
Min-Max Propagation

Christopher Srinivasa
University of Toronto

Borealis AI
christopher.srinivasa

@gmail.com

Inmar Givoni
University of

Toronto
inmar.givoni
@gmail.com

Siamak Ravanbakhsh
University of

British
Columbia

siamakx@cs.ubc.ca

Brendan J. Frey
University of Toronto

Vector Institute
Deep Genomics

frey@psi.toronto.edu

Abstract

We study the application of min-max propagation, a variation of belief propagation,
for approximate min-max inference in factor graphs. We show that for “any” high-
order function that can be minimized inO(ω), the min-max message update can be
obtained using an efficient O(K(ω + log(K)) procedure, where K is the number
of variables. We demonstrate how this generic procedure, in combination with
efficient updates for a family of high-order constraints, enables the application of
min-max propagation to efficiently approximate the NP-hard problem of makespan
minimization, which seeks to distribute a set of tasks on machines, such that the
worst case load is minimized.

1 Introduction

Min-max is a common optimization problem that involves minimizing a function with respect to
some variables X and maximizing it with respect to others Z: minX maxZ f(X,Z). For example,
f(X,Z) may be the cost or loss incurred by a system X under different operating conditions Z, in
which case the goal is to select the system whose worst-case cost is lowest. In Section 2, we show
that factor graphs present a desirable framework for solving min-max problems and in Section 3 we
review min-max propagation, a min-max based belief propagation algorithm.

Sum-product and min-sum inference using message passing has repeatedly produced groundbreaking
results in various fields, from low-density parity-check codes in communication theory (Kschischang
et al., 2001), to satisfiability in combinatorial optimization and latent-factor analysis in machine
learning.

An important question is whether “min-max” propagation can also yield good approximate solutions
when dealing with NP-hard problems? In this paper we answer this question in two parts.

I) Our main contribution is the introduction of an efficient min-max message passing procedure
for a generic family of high-order factors in Section 4. This enables us to approach new problems
through their factor graph formulation. Section 5.2 leverages our solution for high-order factors
to efficiently approximate the problem of makespan minimization using min-max propagation. II)
To better understand the pros and cons of min-max propagation, Section 5.1 compares it with the
alternative approach of reducing min-max inference to a sequence of Constraint Satisfaction Problems
(CSPs).

The feasibility of “exact” inference in a min-max semiring using the junction-tree method goes back
to (Aji and McEliece, 2000). More recent work of (Vinyals et al., 2013) presents the application
of min-max for junction-tree in a particular setting of the makespan problem. In this paper, we
investigate the usefulness of min-max propagation in the loopy case and more importantly provide an
efficient and generic algorithm to perform message passing with high-order factors.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 Min-Max Optimization on Factor Graphs

We are interested in factorizable min-max problems minX maxZ f(X,Z) – i.e. min-max problems
that can be efficiently factored into a group of more simple functions. These have the following
properties:

1. The cardinality of either X or Z (say Z) is linear in available computing resources (e.g. Z
is an indexing variable a which is linear in the number of indices)

2. The other variable can be decomposed, so that X = (x1, . . . , xN)

3. Given Z, the function f() depends on only a subset of the variables in X and/or exhibits a
form which is easier to minimize individually than when combined with f(X,Z)

Using a ∈ F = {1, . . . , F} to index the values of Z and X∂a to denote the subset of variables that
f() depends on when Z = a, the min-max problem can be formulated as,

min
X

max
a

fa(X∂a). (1)

In the following we use i, j ∈ N = {1, . . . , N} to denote variable indices and a, b ∈ {1, . . . , F} for
factor indices. A Factor Graph (FG) is a bipartite graphical representation of the above factorization
properties. In it, each function (i.e. factor fa) is represented by a square node and each variable is
represented by a circular node. Each factor node is connected via individual edges to the variables
on which it depends. We use ∂i to denote the set of neighbouring factor indices for variable i, and
similarly we use ∂a to denote the index set of variables connected to factor a.

This problem is related to the problems commonly analyzed using FGs (Bishop, 2006): the sum-
product problem,

∑
X

∏
a fa(X∂a), the min-sum problem, minX

∑
a fa(X∂a), and the max-product

problem, maxX
∏

a fa(X∂a) in which case we would respectively take product, sum, and product
rather than the max of the factors in the FG.

