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Abstract

We consider a model of game-theoretic learning based on online mirror de-
scent (OMD) with asynchronous and delayed feedback information. Instead of
focusing on specific games, we consider a broad class of continuous games defined
by the general equilibrium stability notion, which we call λ-variational stabil-
ity. Our first contribution is that, in this class of games, the actual sequence of
play induced by OMD-based learning converges to Nash equilibria provided that
the feedback delays faced by the players are synchronous and bounded. Subse-
quently, to tackle fully decentralized, asynchronous environments with (possibly)
unbounded delays between actions and feedback, we propose a variant of OMD
which we call delayed mirror descent (DMD), and which relies on the repeated
leveraging of past information. With this modification, the algorithm converges to
Nash equilibria with no feedback synchronicity assumptions and even when the
delays grow superlinearly relative to the horizon of play.

1 Introduction

Online learning is a broad and powerful theoretical framework enjoying widespread applications and
great success in machine learning, data science, operations research, and many other fields [3, 7, 22].
The prototypical online learning problem may be described as follows: At each round t = 0, 1, . . . , a
player selects an action xt from some convex, compact set, and obtains a reward ut(xt) based on
some a priori unknown payoff function ut. Subsequently, the player receives some feedback (e.g. the
past history of the reward functions) and selects a new action xt+1 with the goal of maximizing the
obtained reward. Aggregating over the rounds of the process, this is usually quantified by asking that
the player’s (external) regret Reg(T ) ≡ maxx∈X

∑T
t=1 [u

t(x)− ut(xt)] grow sublinearly with the
horizon of play T , a property known as “no regret”.

One of the most widely used algorithmic schemes for learning in this context is the online mirror
descent (OMD) class of algorithms [23]. Tracing its origins to [17] for offline optimization problems,
OMD proceeds by taking a gradient step in the dual (gradient) space and projecting it back to the
primal (decision) space via a mirror map generated by a strongly convex regularizer function (with
different regularizers giving rise to different algorithms). In particular, OMD includes as special cases
several seminal learning algorithms, such as Zinkevich’s online gradient descent (OGD) scheme
[29], and the multiplicative/exponential weights (EW) algorithm [1, 13]. Several variants of this
class also exist and, perhaps unsurprisingly, they occur with a variety of different names – such as
“Follow-the-Regularized-Leader" [9], dual averaging [18, 25], and so on.
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When ut is concave, OMD enjoys a sublinear O(
√
T ) regret bound which is known to be universally

tight.1 A common instantiation of this is found in repeated multi-player games, where each player’s
payoff function is determined by the actions of all other players via a fixed mechanism – the stage
game. Even though this mechanism may be unknown to the players, the universality of the OMD
regret bounds raises high expectations in terms of performance guarantees, so it is natural to assume
that players adopt some variant thereof when faced with such online decision processes. This leads to
the following central question: if all players of a repeated game employ an OMD updating rule, do
their actions converge to a Nash equilibrium of the underlying one-shot game?

Related Work. Given the prominence of Nash equilibrium as a solution concept in game theory
(compared to coarser notions such as correlated equilibria or the Hannan set), this problem lies at
the heart of multi-agent learning [4]. However, convergence to a Nash equilibrium is, in the words
of [4], “considerably more difficult” than attaining a no-regret state for all players (which leads to
weaker notion of coarse correlated equilibrium in finite games). To study this question, a growing
body of literature has focused on special classes of games (e.g. zero-sum games, routing games) and
established the convergence of the so-called “ergodic average” T−1

∑T
t=1 x

t of OMD [2, 10, 12].

In general, the actual sequence of play may fail to converge altogether, even in simple, finite games
[16, 24]. On the other hand, there is a number of recent works establishing the convergence of play in
potential games with finite action sets under different assumptions for the number of players involved
(continuous or finite) and the quality of the available feedback (perfect, semi-bandit/imperfect, or
bandit/payoff-based) [5, 11, 14, 19]. However, these works focus on games with finite action sets and
feedback is assumed to be instantly available to the players (i.e. with no delays or asynchronicities),
two crucial assumptions that we do not make in this paper.

