
A Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. The proof just uses assumptions on the transformation function and stability of
the training algorithm.
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+ 2L2 |ŵG (x)− w̃G (x)|2 + 2L2 |w̃G (x)− wG (x)|2 (4)

≤L2
���f̂so (x)− fso (x)

���
2

+ 2L2

�
nta�

i=1

ci
�
Xta

i

� ���Wi − �Wi

���
�2

+ 2L2 |w̃G (x)− wG (x)|2 (5)

where (2) is by the requirement of G, (3) is by the Lipschitz condition of G, (4) is because (a− b)2 ≤
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Plugging (6) into (5), we obtain our desired result. �

A.2 Proof of Theorem 2

For simplicity, let Kh(·) = K(·/h) and define the expected regression estimate f̃ =
�n

i=1 wif(Xi).
To prove Theorem 2, we first give some standard supporting lemmas for kernel smoothing.

Lemma 1 (Lemma 1 of [Kpotufe and Garg, 2013]) Under the same assumptions in Theorem 2,
for all x with ||x||2 ≤ �X , if f is (λ,α) Hölder , then, for any h > 0, we have |f̃(x) − f(x)|2 ≤
λ2h2α.

Lemma 2 (Corollary of Lemma 3 and Lemma 7 of [Kpotufe and Garg, 2013]) Under the same
assumptions in Theorem 2, let 0 < δ < 1/6, for all x : ||x||2 ≤ �X and h > 0, with probability at
least 1− δ, we have

|f̂(x)− f̃(x)|2 = O

�
log (1/δ)
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�
.

Proof of Theorem 2. we prove Theorem 2 by bounding each corresponding term in Theorem 1. First,
by Lemma 1 and Lemma 2, we have for all x, with probability at least 1− δ
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Specifically, for Xta
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, we have
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Next, according to Assumption 1 and 2, HG is bounded and unbiased and wG is bounded, we can view��
Xta

i ,�Wi

��nta
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a training set for function wG that �Wi = wG (Xta

i )+ �wG
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| ≤ 2B. Based on this observation, using Lemma 1 and Lemma 2 again, for all x : ||x||2 ≤ �X ,

we have with probability at least 1− δ
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Now we are left bounding
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where (8) is because maximum is bigger than other terms, (9) is because
�nta

i=1 ci = 1 by definition,
and (10) is by (7). Putting these all together, using Theorem 1 and choosing the bandwidth according
to Theorem 2, we can show for all x : ||x||2 ≤ �X
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Now integrate with respect to PXta we obtain our desired result. �

A.3 Proof of Theorem 3

The proof strategy is similar to that of Theorem 2. Using Theorem 1 we have
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where the expectation is taken over Pxta and T ta. Now we bound three terms on the right hand side
separately. By Corollary 3 of Steinwart et al. [2009], we have with probability at least 1− δ
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where expectation is taken over P ta
x . Taking union bound over Xta
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, we have
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where the expectation is taken over T ta. Next, using the exactly same argument as in the Theorem 2,

we can view
��

Xta
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a training set for function wG that �Wi = wG (Xta

i ) + �wG
as
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�Wi = wG (Xta
i )+ �wG

where E [�wG
] = 0 and |�wG

| ≤ 2B. Thus applying Corollary 3 of Steinwart
et al. [2009] again, we have with probability at least 1− δ
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where expectation is taken over Pxta . Now we analyze the stability of KRR. We use Φ (x) to
denotes the feature map corresponding with the given kernel K so K(x, y) = Φ (x)

�
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for simplicity, we denote
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The second equality we used the identity that
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Now putting these all together and choosing λso and λwG
according to Theorem 3, we obtain the

desired result. �

A.4 Proof of Theorem 4

We first prove a general theorem for cross-validation. This is a standard result for cross-validation
and we include the proof for completeness.
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Theorem 5 Let Θ be the set of all hypotheses and θ̂ = argminθ∈Θ

�nval

i=1

�
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θ

�
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i

�
− Y val

i

�2

the estimator that minimizes error on the cross-validation set. Then with probability at least 1− δ:
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,

where θ∗ = argminθ∈ΘR
�
f̂θ

�
and the expectation is taken over T so and T ta.

To prove of Theorem 5, we use the following type of Bernstein’s inequality [Craig, 1933]:

Lemma 3 Let X1, . . . , Xn be random variables and suppose that for k ≥ 3 :

E[|Xi −E[Xi]|k] ≤
Var[Xi]

2
k!rk−2,

for some r > 0. Then with probability > 1− δ:
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,

for 0 ≤ tr ≤ c < 1.