When dealing with NP-hard problems, the FG contains one or more loop(s). While NP-hard problems
have been represented and (approximately) solved directly using message passing on FGs in the
sum-product, min-sum, and max-product cases, to our knowledge this has never been done in the
min-max case.

3 Min-Max Propagation

An important question is how min-max can be computed on FGs. Consider the sum-product
algorithm on FGs which relies on the sum and product operations satisfying the distributive law
a(b+ c) = ab+ ac (Aji and McEliece, 2000).

Min and max operators also satisfy the distributive law: min(max(α, β),max(α, γ)) =
max(α,min(β, γ)). Using (min,max,<) semiring, the belief propagation updates are as follows.
Note that these updates are analogous to sum-product belief propagation updates, where sum is
replaced by min and product operation is replaced by max.

Figure 1: Variable-to-factor mes-
sage.

Variable-to-Factor Messages. The message sent from variable xi
to function fa is

µia(xi) = max
b∈∂i\a

ηbi(xi) (2)

where ηbi(xi) is the message sent from function fb to variable xi (as
shown in Fig. 1) and ∂i \ a is the set of all neighbouring factors of
variable i, with a removed.

Figure 2: Factor-to-variable
message.

Factor-to-Variable Messages. The message sent from function fa
to variable xi is computed using

ηai(xi) = min
X∂a\i

max

(
fa(X∂a), max

j∈∂a\i
µja(xj)

)
(3)

Initialization Using the Identity. In the sum-product algorithm,
messages are usually initialized using knowledge of the identity of

2

the product operation. For example, if the FG is a tree with some node chosen as a root, messages can
be passed from the leaves to the root and back to the leaves. The initial message sent from a variable
that is a leaf involves taking the product for an empty set of incoming messages, and therefore the

message is initialized to the identity of the group (<+,×), which is
×
1 = 1.

In this case, we need the identity of the (<,max) semi-group, where max(
max
1 , x) = x ∀x ∈ < –

that is
max
1 = −∞. Examining Eq. (3), we see that the message sent from a function that is a leaf will

involve maximizing over the empty set of incoming messages. So, we can initialize the message sent
from function fa to variable xi using ηai(xi) = minX∂a\xi

fa(X∂a).

Figure 3: Marginals.

Marginals. Min-max marginals, which involve “minimizing” over
all variables except some xi, can be computed by taking the max of
all incoming messages at xi as in Fig. 3:

m(xi) = min
XN\i

max
a

fa(X∂a) = max
b∈∂i

ηbi(xi) (4)

The value of xi that achieves the global solution is given by
argminxi

m(xi).

4 Efficient Update for High-Order Factors

When passing messages from factors to variables, we are interested in efficiently evaluating Eq. (3).
In its original form, this computation is exponential in the number of neighbouring variables |∂a|.
Since many interesting problems require high-order factors in their FG formulation, many have
investigated efficient min-sum and sum-product message passing through special family of, often
sparse, factors (e.g. Tarlow et al., 2010; Potetz and Lee, 2008).

For the time being, consider the factors over binary variables xi ∈ {0, 1}∀i ∈ ∂a and further assume
that efficient minimization of the factor fa is possible.
Assumption 1. The function fa : X∂a → < can be minimized in time O(ω) with any subset B ⊂ ∂a
of its variables fixed.

In the following we show how to calculate min-max factor-to-variable messages in O(K(ω +
log(K))), where K = |∂a| − 1. In comparison to the limited settings in which high-order factors
allow efficient min-sum and sum-product inference, we believe this result to be quite general.1

The idea is to break the problem in half, at each iteration. We show that for one of these halves, we
can obtain the min-max value using a single evaluation of fa. By reducing the size of the original
problem in this way, we only need to choose the final min-max message value from a set of candidates
that is at most linear in |∂a|.
Procedure. According to Eq. (3), in calculating the factor-to-variable message ηai(xi) for a fixed
xi = c, we are interested in efficiently solving the following optimization problem

min
X∂a\i

max
(
µ1(x1), µ2(x2), ..., µK(xK), f(X∂a\i, xi = ci)

)
(5)

where, without loss of generality we are assuming ∂a \ i = {1, . . . ,K}, and for better readability, we
drop the index a, in factors (fa), messages (µka, ηai) and elsewhere, when it is clear from the context.