A further major challenge arises in decentralized environments (such as transportation networks),
where a considerable delay often occurs between a player’s action and the corresponding received
feedback. To study learning in such settings, [20] recently introduced an elegant and flexible delay
framework where the gradient at round t is only available at round t + dt − 1, with dt being the
delay associated with the player’s action at round t.2 [20] then considered a very natural extension of
OMD under delays: updating the set of gradients as they are received (see Algorithm 1 for details).
If the total delay after time T is D(T ) =

∑T
t=1 d

t, [20] showed that OMD enjoys an O(D(T )1/2)
regret bound. This natural extension has several strengths: first, no assumption is made on how the
gradients are received (the delayed gradients can be received out-of-order); further, as pointed out
in [6, 8], a gradient “does not need to be timestamped by the round s from which it originates,” as
required for example by the pooling strategies of [6, 8].

Our Contributions. Our investigations here differ from existing work in the following aspects:
First, we consider learning in games with asynchronous and delayed feedback by extending the
general single-agent feedback delay framework introduced in [20]. Previous work on the topic has
focused on the regret analysis of single-agent learning with delays, but the convergence properties
of such processes in continuous games are completely unknown. Second, we focus throughout
on the convergence of the actual sequence of play generated by OMD (its “last iterate” in the
parlance of optimization), as opposed to the algorithm’s ergodic average 1

T

∑T
t=1 x

t. This last point
is worth emphasizing for several reasons: a) this mode of convergence is stronger and theoretically
more appealing because it implies ergodic convergence; b) in a game-theoretic setting, payoffs
are determined by the actual sequence of play, so ergodic convergence diminishes in value if it
is not accompanied by similar conclusions for the players’ realized actions; and c) because there
is no inherent averaging, the techniques used to prove convergence of xt provide a much finer
understanding of the evolution of OMD.

The starting point of our paper is the introduction of an equilibrium stability notion which we
call λ-variational stability, a notion that is motivated by the concept of evolutionary stability in
population games and builds on the characterization of stable Nash equilibria as solutions to a Minty-
type variational inequality [15]. This stability notion is intimately related to monotone operators in
variational analysis [21] and can be seen as a strict generalization of operator monotonicity in the

1In many formulations, a cost function (as opposed to a reward function) is used, in which case such cost
functions need to be convex.

2Of course, taking dt = 1 yields the classical no-delay setting.
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current game-theoretic context.3 By means of this notion, we are able to treat convergence questions
in general games with continuous action spaces, without having to focus on a specific class of games
– such as concave potential or strictly monotone games (though our analysis also covers such games).

Our first result is that, assuming variational stability, the sequence of play induced by OMD converges
to the game’s set of Nash equilibria, provided that the delays of all players are synchronous and
bounded (see Theorems 4.3 and 4.4). As an inherited benefit, players adopting this learning algorithm
can receive gradients out-of-order and do not need to keep track of the timestamps from which the
gradients originate. In fact, even in the special case of learning without delays, we are not aware of a
similar convergence result for the actual sequence of play.

An important limitation of this result is that delays are assumed synchronous and bounded, an
assumption which might not hold in large, decentralized environments. To lift this barrier, we
introduce a modification of vanilla OMD which we call delayed mirror descent (DMD), and which
leverages past information repeatedly, even in rounds where players receive no feedback. Thanks
to this modification, play under DMD converges to variationally stable sets of Nash equilibria
(Theorem 5.2), even if the players experience asynchronous and unbounded delays: in particular,
delays could grow superlinearly in the game’s horizon, and DMD would still converge.

We mention that the convergence proofs for both OMD and DMD rely on designing a particular
Lyapunov function, the so-called λ-Fenchel coupling which serves as a “primal-dual divergence”
measure between actions and gradient variables. Thanks to its Lyapunov properties, the λ-Fenchel
coupling provides a potent tool for proving convergence and we exploit it throughout. Further, we
present a unified theoretical framework that puts the analysis of both algorithms under different delay
assumptions on the same footing.

2 Problem Setup

2.1 Games with Continuous Action Sets

We start with the definition of a game with continuous action sets, which serves as a stage game and
provides a reward function for each player in an online learning process.

Definition 2.1. A continuous game G is a tuple G = (N ,X =
∏N
i=1 Xi, {ui}Ni=1), where N is the

set of N players {1, 2, . . . , N}, Xi is a compact convex subset of some finite-dimensional vector
space Rdi representing the action space of player i, and ui : X → R is the i-th player’s payoff
function.

