
A Control Variates

Control variates are random quantities that are used to reduce the variance of a statistical estimator
without trading any bias. Concretely, given an unbiased estimator ĝ such that E[ĝ] = g (the quantity
of interest), our goal is to construct another unbiased estimator with lower variance. We can do this
by defining a control variate g̃ with known expectation m̃. We can write our new estimator as

g(cv) = ĝ − c · (g̃ − m̃) . (26)

Clearly the new estimator has the same expectation as the original estimator, but a different variance.
We can reduce the variance of g(cv) by setting c optimally.

Consider a univariate ĝ and g̃, and without loss of generality, take m̃ = 0. The variance of g(cv)

can be written

V(g(cv)) = E[(ĝ − c · g̃)2]− E[ĝ]2 (27)

= E[ĝ2 + c2 · g̃2 − 2cĝg̃]− E[ĝ]2 (28)

= E[ĝ2] + c2E[g̃2]− 2cE[ĝg̃]− E[ĝ]2 (29)

We minimize the variance with respect to c by taking the derivative and setting equal to zero, which
implies

c∗ =
E[ĝg̃]

E[g̃2]
=

C(ĝ, g̃)

V(g̃)
(30)

The covariance C(ĝ, g̃) is typically not known a priori and must be estimated. It can be shown,
under the optimal c∗, that the variance of g(cv) is

V(g(cv)) = (1− ρ2)V(ĝ) (31)

where ρ is the correlation coefficient between g̃ and ĝ.

When ĝ and g̃ are length D vectors, we can construct an estimator that depends on a matrix-valued
free parameter, C ∈ RD×D

g(cv) = ĝ −C(g̃ − m̃) . (32)

We can show that the C that minimizes the Tr(C(g(cv))) — the sum of the marginal variances —
is given by

C∗ = Σ−1
g̃ Σĝ,g̃ (33)

where Σg̃ is the covariance matrix of the control variate vector, and Σĝ,g̃ is the cross covariance
between ĝ and g̃.

Intuitively, a control variate is injecting information into the estimator in the form of linear structure.
If the two quantities, g̃ and ĝ are perfectly correlated, then we already know the mean and estima-
tion is not necessary. As the two become uncorrelated, the linear estimator becomes less and less
informative, and reverts to the original quantity.

A.1 Control Variates and Approximate Functions

In our setting, we approximate the distribution of some function f(ε) where ε ∼ N (0, I) by a first
order Taylor expansion about 0 — for now we examine the univariate case

f1(ε) = f(0) + f ′(0)ε ε ∈ R (34)

If we wish to use f1(ε) as a control variate for f(ε), we need to characterize the covariance between
the two random variables. Because the form of f(ε) is general, it is difficult to analyze. We instead
derive the covariance between f1(ε) and the second-order expansion

f2(ε) = f(0) + f ′(0)ε+ f ′′(0)/2ε2 (35)

as a surrogate.
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C(f1(ε),f2(ε)) = E [(f1(ε)− E[f1(ε)])(f2(ε)− E[f2(ε)])] (36)

= E
[
(f ′(0)ε)

(
f ′(0)ε+ f ′′(0)/2ε2 − f ′′(0)/2

)]
(37)

= E
[
f ′(0)2ε2 + (f ′(0)f ′′(0)/2)ε3 − (f ′(0)f ′′(0)/2)ε

]
(38)

= E
[
f ′(0)2ε2

]
(39)

= V[f1(ε)] (40)

where note that E[ε3] = 0. Recall that the optimal control variate can be written
c∗ = C(f1(ε),f2(ε))/V[f1(ε)] (41)

= V[f1(ε)]/V[f1(ε)] = 1 . (42)

B Algorithm Details

We summarize an optimization routine using RV-RGE in Algorithm 1. The different variants rely
on the different forms of H(·, ·) and diag(H). The full Hessian estimator calculates these terms
exactly. The diagonal Hessian estimates the Hessian-vector product with the diagonal of the Hes-
sian. The HVP+Local estimator computes the Hessian-vector product exactly, but estimates the
scale approximation mean using other samples.

We also note that there are ways to optimize the additional Hessian-vector product computation.
Because each Hessian is evaluated at the same mλ, we can cache the computation in the forward
pass, and only repeat the backwards pass for each sample, as implemented in [15].

C Model Definitions

C.1 Multi-level Poisson GLM

Our second test model is a 37-dimensional posterior resulting from a hierarchical Poisson GLM. This
model measures the relative rates of stop-and-frisk events for different ethnicities and in different
precincts [6], and has been used as illustrative example of multi-level modeling [5, Chapter 15,
Section 1].

µ ∼ N (0, 102) mean offset

lnσ2
α, lnσ

2
β ∼ N (0, 102) group variances

αe ∼ N (0, σ2
α) ethnicity effect

βp ∼ N (0, σ2
β) precinct effect

lnλep = µ+ αe + βp + lnNep log rate
Yep ∼ P(λep) stop-and-frisk events

where Yep are the number of stop-and-frisk events within ethnicity group e and precinct p over some
fixed period of time; Nep is the total number of arrests of ethnicity group e in precinct p over the
same period of time; αe and βp are the ethnicity and precinct effects.