There are 2K configurations of X∂a\i, one of which is the minimizing solution. We will
divide this set in half in each iteration and save the minimum in one of these halves in
the min-max candidate list C. The maximization part of the expression is equivalent to
max (max (µ1(x1), µ2(x2), ..., µK(xK)) , f(X∂a, xi = ci)).

Let µj1(cj1) be the largest µ value that is obtained at some index j1, for some value cj1 ∈ {0, 1}.
In other words µj1(cj1) = max (µ1(0), µ1(1), ..., µK(0), µK(1)). For future use, let j2, . . . , jK be
the index of the next largest message indices up to the K largest ones, and let cj2 , . . . , cjK be their

1 Here we show that solving the minimization problem on any particular factor can be solved in a fixed
amount of time. In many applications, doing this might itself involve running another entire inference algorithm.
However, please note that our algorithm is agnostic to such choices for optimization of individual factors.

3

corresponding assignment. Note that the same message (e.g. µ3(0), µ3(1)) could appear in this sorted
list at different locations.

We then partition the set of all assignments to X∂a\i into two sets of size 2K−1 depending on the
assignment to xj1 : 1) xj1 = cj1 or; 2) xj1 = 1− cj1 . The minimization of Eq. (5) can also be divided
to two minimizations each having xj1 set to a different value. For xj1 = cj1 , Eq. (5) simplifies to

η(j1) = max

(
µj1(cj1), min

X∂a\{i,j1}
(f(X∂a\{i,j1}, xi = ci, xj1 = cj1))

)
(6)

where we need to minimize f , subject to a fixed xi, xj1 . We repeat the procedure above at most K
times, for j1, . . . , jk, . . . jK , where at each iteration we obtain a candidate solution, η(jm) that we add
to the candidate set C = {η(j1), . . . , η(jK)}. The final solution is the smallest value in the candidate
solution set, min C.

Early Termination. If jk = jk′ for 1 ≤ k, k′ ≤ K it means that we have performed the minimization
of Eq. (5) for both xjk = 0 and xjk = 1. This means that we can terminate the iterations and report
the minimum in the current candidate set. Adding the cost of sorting O(K log(K)) to the worst case
cost of minimization of f() in Eq. (6) gives a total cost of O(K(log(K) + ω)).

Arbitrary Discrete Variables. This algorithm is not limited to binary variables. The main difference
in dealing with cardinality D > 2, is that we run the procedure for at most K(D − 1) iterations, and
in early termination, all variable values should appear in the top K(D− 1) incoming message values.

For some factors, we can go further and calculate all factor-to-variable messages leaving fa in a time
linear in |∂a|. The following section derives such update rule for a type of factor that we use in the
make-span application of Section 5.2.

4.1 Choose-One Constraint

If fa(X∂a) implements a constraint such that only a subset of configurations XA ⊂ X∂a, of the
possible configurations ofX∂a ∈ X∂a are allowed, then the message from function fa to xi simplifies
to

ηai(x
′
i) = min

X∂a∈Aa|xi=x′
i

max
j∈∂a\i

µja(xj) (7)

In many applications, this can be further simplified by taking into account properties of the constraints.
Here, we describe such a procedure for factors which enforce that exactly one of their binary variables
be set to one and all others to zero. Consider the constraint f(x1, ..., xK) = δ(

∑
k xk, 1) for binary

variables xk ∈ {0, 1}, where δ(x, x′) evaluates to −∞ iff x = x′ and∞ otherwise.2

Using X\i = (x1, x2, ..., xi−1, xi+1, ..., xK) for X with xi removed, Eq. (7) becomes

ηi(xi) = min
X\i|

∑K
k=1 xk=1

max
k|k 6=i

µk(xk)

=

{
maxk|k 6=i µk(0) if xi = 1
minX\i∈{(1,0,...,0),(0,1,...,0),...,(0,0,...,1)}maxk|k 6=i µk(xk) if xi = 0

(8)

Naive implementation of the above update is O(K2) for each xi , or O(K3) for sending messages
to all neighbouring xi. However, further simplification is possible. Consider the calculation of
maxk|k 6=i µk(xk) for X\i = (1, 0, . . . , 0) and X\i = (0, 1, . . . , 0). All but the first two terms in
these two sets are the same (all zero), so most of the comparisons that were made when computing
maxk|k 6=i µk(xk) for the first set, can be reused when computing it for the second set. This extends
to all K − 1 sets (1, 0, . . . , 0), . . . , (0, 0, . . . , 1), and also extends across the message updates for
different xi’s. After examining the shared terms in the maximizations, we see that all that is needed
is

k
(1)
i = arg max

k|k 6=i
µk(0), k

(2)
i = arg max

k|k 6=i,k
(1)
i

µk(0), (9)

the indices of the maximum and second largest values of µk(0) with i removed from consideration.
Note that these can be computed for all neighbouring xi in time linear in K, by finding the top three

2Similar to any other semiring, ±∞ as the identities of min and max have a special role in defining
constraints.

