Finite sample analysis of the GTD Policy Evaluation
Algorithms in Markov Settings

This supplementary material gives the detail proof of main theorems in the main paper. The supple-
mentary material is organized as follows:

Section 1 states some assumptions that corresponding to the main paper. Section 2 contains some
lemmas and the detail proofs of the main Theorems in the main paper. Section 3 contains detail
proofs of lemmas used in proving the theorems.

1 Assumptions

Assumption 1 (Bounded parameter space). We assume there are finite D < oo such that
lz=2'|| <D forzz: eX.

Assumption 2 (Step size). Let {cy} denote step size sequence which is non-increasing and for
Vi 0<a <ap < oo

Assumption 3 (Problem solvable). The matrix A and C are non-singular.

Assumption 4 (Bounded data). The max norm of features are bounded by L, rewards are bounded
by Rynao and importance weights are bounded by py,qz-

Assumption 5 (Lipschitz). For II-almost every £ , the function ®(x,y, &) is Lipschitz for both x and
v, that is there exists three constant 0 < Ly, < 00,0 < L1y < 00, 0 < Ly < 0o such that:

(2", y,8) = ®(x,y,8)| < Ligllz —2'|| for Va,a' € &,
@ (x,y,8) — @(2,y", )| < Luylly = o'l for Yy,y' € &,

and let Ly £ v/2,/ L3, + L},, we have

|®(2,8) — (2", &) < Li||z — 2’| for Vz,2' € Xy x X,.

Assumption 6 (Smooth). For II-almost every & , the partial gradient function of ®(x,y, &) is
Lipschitz, that is there exists three constant 0 < Lo, < 00,0 < L9y, < 00, 0 < Lo < 00 such that:

Ga(@',y,€) — Gu(,y,8)|| < Logllx — 2’| for Va,a’ € X,,Vy € X,
Gy (2, y,8) = Gyla,y' I < Laylly =o'l for Vy,y' € X, Vo € &,
Then, let Ly = /2, /L3, + Lgy, we have
1G(2,6) = G(,&)|| < La|lz — 2'|| for Vz,2' € Xy x X,

Assumption 7. The mixing times of the stochastic process {&;} are uniform in the sense that there
exist uniform mixing times (P, n) such that with probability 1 for allm > 0 and s € N

T(P[s]an) < T(P777)
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2 Proofs

2.1 Proof of Theorem 1

Theorem 1. Suppose Assumption 1, 2,5,6 hold, then for the gradient algorithm optimizing the convex-
concave saddle point problem, For Y6 > 0, and ¥n > 0 such that T(n) < T'/2, with probability at
least 1 — 9, we have

Errg (zl ) < !

T T T
= A+BZO¢?+CT(77)ZO¢?+FnZat+HT(77)+8DL1\j log (5 (ZatJrT )]
S oy t=1 t=1 t=1

where

A= D? B= gL% C=6L?+2L,L,D F=2L.D H=6LDao.

Proof of Theorem 1. For the convenience of proof, we introduce a sequence of auxiliary variables
{vi}1=1,... 7— that follow the iteration formula below respectively:

V1 = 21 V41 = Py (Ut - at(g(zt) - G(Ztaft))) (1

Using the definition of error function and 27, we can convert expected error function to a more
friendly expression, from which we will start our analysis. Define I £ 23:1 Q.

T

=1
1 o 1
= max ¢(f > s y) - min ¢(z, T > )

= max max % Z ay [p(ze,y) — d(x, y)]

T
Y t=1

(3)
< maxmax & Zat 2o — )" gu (@i ye) + (v — ve) " 9y (@0, 90)]

1 T
fZ (21— 2) T g(21)] @

(1) is a consequence of the Lemma 1.
(2) follows by the convexity and concavity of ¢(x,y) with respect to : and y respectively.
(3) follows by the convexity-concavity once again.

Notice that we can not bound the right hand side of (2) directly because of the max operator and
non-i.i.d. setting.

we rewrite 2 = argmax £ Y21 [(2 — 2%) T g(2)], it can be shown that z is measurable with
-~
respect to Fr. More specifically, given F;, ¢t < T, z is a random variable that correlated to z¢, . . ., 2.