Proof of Theorem 5: For a given θ ∈ Θ, we obtain a corresponding estimated regression function f̂θ.
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Also, by definition, it is easy to see
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.

In order to apply Bernstein’s inequality, we must first bound the variance of Uθ
i :

var
�
Uθ
i

�
≤ E

�
(Uθ

i )
2
�

= E

��
−

�
Y val
i − f̂val

θ

�
Xval

i

��2

+
�
Y val
i − f ta

�
Xval

i

��2�2
�

= E

��
f ta (Xi)− f̂ ta

θ

�4

+ 4�i

�
f ta

�
Xvak

i

�
− f̂ ta

θ

�
Xval

i

��3

+ 4�2i

�
f ta

�
Xval

i

�
− f̂ ta

θ

�
Xval

i

��2
�

≤ −4�2
Y E [Ui]

where in the last inequality we used the domain of Y is bounded. Since Ui is a sum of bounded
random variables, the moment condition is satisfied with r = 4�2

Y . Now apply Craig-Bernstein
inequality to Uθ

i s, with probability at least 1− δ:
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We need to ensure that c < 1. To do this, let c = tr = 4t�2
Y and let t < 1

6�2
Y

, then it is easy to see

that c < 1. For simplicity, define a =
2t�2

Y

1−c < 1. Now grouping terms we get:
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Take union bound over Θ, and consider f̂θ̂:
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Now, recall that f̂ ta
θ̂

is the minimizer for R̂ among all estimators induced by Θ, we have
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Now taking expectation over T val then over T so and T ta we obtain the desired result. �
Now we are ready to prove Theorem 4. Since G is an �-cover of G, there exists G� ∈ G such that
||G� −G�||∞ ≤ �. For any x,

���f ta (x)− f̂ ta
G� (x)

���

=
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where ŵG� = AwG
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i ,W �
i }) and W �
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i ) , Y
�
i

�
+ wG� (Xta

i )− wG� (Xta
i ), i.e.

an un-biased estimated of wG� (X�
i ). We can bound three terms in (13) separately. The first term

is just the difference between estimator based on G� and the true f ta, so after taking expectation it
becomes the excess risk of f̂ ta

G� . By our construction of �-cover of G, the second term is smaller than
�. For the third term, notice that by Lipschitz assumption on Gs and our assumptions on Gs in G in
the theorem 4, we have: ���G�

�
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Now we have shown R
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G�

�
−R (f ta)

�
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�
, the best transformation function in G. By the optimality of G�, we have

R
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.
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B Regression Calibration for Measurement Error Problem

Given, fso, in this section we provide a standard technique to obtain an unbiased estimate of
wG (Xta

i )s. Since we assume
Y ta = f ta

�
Xta

�
+ �ta,

the measurement error model corresponds to classical error model in Carroll et al. [2006]. Regression
calibration is a widely used and reasonably well investigated method for measurement error problem.
The algorithm is as follows (we have adapted the general algorithm to our HTL problem):

• Compute an estimate of f ta (Xta
i ): f̃ ta (Xta

i ). Note that directly using Y ta
i is one of the

option for f̃ ta (Xta
i ).

• Compute G−1

fso(Xta
i )

�
f̃ ta (Xta

i )
�

.

• Calibrate our previous computed value by applying some function F :

�Wi = F

�
G−1

fso(Xta
i )

�
f̃ ta

�
Xta

i

���

where F depends on G and the specific distribution on noise.

Now we consider the loglinear mean model as a concrete example. Suppose

G (fso (x) , wG (x)) = βfso (x) log (wG (x))

where β is some constant. Further, we assume �ta ∼ N
�
0,σ2

�
Now we apply the regression

calibration algorithm.

• First we choose Y ta
i as our estimate for f̃ ta (Xta

i ).

• Second, by our choice of G:

G−1

fso(Xta
i )

�
Y ta
i

�
= exp

�
Y ta
i

βfso (Xta
i )

�

• Last, for our choice of G and assumption of �ta, the corresponding F and final estimate of
wG (Xta

i ) is

�Wi = F

�
G−1

fso(Xta
i )

�
f̃ ta

�
Xta

i

���

= exp

�
log

�
G−1

fso(Xta
i )

�
f̃ ta

�
Xta

i

���
+ σ2

�
fso

�
Xta

i

��2
�

= exp

�
Y ta
i

βfso (Xta
i )

+ σ2
�
fso

�
Xta

i

��2
�
.