4

values of µk(0) and selecting two of them appropriately depending on whether µi(0) is among the
three values. Using this notation, the above update simplifies as follows:

ηi(xi) =

{
µ
k
(1)
i
(0) if xi = 1

min
(
min

k|k 6=i,k
(1)
i

max(µ
k
(1)
i
(0), µk(1)),max(µ

k
(1)
i
(1), µ

k
(2)
i
(0))

)
if xj = 0

=

{
µ
k
(1)
ai
(0) if xi = 1

min
(
max(µ

k
(1)
i
(0),min

k|k 6=i,k
(1)
i
µk(1)),max(µ

k
(1)
i
(1), µ

k
(2)
i
(0))

)
if xi = 0

(10)
The term min

k|k 6=i,k
(1)
i
µk(1) also need not be recomputed for every xi, since terms will be shared.

Define the following:
si = arg min

k 6=i,k
(1)
i

µk(1), (11)

which is the index of the smallest value of µk(1) with i and k(1)i removed from consideration. This
can be computed efficiently for all i in time that is linear in K by finding the smallest three values of
µk(1) and selecting one of them appropriately depending on whether µi(1) and/or µ

k
(1)
i

are among
the three values. The resulting message update for K-choose-1 constraint becomes

ηi(xi) =

{
µ
k
(1)
i
(0) if xi = 1

min
(
max(µ

k
(1)
i
(0), µsi(1)),max(µ

k
(1)
i
(1), µ

k
(2)
i
(0))

)
if xi = 0

(12)

This shows that messages to all neighbouring variables x1, ..., xK can be obtained in time that is
linear in K. This type of constraint also has a tractable form in min-sum and sum-product inference,
albeit of a different form (e.g. see Gail et al., 1981; Gupta et al., 2007).

5 Experiments and Applications

In the first part of this section we compare min-max propagation with the only alternative min-max
inference method over FGs that relies on sum-product reduction. In the second part, we formulate
the real-world problem of makespan minimization as a min-max inference problem, with high-order
factors. In this application, the sum-product reduction is not tractable; to formulate the makespan
problem using a FG we need to use high-order factors that do not allow an efficient (polynomial
time) sum-product message update. However, min-max propagation can be applied using the efficient
updates of the previous section.

5.1 Sum-Product Reduction vs. Min-Max Propagation

Like all belief propagation algorithms, min-max propagation is exact when the FG is tree. However,
our first point of interest is how min-max propagation performs on loopy graphs. For this, we compare
its performance against the sum-product (or CSP) reduction.

Sum-product reduction of (Ravanbakhsh et al., 2014) seeks the min-max value using bisection-search
over all values in the range of all factors in the FG – i.e. Y = {fa(X∂a)∀a,X∂a}. In each step of
the search a value y ∈ Y is used to reduce the min-max problem to a CSP. This CSP is satisfiable
iff the min-max solution y∗ = minX maxa fa(X∂a) is less than the current y. The complexity of
this search procedure is O(log(|Y|)τ), where τ is the complexity of solving the CSP. Following that
paper, we use Perturbed Belief Propagation (PBP) (Ravanbakhsh and Greiner, 2015) to solve the
resulting CSPs.

Experimental Setup. Our setup is based on the following observations

Observation 1. For any strictly monotonically increasing function g : < → <,

argmin
X

max
a

fa(X∂a) = argmin
X

max
a

g(fa(X∂a))

that is only the ordering of the factor values affects the min-max assignment. Using the same
argument, application of monotonic g() does not inherently change the behaviour of min-max
propagation either.