Previous work that considers the saddle point problem under i.i.d. setting is easy to obtain the bound
because they can utilize the i.i.d. property. In their setting, every sample based stochastic gradient



function G(z,&;) is unbiased with respected to the g(z;). Notice E[g(z;) — G (21, &) Fi—1] = 0.
However, in our Markov setting this term cannot be arbitrary small.

On the other hand, previous work that considers the Markov setting for convex function minimization
problem is also easy to obtain the result since they are not bothered by random variable z. In their
problem z is a constant rather than a random variable which plays a key role when they try to handle
the dependent and biased between sampling distribution.

So we cannot apply existing techniques directly or even combine them trivially.

Now, to bound the right-hand side of (2), we consider the following decomposition, for any 7 > 0. In
order to include special 7 = 0 case, we require : if 1 < ¢2, Zi; ()=0

Zat [(Zt - Z)Tg(zt)]

T

Y wle-aTeE] - 3 e[ —2) ()]

t=T—7+1

T—7
= Z Qay [(Zt - Z)T(G(ant) = Gy(z,&) + Q(Zt)]
t=1

T

+ Z o [(Zt - Z)Tg(zt)] ;

t=T—7+1

Denote g(z:) — G(z, &) as & ,denote g(z¢) — G (21, §i4-) as 9y, denote G(z¢, Ee1r) — G2, &) as
47, and recall the definition of v; ,

T
mzaxz o [(zt — z)Tg(zt)] 3)
t=1
T—1 T
= max Z i | (2 — 2) TGz, &) + (26 —ve) 04 (20 —ve) 67 + (ve — 2) 64 | + Z Qg [(zt —2) g(z)
t=1 t=T—7+1
(a) (®) (© (d)

(e)

In order to prove Theorem 1, we need the following 7 lemmas, we prove these lemmas in section 3.
Lemma 1.

—min(f(x)) = m;xx(ff(x)). 4

x

Lemma 2. Let {x;} be a sequence of elements in R"™, let {A;} be a sequence of element in R™.
Given the iteration formula

Ti4+1 = T + At.
Then for Vo* € R™ we have

2(z* — w4, Ar) = A + [l — 2*||* = [lzea — 2|2 (&)
If the parameter space X is convex and X C R"™ and using the projection step to constrain x in the
parameter space during the optimization path, that is
Tp1 = Pr(xe + Ay)
Then 20" — 21, Ag) < A + [lwe — 2*||* = 2eg1 — 2% (6)
Lemma 3. If z; follows the iteration formula : zy11 = Px(ze — . (G(24,&1))), then:

llove, 2, — Qys12e011]] < D(ow, — pyq1) + La(ta — t1)of, .



Lemma 4. [If Assumption 2, 1 and 5 hold,

max Z_: o [(2 — 2) TGz, &)] < § Z_:

Lemma 5. If Assumption 2, 1 and 5 hold,

)—l

T—T1 T—1
maxZat vt—z) o < D2+2L22at
t=1 t=1

Lemma 6. Let Assumptionl, 2, 5 and 6 hold and 6 € (0, 1) With probability 1 — 6

T—1 T T

.
Z ar(ze —v) " (g(ze) — G(z1,614+))] <8DLy | 27log < Z@% +Tag | +2DLy Zat / [7(€)
=1 0 \i= =1

Lemma 7. If Assumption 2,1, 5 and 6 hold,

T—1

> [z —v) T(G(21, €upr) — G(21,€))] < 2La7(DLy +3Ly) Y | af, +57DLiay.
t=1 t=7+1

Now we are ready to give the proof of Theorem ?? by constructing a novel decomposition and then
use above lemmas.