C.2 Bayesian Neural Network

We implement a 50-unit hidden layer neural network with ReLU activation functions. We place a
normal prior over each weight in the neural network, governed by the same variance (with an inverse
Gamma prior). We also place an inverse Gamma prior over the observation variance The model can
be written as

α ∼ Gamma(1, .1) weight prior hyper (43)
τ ∼ Gamma(1, .1) noise prior hyper (44)
wi ∼ N (0, 1/α) weights (45)

y|x,w, τ ∼ N (φ(x,w), 1/τ) output distribution (46)
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where w = {w} is the set of weights, and φ(x,w) is a multi-layer perceptron that maps input x
to approximate output y as a function of parameters w. We denote the set of parameters as θ ,
(w,α, τ). We approximate the posterior p(w,α, τ |D), where D is the training set of {xn, yn}Nn=1
input-output pairs.

We use a 100-row subsample of the wine dataset from the UCI repository https://archive.ics.
uci.edu/ml/datasets/Wine+Quality.

D Variance Reduction

Below are additional variance reduction measurements for the friskmodel for different values ofL,
samples drawn per iteration. We measure the variance of the variational parameter gradient at three
points during the optimization procedure: (i) early, near initialization, (ii) mid, before convergence,
(iii) late, near convergence. We compare four methods

• MC: Monte Carlo estimator using the reparameterization trick
• Full Hessian: Our reduced variance gradient using the full hessian calculation
• Hessian Diag: Our reduced variance gradient using only diagonal Hessian information
• HVP + Local: Our fast reduced variance gradient estimator, using only Hessian-vector

products and a local baseline
• Score Delta: Method described in [19] using a control variate with the score function esti-

mator of the gradient.

Table 2: frisk model variance comparison: L = 3-sample estimators
gmλ

ln gsλ gλ
Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (5.4e+02) (1.7e+04) (9.6e+04) (5.9e+05) (4.8e+04) (1.9e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.184 1.022 0.001 0.002 0.007 0.902
Hessian Diag 35.541 25.012 0.003 0.011 0.201 22.090
HVP + Local 1.184 1.022 0.012 0.039 0.019 0.900
Score Delta [19] 6054.168 651.784 1.429 1.783 35.134 574.536

mid

(MC abs.) (1.4e+04) (4.5e+05) (63) (1.1e+03) (6.9e+03) (4.5e+05)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.080 0.075 0.122 0.169 0.081 0.075
Hessian Diag 39.016 22.832 6.617 8.097 38.868 22.804
HVP + Local 0.080 0.075 31.992 46.160 0.227 0.078
Score Delta [19] 4787.771 1031.561 2833.663 1619.190 4778.818 1033.613

late

(MC abs.) (5.6e+03) (5.4e+04) (4.1) (74) (2.8e+03) (5.4e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.044 0.024 1.782 0.879 0.045 0.023
Hessian Diag 39.280 38.799 22.915 21.913 39.268 38.725
HVP + Local 0.044 0.024 98.290 99.679 0.116 0.014
Score Delta [19] 5019.294 2804.652 15681.050 5650.339 5027.114 2810.160
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Table 3: frisk model variance comparison: L = 50-sample estimators
gmλ

ln gsλ gλ
Iteration Estimator Ave V(·) V(|| · ||) Ave V(·) V(|| · ||) Ave V(·) V(|| · ||)

early

(MC abs.) (34) (1.1e+03) (6.1e+03) (4e+04) (3.1e+03) (1.1e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 1.276 1.127 0.001 0.002 0.008 1.080
Hessian Diag 35.146 24.018 0.003 0.012 0.197 23.028
HVP + Local 1.276 1.127 0.013 0.039 0.020 1.079
Score Delta [19] 6084.473 765.666 1.384 0.535 34.957 734.007

mid

(MC abs.) (7.4e+02) (2.4e+04) (3.4) (81) (3.7e+02) (2.4e+04)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.081 0.074 0.125 0.121 0.081 0.074
Hessian Diag 37.534 21.773 7.204 7.035 37.394 21.752
HVP + Local 0.081 0.074 31.278 32.275 0.225 0.076
Score Delta [19] 5115.048 557.946 3047.996 354.204 5105.546 557.329

late

(MC abs.) (3.3e+02) (1.8e+03) (0.23) (4.4) (1.7e+02) (1.8e+03)
MC 100.000 100.000 100.000 100.000 100.000 100.000
Full Hessian 0.042 0.043 1.894 0.296 0.044 0.043
Hessian Diag 39.972 101.263 24.450 27.174 39.961 101.019
HVP + Local 0.042 0.043 98.588 99.539 0.112 0.033
Score Delta [19] 5192.542 1422.083 16907.603 1376.037 5200.855 1424.831
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