5

M
ea

n
M

in
-M

ax
So

lu
tio

n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5
Min-Max Propagation (Random decimation)
Min-Max Propagation (Max support decimation)
Min-Max Propagation (Min value decimation)
PBP CSP Solver (Min-max prop iterations)
PBP CSP Solver (1000 iterations)
Upper Bound
Brute Force

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

M
ea

n
M

in
-M

ax
So

lu
tio

n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

9

Connectivity Connectivity Connectivity

Figure 4: Min-max performance of different methods on Erdos-Renyi random graphs. Top: N=10, Bottom:
N=100, Left: D=4, Middle: D=6, Right: D=8.

Observation 2. Only the factor(s) which output(s) the max value, i.e. max factor(s), matter. For
all other factors the variables involved can be set in any way as long as the factors’ value remains
smaller or equal to that of the max factor.

This means that variables that do not appear in the max factor(s), which we call free variables, could
potentially assume any value without affecting the min-max value. Free variables can be identified
from their uniform min-max marginals. This also means that the min-max assignment is not unique.
This phenomenon is unique to min-max inference and does not appear in min-sum and sum-product
counterparts.

We rely on this observation in designing benchmark random min-max inference problems: i) we use
integers as the range of factor values; ii) by selecting all factor values in the same range, we can use
the number of factors as a control parameter for the difficulty of the inference problem.

For N variables x1, . . . , xN , where each xi ∈ {1, . . . , D}, we draw Erdos-Renyi graphs with edge
probability p ∈ (0, 1] and treat each edge as a pairwise factor. Consider the factor fa(xi, xj) =
min(π(xi), π

′(xj)), where π, π′ are permutations of {1, . . . , D}. With D = 2, this definition of
factor fa reduces to 2-SAT factor. This setup for random min-max instances therefore generalizes
different K-SAT settings, where the min-max solution of minX maxa fa(X∂a) = 1 for D = 2,
corresponds to a satisfying assignment. The same argument withK > 2 establishes the “NP-hardness”
of min-max inference in factor-graphs.

We test our setup on graphs with N ∈ {10, 100} variables and cardinality D ∈ {4, 6, 8}. For each
choice of D and N , we run min-max propagation and sum-product reduction for various connectivity
in the Erdos-Renyi graph. Both methods use random sequential update. For N = 10 we also report
the exact min-max solutions.

Min-max propagation is run for a maximum T = 1000 iterations or until convergence, whichever
comes first. The number of iterations actually taken by min-max propagation are reported in appendix.
The PBP used in the sum-product reduction requires a fixed T ; we report the results for T equal to
the worse case min-max convergence iterations (see appendix) and T = 1000 iterations. Each setting
is repeated 10 times for a random graph of a fixed connectivity value p ∈ (0, 1].

Decimation. To obtain a final min-max assignment we need to fix the free variables. For this we use
a decimation scheme similar to what is used with min-sum inference or in finding a satisfying CSP
assignment in sum-product. We consider three different decimation procedures:

Random: Randomly choose a variable, set it to the state with minimum min-max marginal value.

Min-value: Fix the variable with the minimum min-max marginal value.

6

Max-support: Choose the variable for which its min value occurs with the highest frequency.

Results. Fig. 4 compares the performance of sum-product reduction that relies on PBP with min-max
propagation and brute-force. For min-max propagation we report the results for three different
decimation procedures. Each column uses a different variable cardinality D. While this changes
the range of values in the factors, we observe a similar trend in performance of different methods.
In the top row, we also report the exact min-max value. As expected, by increasing the number of
factors (connectivity) the min-max value increases. Overall, the sum-product reduction (although
asymptotically more expensive), produces slightly better results. Also different decimation schemes
do not significantly affect the results in these experiments.

5.2 Makespan Minimization

Figure 5: Makespan FG.

The objective in the makespan problem is to
schedule a set of given jobs, each with a load,
on machines which operate in parallel such that
the total load for the machine which has the
largest total load (i.e. the makespan) is mini-
mized (Pinedo, 2012). This problem has a range
of applications, for example in the energy sector,
where the machines represent turbines and the
jobs represent electrical power demands.

Given N distinct jobs N = {1, . . . , n, . . . , N}
and M machines M = {1, . . . ,m, . . . ,M},
where pnm represents the load of machine
m, we denote the assignment variable xnm as
whether or not job n is assigned to machine
m. The task is to find the set of assignments
xnm ∀n ∈ N , ∀m ∈ M which minimizes the total cost function below, while satisfying the
associated set of constraints:

min
X

max
m

(
N∑

n=1

pnmxnm

)
s.t.