Firstly, we apply Lemma 4 to bound the term (a),
Then, we apply Lemma 6 to bound the term(b),
Then, we apply Lemma 7 to bound the term(c),
Then, we apply Lemma 5 to bound the term(d),

Finally,for term (e), notice that

T

max Z o [(Zf — Z)Tg(zt)} < 71DLjay,
t=T—74+1

E

Combine above five terms, and for a given 1, we set 7 = 7(n) by Assumption 7, then the following
bound hold with probability 1 — ¢:

Errg(#])
< 1
A
Zt:l Qg

+8DLy | 27(n) log - 5 (ZatJrT )

T T T
5}
D%+ 5[,? Z o? +2DLyn Z ar +2L17(n)(3L1 + DLs) Z o? 4 67(n)DLiag

t=1 t=1 t=1

N

<

PR
t=1

t=1

where

5
A=D? B= §L§ C=6L+20[1L,D F=20[,D  H=6LDap.

(©)lde.

T T T T
T
A4 BY ol Orln) Y 0} + Y o + He(n) + 8DL | 20(n) log "2 (Z o} + r(n)aoﬂ
t=1 t=1 t=1



2.2 Proof of Lemma 1 in the main paper
Lemma 1 in the main paper. Suppose Assumption 1,2,5,6 hold, then for the gradient algorithm
optimizing the convex-concave saddle point problem, V7 > 0 such that 7(n) < T'/2, we have

T T T
A+BZaf+CT(n)Zaf+FnZat+HT(77) ,Vn >0,

t=1

ED [ETT¢(§?)} S T

t=

1Ot

Firstly, we give a key lemma that will be used in the proof of Lemma 1 in the main paper.
Lemma 8. Let Assumption 1,2, 5 and 7 hold, T > 0, recall the definition of vy :

T—1

Z ar(ze —vg) T 2] <2DIL, Z OétE/ 7 (€) pHT §)ldg.

t=1

E

Proof of Lemma 1 in the main paper. The result can be obtained by replacing the term (b) in de-
composition (3) by an expectation upper bound using Lemma 8 and using Lemma 4, 7, 5 once again
to bound the rest term. O

2.3 Proof of theorem 2

Theorem 2. Suppose assumptions 1-4 hold, then we have the following finite sam-
ple bounds for the error |V — oF||. in GTD algorithms. In on-policy case, the ex-
L/L d3 Xy Tmaz (1+7(1)) Trmaz 01

pectation bound is O

)and the high probability bound

v
is O <7VL4(1230M”W (\/(I—H-( ))L2do1 +log( "))02>); In off-policy case, the ex-

2
pectation bound is (’)(L d\/mckl‘”’"”(l”(wol)anf the high probability bound is

VAT pm—14)

(@] <M <\/L4d2(1+7( ))01+log(7(")) 2>> where vo is the smallest eigenvalue

V(AT pm—1 a)

of the C', 01 = (% ljt),@ = (sztfllajt)

Lemma 9. Assumption 4, implies Assumption 5,6, and
LT < 2(2||A[ID + [[b]| + Aa D),
L2 < 22| Al + Aar)?.

Here we state three results from Liu et al. [2015].

Lemm:} 10 (Lemma 2 of Liu et al. [2015]). For V&, the [2-norm of matrix A, and the 12-norm of
vector by are bounded by

||At||2 (1 + ’Y)pma;vL d H(;t||2 S pmamLRmaa:- (7)

Lemma 11 (Proposition 4 of Liu et al. [2015]). Let V be the value of the target policy and v} = ®T,
where &1 is the value function returned by on policy GTD algorithms. Then we have ||V — o1 ||, <

L (IV =1V + £ V20N T BT 7))

Lemma 12 (Proposition 5 of Liu et al. [2015]). Let V be the value of the target policy and o7 = ®T,
where 37T is the value function returned by off policy GTD algorithms. Then we have ||V — 0¥ ||, <

1+’Y\/Pmam ||V HVHTr 4 \/2)\0)\M777na1 Er,r(x'{',g{)

Proof of Theorem 2. Substitute Lemma 10 into Lemma 9 yields Proposition 1 in the main paper.
Then using Proposition 1 together with Proposition 4-5 of Liu et al. [2015] we can obtain the Theorem
2.