The estimator for wG (Xta
i ) depends on some distribution specific parameters which may be unknown,

like σ2 in the previous example. In such cases, we may replace these parameters by our estimates. For
example, in the previous Gaussian noise case, suppose for each Xta

i , we have multiple observations
{Yij}ni

j=1. Then we can estimate σ2 by

σ̂2 =

�nta

i=1

�ni

j=1

�
Y ta
ji − Ȳ ta

i

�2
�nta

i=1 (ni − 1)

where Ȳ ta
i =

�ni
j=1 Yij

ni
.

Here we only provide one method for measurement error problem. There are other techniques such
simulation extrapolation and likelihood method which may be also applicable in many situations.
The choice of method depends on specific transformation G and assumptions on the distribution of
the noise. Again, interested readers are referred to Carroll et al. [2006] for details.
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nta = 10 nta = 20 nta = 40 nta = 80 nta = 160 nta = 320

Only Target KS 0.005± 0.001 0.003± 0.001 0.003± 0.001 0.003± 0.000 0.002± 0.000 0.002± 0.000
Only Target KRR 0.001 ± 0.001 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Only Source KS 0.031± 0.012 0.031± 0.012 0.031± 0.012 0.031± 0.012 0.031± 0.012 0.031± 0.012
Only Source KRR 0.016± 0.013 0.016± 0.013 0.016± 0.013 0.016± 0.013 0.016± 0.013 0.016± 0.013
Combined KS 0.023± 0.017 0.029± 0.011 0.017± 0.013 0.007± 0.007 0.002± 0.000 0.002± 0.000
Combined KRR 0.006± 0.008 0.009± 0.010 0.002± 0.002 0.001± 0.000 0.001± 0.000 0.001± 0.000
CDM 0.004± 0.002 0.007± 0.001 0.004± 0.002 0.001± 0.000 0.001± 0.000 0.012± 0.002
Offset KS 0.003± 0.001 0.002± 0.001 0.002± 0.000 0.002± 0.000 0.002± 0.000 0.001± 0.000
Offset KRR 0.002± 0.001 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Scale KS 0.004± 0.002 0.003± 0.001 0.002± 0.001 0.002± 0.000 0.002± 0.000 0.002± 0.000
Scale KRR 0.001 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table 3: 1 standard deviation intervals for the mean squared errors of various algorithms when
transferring from kin-8nh to kin-8fm. The values in bold are the best errors for each nta.

C Additional Experimental Results

C.1 Synthetic data

This section gives details of the synthetic data. For both experiments, we use nso = 10000 samples
from the source domain, and nta = 100 samples from the target domain. We put Gaussian noise
on the labels: �so ∼ N (0, 0.01), �ta ∼ N (0, 0.01); and we use KS with a gaussian kernel for
estimating fso and wG.

Figure 1b shows the offset example in Section 3, where we consider

fso(x) =
�
x (1− x) sin

�
2.1π

x+ 0.05

�
, f ta(x) = fso(x) + x.

We used the transformation function G(a, b) = a+ b. The bandwidths of the kernels were chosen
by cross validation. For estimating fso, the chosen bandwidth is hso = 10−8, and for estimating
wG, the chosen value is hwG

= 10−5. Figure 1c shows the scale example in Section 3, where we
consider the same source regression function and f ta(x) = 5fso(x). We tested the transformation
function G(a, b) = ab. Bandwidth parameters were again chosen by cross validation: hso = 10−7 for
estimating fso, and hwG

= 5× 10−4 for estimating wG. The plots show that by using our proposed
transfer learning framework with an appropriate transformation function, we can estimate the target
regression function better, especially in regions where f ta is not smooth.

C.2 Transferring from kin-8nh to kin-8fm

Now we briefly discuss the results of the second transfer task with the robotic arm data described in
Section 6. The source domain is kin-8nh and the target domain is kin-8fm. The results are shown
in Table 3. Here we see the effects of trying to transfer to an “easy” domain. We do not gain
any advantage by using the transfer algorithm, except for the smallest value of nta - even here the
gain is minimal. However, it should be noted that using transfer learning does not negatively affect
performance. And we point out that in a dataset where the smoothness conditions are unknown, we
would use cross-validation to decide whether or not to use the source data.
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