M∑
m=1

xnm = 1 xnm ∈ {0, 1} ∀n ∈ N ,m ∈M (13)

Figure 6: Min-max ratio to a lower bound (lower is better) obtained by
LPT with 4/3-approximation guarantee versus min-max propagation using
different decimation procedures. N is the number of jobs and M is the
number of machines. In this setting, all jobs have the same run-time across
all machines.

M N LPT Min-Max Prop Min-Max Prop Min-Max Prop
(Random Dec.) (Max-Support Dec.) (Min-Value Dec.)

8

25 1.178 1.183 1.091 1.128
26 1.144 1.167 1.079 1.112
33 1.135 1.144 1.081 1.093
34 1.117 1.132 1.071 1.086
41 1.112 1.117 1.055 1.077
42 1.094 1.109 1.079 1.074

10

31 1.184 1.168 1.110 1.105
32 1.165 1.186 1.109 1.111
41 1.138 1.183 1.077 1.088
42 1.124 1.126 1.074 1.090
51 1.112 1.131 1.077 1.081
52 1.102 1.100 1.051 1.076

The makespan minimiza-
tion problem is NP-
hard for M = 2
and strongly NP-hard for
M > 2 (Garey and
Johnson, 1979). Two
well-known approxima-
tion algorithms are the
2-approximation greedy
algorithm and the 4/3-
approximation greedy al-
gorithm. In the former,
all machines are initial-
ized as empty. We then
select one job at ran-
dom and assign it to the
machine with least total
load given the current
job assignments. We re-
peat this process until no jobs remain. This algorithm is guaranteed to give a schedule with a
makespan no more than 2 times larger than the one for the optimal schedule (Behera, 2012; Behera
and Laha, 2012) The 4/3-approximation algorithm, a.k.a. the Longest Processing Time (LPT) algo-
rithm, operates similar to the 2-approximation algorithm with the exception that, at each iteration,
we always take the job with the next largest load rather than selecting one of the remaining jobs at
random (Graham, 1966).

7

FG Representation. Fig. 5 shows the FG with binary variables xnm, where the factors are

fm(x1m, . . . , xNm) =

N∑
n=1

pnmxnm ∀m ; gn(xn1, . . . , xnM) =

{
0,

∑M
m=1 xnm = 1

∞, otherwise
∀n

where f() computes the total load for a machine according to and g() enforces the constraint in
Eq. (13). We see that the following min-max problem over this FG minimizes the makespan

min
X

max
(
max
m

fm(x1m, ..., xNm),max
n

gn(xn1, ..., xnM)
)
. (14)

Using the procedure for passing messages through the g constraints in Section 4.1 and using the
procedure of Section 4 for f , we can efficiently approximate the min-max solution of Eq. (14) by
message passing. Note that the factor f() in the sum-product reduction of this FG has a non-trivial
form that does not allow efficient message update.

Figure 7: Min-max ratio (LP relaxation to that) of
min-max propagation versus same for the method
of (Vinyals et al., 2013) (higher is better). Mode 0,
1 and 2 corresponds to uncorrelated, machine cor-
related and machine-task correlated respectively.

Mode N/M (Vinyals et al., 2013) Min-Max Prop

0
5 0.93(0.03) 0.95(0.01)

10 0.94(0.01) 0.93(0.01)
15 0.94(0.00) 0.90(0.01)

1
5 0.90(0.01) 0.86(0.07)

10 0.90(0.00) 0.88(0.00)
15 0.87(0.01) 0.73(0.03)

2
5 0.81(0.01) 0.89(0.01)

10 0.81(0.01) 0.89(0.01)
15 0.78(0.01) 0.86(0.01)

Results. In an initial set of experiments, we
compare min-max propagation (with different
decimation procedures) with LPT on a set of
benchmark experiments designed in (Gupta and
Ruiz-Torres, 2001) for the identical machine
version of the problem – i.e. a task has the same
processing time on all machines.

Fig. 6 shows the scenario where min-max prop
performs best against the LPT algorithm. We see
that this scenario involves large instance (from
the additional results in the appendix, we see
that our framework does not perform as well
on small instances). From this table, we also
see that max-support decimation almost always
outperforms the other decimation schemes.