O



3 Proof of lemmas

Proof of lemma 1. Firstly, we will proof — min, (f(z)) < max,(—f(z)) :

Vo max(—f(z)) = —f(z)
f(@) = —max(f(z)) &
s0 min(f(z)) > — max(—f(z))
—min(f(z)) < max(—f(z))
Then, we will proof — min, (f(x)) > max,(—f(z))
Ve min(f(z)) = f(2)
—min(f(z)) < —f(x) 9)
S0 —min f(z) > max(~f(z))
Combine the above inequality, we get the result (4). O

Proof of lemma 2. Using the iteration formula together with the definition of L2-norm, we can get
for Vz* € R™

o1 —a*|® = llzg — 2*|* = [l + Ay — 2*[* = || — 22

= [l = 271* + 2@ — 2", Ag) + [ A]? — [l — 27|

So equation 5 can be obtained by moving the second term from right hand to left hand. And inequation
6 hold because projection is a contraction mapping with respect to Lo norm.

O
Proof of lemma 3.
ety 2, — vty 12,41
ta
:” Z QgZg — as+lzs+1||
$=t1
ta
S” Z Qszs — as+1(zs - asG(ngs))H
S=t1
to 2
<[l Z 525 — Qo1 25| + | Z(Ozs+1OZSG(25,§S))H
s=t s=t1
to ta
< Z lets — avsllllzs ]| + | Z(aerlasG(zs’§S))H
3=t1 S=t1
t2 t2
<D Z (as — ovgq1) + Z(O‘s+10‘8||G(ZS7£S)”)
S=t1 S=t1
SD(atl - Oét2+1) + Ll(tg — tl)OétQI.
O



Proof of lemma 4. Applying Lemma 2 by setting x; = z; , * = z and A; = —a;G(z4, &) can get

T

T

oy [(Zt - Z)TG(met)}

Tl
\“ [l

<
t

([l Gz, €17 + Nl2e — 2I1° = ll2e41 — 2]

DO =

1

T—71
*Hzl —z)* + L2 Z af

The statement follows by taking max on the first term directly.

O

Proof of lemma 5. The proof is entirely similar to the proof of 4 if we set x; = vy , £* = z and
At = —th(st. O

Proof of lemma 6. We construct a family of martingales, each of which we control with high proba-
bility. We begin by defining the following random variables

Ay £ at—T(Zt—T - Ut—T)T(g(Zt—r) - G(Zt—nft))

T T—71
Z Ay = Z E [ar(ze —vi) " (9(21) — Gz, &e4r))]
-1

t=7+1

Define the filtration of o—fields AJ = nﬂ for j = 1,...,7. Then we can construct 7 sets of
martingales {BJ, B},...}forj =1,2,...,7

sz = Ai'rJrj -E [Aif+j|-’4{—1}

By definition, B; is measurable with respect to A7, and E[B/|.A7_,] = 0. So for each j, the sequence
{B], Ji=1,2,. .. } is a martingale difference sequence adapted to the filtration A]. For a fixed

jo € 1,2, ..., 7, the index 7 for martingale sequence Bg'o can take value from the index set Z(jp),
1) = L ={1,...,|T/7] + 1} z:f _] <T-71|T/7]
Iy =A{1,...,[T/7]} if j>T—7|T/7]

T
Y A= Z > B+ Z [A¢|Fir] (10)

t=7+1 Jj= 1161(_7) t=7+1
Notice
|B]| = |Air4; — E [AZ-T+J»|A§,1} | < |Air4j] + |E [Air+j|«4§71} | <8DLiciryj

So applying the triangle inequality and Azuma’s inequality, we can bound the martingale difference
sequence term of 10 :

2

Z > B>y <ZP > B> <ZeXp< 128D2L?732iez(j> afT>

J=14i€Z(j) i€Z(5)




Notice that 7(vir)® < 3771 (i 1)745)% SO X iez(j T(@ir)? < S a2+ Tag for V)

Setting v = 8D L, \/27' log %(Z?zl a? + Tap), we get

Z Z BJ > 8DL, 2T10g* (Zat—l—nuo) <4

J=14€Z(j)

For the last term of 10, recall the Lemma 8

[B{AF — 7]l < 2DLy [ 7€) - ol Ol
combine the above bound completes the proof.

