735.7
Centipede 12,017.0 4,657.7 5,409.4 7,561.4 4,463.2 7,687.5 7,125.28
Crazy Climber 35,829.4 110,763.0 117,282.0 143,570.0 141,161.0 162,224.0 150,444.0
Demon Attack 1,971.0 12,149.4 58,044.2 60,813.3 71,846.4 72,878.6 274,176.7
Double Dunk -16.4 -6.6 -5.5 0.1 18.5 -12.5 -0.54
Enduro 860.5 729.0 1,211.8 2,258.2 2,093.0 2,306.4 0.0
Fishing Derby -38.7 -4.9 15.5 46.4 39.5 41.3 33.73
Freeway 29.6 30.8 33.3 0.0 33.7 33.0 0.0
Gopher 2,412.5 8,777.4 14,840.8 15,718.4 32,487.2 104,368.2 47,730.8
Ice Hockey 0.9 -1.9 -2.7 0.5 1.3 -0.4 -4.2
James Bond 302.8 768.5 1,358.0 1,312.5 5,148.0 812.0 490.0
Kangaroo 3,035.0 7,259.0 12,992.0 14,854.0 16,200.0 1,792.0 3,150.0
Krull 2,665.5 8,422.3 7,920.5 11,451.9 9,728.0 10,374.4 9,686.9
Kung-Fu Master 22,736.3 26,059.0 29,710.0 34,294.0 39,581.0 48,375.0 34,954.0
Phoenix 7,242.6 8,485.2 12,252.5 23,092.2 18,992.7 70,324.3 133,433.7
Pitfall! 6,463.7 -286.1 -29.9 0.0 -356.5 0.0 -1.1
Pong 14.6 19.5 20.9 21.0 20.6 20.9 20.9
Q-bert 13,455.0 13,117.3 15,088.5 19,220.3 16,256.5 18,760.3 23,151.5
River Raid 17,118.0 7,377.6 14,884.5 21,162.6 14,522.3 20,607.6 17,762.8
Road Runner 7,845.0 39,544.0 44,127.0 69,524.0 57,608.0 62,151.0 53,446.0
Robotank 11.9 63.9 65.1 65.3 62.6 27.5 16.5
Seaquest 42,054.7 5,860.6 16,452.7 50,254.2 26,357.8 931.6 1,776.0
Solaris 12,326.7 3,482.8 3,067.8 2,250.8 4,309.0 133.4 2,368.6
Space Invaders 1,668.7 1,692.3 2,525.5 6,427.3 2,865.8 15,311.5 19,723.0
Star Gunner 10,250.0 54,282.0 60,142.0 89,238.0 63,302.0 125,117.0 82,920.0
Time Pilot 5,229.2 4,870.0 8,339.0 11,666.0 9,197.0 7,553.0 22,286.0
Tutankham 167.6 68.1 218.4 211.4 204.6 245.9 314.3
Up and Down 11,693.2 9,989.9 22,972.2 44,939.6 16,154.1 33,879.1 436,665.8
Video Pinball 17,667.9 196,760.4 309,941.9 98,209.5 282,007.3 479,197.0 100,496.6
Wizard Of Wor 4,756.5 2,704.0 7,492.0 7,855.0 4,802.0 12,352.0 702.0
Yars’ Revenge 54,576.9 18,098.9 11,712.6 49,622.1 11,357.0 69,618.1 125,169.0
Zaxxon 9,173.3 5,363.0 10,163.0 12,944.0 10,469.0 13,886.0 17,448.0

C MuJoCo results with comparisons to OpenAI baselines

We compared the performance results of ACKTR with the results of A2C and TRPO sent to us by
the OpenAI team (https://github.com/openai/baselines). We followed their experimental
protocol as closely as possible. Like our baselines, A2C and TRPO were trained with the same two-
layer architecture with 64 hidden units in each layer on batch sizes of 2500 and 25000 respectively.
However, in contrast to our baselines, the value function used Tanh nonlinearities and was “softly”
updated by calculating the weighted average of the value function before and after the update.

Compared to our implementation of the A2C baseline, A2C implemented by OpenAI performed
better on the Hopper, InvertedPendulum, Swimmer, and Walker2d tasks while performing worse on
the Reacher and HalfCheetah tasks. TRPO by OpenAI performed worse than the TRPO trained by
us on Hopper while achieving the same performance on the rest of the tasks. Results are shown in
Figure 1.
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Figure 1: Performance comparisons on seven MuJoCo environments trained for 1 million timesteps
(1 timestep equals 4 frames). The numbers for A2C and TRPO were provided to us by the OpenAI
team. The shaded region denotes the standard deviation over 3 random seeds.

D Adaptive Gauss-Newton?

In this section we investigate whether training the critic using adaptive Gauss-Newton (i.e., keeping
an estimate of the standard deviation of the Bellman error as the standard deviation of the critic
output distribution) provides any improvement over vanilla Gauss-Newton (both defined in Section
5.3). We ran adaptive Gauss-Newton on all six standard Atari games and eight MuJoCo tasks. The
results are shown in Figure 2 and Figure 3. We see that in Atari games, adaptive Gauss-Newton
hurts the performance in terms of sample efficiency in Beamrider, Q-bert and Seaquest, and shows
only a slight improvement in the game of Pong. In MuJoCo tasks, adaptive Gauss-Newton gives a
slight improvement on the tasks of InvertedDoublePendulum, Swimmer, Walker2d, and Ant while
performing on par on the tasks of InvertedPendulum and Reacher, and working considerably worse
on the HalfCheetah task compared to vanilla Gauss-Newton.
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Figure 2: Performance comparisons of critic trained with adaptive Gauss-Newton and vanilla Gauss-Newton on
six Atari environments trained for 10 million timesteps (1 timestep equals 4 frames). The shaded region denotes
the standard deviation over 2 random seeds.
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Figure 3: Performance comparisons of critic trained with adaptive Gauss-Newton and vanilla Gauss-Newton on
eight MuJoCo environments trained for 1 million timesteps (1 timestep equals 4 frames). The shaded region
denotes the standard deviation over 3 random seeds.

E How well does the Kronecker-factored quadratic approximation match
the exact KL?

We indirectly tested how accurate the Kronecker-factored approximation to the curvature is by
measuring the exact KL changes during training, while performing trust region optimization using a
Kronecker-factored quadratic model. We tested this in two Mujoco environments, HalfCheetah and
Reacher. The values of approximated KL and exact KL are shown in Figure 4. From the plot we see
that exact KL is close to the trust region radius, showing the effectiveness of trust region optimization
via Kronecker-factored approximation.
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Figure 4: The plot shows the exact KL changes during training with trust region optimization using ACKTR.
The actual KL is close to the trust region radius, showing the effectiveness of trust region optimization via
Kronecker-factored approximation.
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