We then test the min-max propagation with max-support decimation against a more difficult version
of the problem: the unrelated machine model, where each job has a different processing time on
each machine. Specifically, we compare our method against that of (Vinyals et al., 2013) which also
uses distributive law for min-max inference to solve a load balancing problem. However, that paper
studies a sparsified version of the unrelated machines problem where tasks are restricted to a subset
of machines (i.e. they have infinite processing time for particular machines). This restriction, allows
for decomposition of their loopy graph into an almost equivalent tree structure, something which
cannot be done in the general setting. Nevertheless, we can still compare their results to what we can
achieve using min-max propagation with infinite-time constraints.

We use the same problem setup with three different ways of generating the processing times (uncorre-
lated, machine correlated, and machine/task correlated) and compare our answers to IBM’s CPLEX
solver exactly as the authors do in that paper (where a high ratio is better). Fig. 7 shows a subset
of results. Here again, min-max propagation works best for large instances. Overall, despite the
generality of our approach the results are comparable.

6 Conclusion

This paper demonstrates that FGs are well suited to model min-max optimization problems with
factorization characteristics. To solve such problems we introduced and evaluated min-max propa-
gation, a variation of the well-known belief propagation algorithm. In particular, we introduced an
efficient procedure for passing min-max messages through high-order factors that applies to a wide
range of functions. This procedure equips min-max propagation with an ammunition unavailable
to min-sum and sum-product message passing and it could enable its application to a wide range
of problems. In this work we demonstrated how to leverage efficient min-max-propagation at the
presence of high-order factors, in approximating the NP-hard problem of makespan. In the future, we
plan to investigate the application of min-max propagation to a variety of combinatorial problems,
known as bottleneck problems (Edmonds and Fulkerson, 1970) that can be naturally formulated as
min-max inference problems over FGs.

8

References

S. M. Aji and R. J. McEliece. The generalized distributive law. Information Theory, IEEE Transactions
on, 46(2):325–343, 2000.

D. Behera. Complexity on parallel machine scheduling: A review. In S. Sathiyamoorthy, B. E.
Caroline, and J. G. Jayanthi, editors, Emerging Trends in Science, Engineering and Technology,
Lecture Notes in Mechanical Engineering, pages 373–381. Springer India, 2012.

D. K. Behera and D. Laha. Comparison of heuristics for identical parallel machine scheduling.
Advanced Materials Research, 488:1708–1712, 2012.

C. M. Bishop. Pattern recognition and machine learning. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

J. Edmonds and D. R. Fulkerson. Bottleneck extrema. Journal of Combinatorial Theory, 8(3):
299–306, 1970.

M. H. Gail, J. H. Lubin, and L. V. Rubinstein. Likelihood calculations for matched case-control
studies and survival studies with tied death times. Biometrika, pages 703–707, 1981.

M. R. Garey and D. S. Johnson. Computers and intractability, volume 174. Freeman San Francisco,
1979.

R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45(9):
1563–1581, 1966.

J. N. D. Gupta and A. J. Ruiz-Torres. A listfit heuristic for minimizing makespan on identical parallel
machines. Production Planning & Control, 12(1):28–36, 2001.

R. Gupta, A. A. Diwan, and S. Sarawagi. Efficient inference with cardinality-based clique potentials.
In Proceedings of the 24th international conference on Machine learning, pages 329–336. ACM,
2007.

F. Kschischang, B. Frey, and H.-A. Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498 –519, 2001.

M. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

B. Potetz and T. S. Lee. Efficient belief propagation for higher-order cliques using linear constraint
nodes. Computer Vision and Image Understanding, 112(1):39–54, 2008.

S. Ravanbakhsh and R. Greiner. Perturbed message passing for constraint satisfaction problems.
Journal of Machine Learning Research, 16:1249–1274, 2015.

S. Ravanbakhsh, C. Srinivasa, B. Frey, and R. Greiner. Min-max problems on factor graphs. In
Proceedings of the 31st International Conference on Machine Learning, ICML ’14, 2014.

D. Tarlow, I. Givoni, and R. Zemel. HOP-MAP: Efficient message passing with high order potentials.
Journal of Machine Learning Research - Proceedings Track, 9:812–819, 2010.

M. Vinyals, K. S. Macarthur, A. Farinelli, S. D. Ramchurn, and N. R. Jennings. A message-passing
approach to decentralized parallel machine scheduling. The Computer Journal, 2013.

9