Proof of lemma 7. Rearrange the left hand side of the above inequation, we can get

[ai(ze = v0) (G (21, i1r) — G215 61))]

gl

~
|

T

= [t (z1—r — Vi—r) TG (21—r, &) — (20 — 1) T G20, &)
t=1+1

()

T
+ Z Oét—T(Zt—r - ’Ut—r) Zt nft Zoét 2t — ”Ut (Zt,ft)

t=T-—71
Considering the term (f):

T—T1

Z [at—r(zt—T - Ut—r)TG(Zt—nft) - Oét(Zt - Ut)TG(Ztaft))}
t=1+41
T—1
= Z at—‘r(zt—‘r - vt—T)T(G(zt—T,Et) - G(Zt;ft))
t=1+41
T—1
+ > e (z—r = vr—r) — a2 — v0)] T G20, &)
t=1+1
T—7
<> sz — v 1G(2r, &) — Gl &)
t=141
T-—1 T—1
+ Z (—r2t—r — OétZt)TG(met) + Z (v — atf'rvtf‘r)TG(Ztvft)
t=141 t=141

<L2 Z t—rll2t—r — vi—r|[]| Z — Zs41)|

t=1+41 s=t—T1
T—1 T—T1
+ L Z llot—rzi—r — cpze|| + L1 Z o ||ve — ve—r||
t=1+7 t=1471
T—T T—T1 T—T
<2DLyLot Y of ,+2Lir Y of (+4LiT Y af . +71agDLy
t=7+1 t=14+71 t=14+71
T—1
<2L17(3L1 + DLy) »_ of , +7agDLy
t=7+1



The first term of (1) can be bounded by using the iteration formula of z;.
The second term of (1) can be bounded by using the Lemma 3.
The third term of (1) can be bounded by using the iteration formula of v;.

In conclusion, we get the Lemma 7

T—1
Z ai(zt — ve)(G(24, &1r) — G(21,61))]

T—r1

<2L17(3Ly + DLo) Z a? T+Ta0DL1+2DL12at+2DL1 Z Qs
t=7+1 t=1 t=T—71
T—1

:2L1T(3L1 +DL2) Z Oétz_.,. +5TO£0DL1.
t=74+1

Proof of lemma 8.
]E [(Zt - Ut)—réﬂ]:t}
=E [0 (2 — Ut)T(g(Zt) — G(2t,&4+)) | F2)
=(zt —vr) " [B(g(2t) — Gz, &14)) | Fi]

=(2t — ) /G zt,§ png(f))dS
<aDIL, / () (©)|de
Taking expectation to the above inequation then summarization ¢ from 1 to 7' — 7 we can get

E [(2 — Ut)T5£|ft] <2DI, / Im(&) — pt;rT(fﬂdf

T—1

Z (2 —Ut)T Q] <2DLy Z OétE/ () pHT &)|dg.

t=1

E

O

Proof of lemma 10. The proof is similar to the proof of Proposition 3 in Liu et al. [2015]. Notice
that in the specific RL problem setting our convex-concave problem can be written as

. 1
minma (L(z.9) = (0~ Az.5) = 3l ).
the stochastic gradient vector G(x, y, ;) can be written as

B —Aly
G(z,y,&) = [ _(i)t — Ay — Mty) } .

Similar to the Lemma 2 in Liu et al. [2015], by using Assumption 4 and the definition of l;, flt, M,
we can see, for V&, ||G (2, y,&)[1? = 2 (|A] yl® + |[be — Ay — Myyl|?) < 2- (JJA2D? + ([}p] +
(Al + Xar)D)?) < 2 2IJAID + [[B]] + Aar D).

So Lipschitz constant L; can be set to the upper bound of the gradient.

The smooth constant Lo can be set similarly. 2 - (\\7SG(gf’£t) % + ||78G(:g’5’5t) %) < 2- (4] +
am)? +IA[2) < 2- (21A] + Aw)?
O
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