Regarding the players’ payoff functions, we make the following assumptions throughout:

1. For each i ∈ N , ui(x) is continuous in x.

2. For each i ∈ N , ui is continuously differentiable in xi and the partial gradient∇xi ui(x) is
Lipschitz continuous in x.

Throughout the paper, x−i denotes the joint action of all players but player i. Consequently, the joint
action4 x will frequently be written as (xi,x−i). Two important quantities in the current context are:
Definition 2.2. We let v(x) be the profile of the players’ individual payoff gradients,5 i.e. v(x) =
(v1(x), . . . , vN (x)), where vi(x) , ∇xi ui(x).
Definition 2.3. Given a continuous game G, x∗ ∈ X is called a (pure-strategy) Nash equilibrium if
for each i ∈ N , ui(x∗i ,x

∗
−i) ≥ ui(xi,x∗−i),∀xi ∈ Xi.

2.2 Online Mirror Descent in Games under Delays

In what follows, we consider a general multi-agent delay model extending the single-agent delay
model of [20] to the multi-agent learning case. At a high level, for each agent there can be an arbitrary

3In the supplement, we give two well-known classes of games that satisfy this equilibrium notion.
4Note that boldfaced letters are only used to denote joint actions. In particular, xi is a vector even though it

is not boldfaced.
5Note that per the last assumption in the definition of a concave game (Definition 2.1), the gradient v(x)

always exists and is a continuous function on the joint action space X .
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delay between the stage at which an action is played and the stage at which feedback is received about
said action (typically in the form of gradient information). There is no extra assumption imposed on
the feedback delays – in particular, feedback can arrive out-of-order and in a completely asynchronous
manner across agents. Further, the received feedback is not time-stamped – so the player might not
know to which iteration a specific piece of feedback corresponds.

When OMD is applied in this setting, we obtain the following scheme:

Algorithm 1 Online Mirror Descent on Games under Delays

1: Each player i chooses an initial y0i .
2: for t = 0, 1, 2, . . . do
3: for i = 1, . . . , N do
4: xti = argmaxxi∈Xi

{〈yti , xi〉 − hi(xi)}
5: yt+1

i = yti + αt
∑
s∈Gt

i
vi(x

s)

6: end for
7: end for

Three comments are in order here. First, each hi is a regularizer on Xi, as defined below:
Definition 2.4. LetD be a compact and convex subset of Rm. We say that g : D → R is a regularizer
if g is continuous and strongly convex on D, i.e. there exists some K > 0 such that

g(td+ (1− t)d′) ≤ tg(d) + (1− t)g(d′)− 1

2
Kt(1− t)‖d′ − d‖2 (2.1)

for all t ∈ [0, 1], bd,bd′ ∈ D.

Second, the gradient step size αt in Algorithm 1 can be any positive and non-increasing sequence
that satisfies the standard summability assumption:

∑∞
t=0 α

t =∞,
∑∞
t=0(α

t)2 <∞.
Third, regarding the delay model: in Algorithm 1, Gti denotes the set of rounds whose gradients
become available for player i at the current round t. Denote player i’s delay of the gradient at round
s to be dsi (a positive integer), then this gradient vi(xs) will be available at round s + dsi − 1, i.e.
s ∈ Gs+d

s
i−1

i . In particular, if dsi = 1 for all s, player i doesn’t experience any feedback delays. Note
here again that each player can receive feedback out of order: this can happen if the gradient at an
earlier round has a much larger delay than that of the gradient at a later round.

3 λ-Variational Stability: A Key Criterion

In this section, we define a key stability notion, called λ-variational stability. This notion allows us to
obtain strong convergence results for the induced sequence of play, as opposed to results that only hold
in specific classes of games. The supplement provides two detailed special classes of games (convex
potential games and asymmetric Cournot oligopolies) that admit variationally stable equilibria. Other
examples include monotone games (discussed later in this section), pseudo-monotone games [28],
non-atomic routing games [26, 27], symmetric influence network games [11] and many others.

3.1 λ-Variational Stability

Definition 3.1. Given a game with continuous actions (N ,X =
∏N
i=1 Xi, {ui}Ni=1), a set C ⊂ X is

called λ-variationally stable for some λ ∈ RN++ if

N∑
i=1

λi〈vi(x), xi − x∗i 〉 ≤ 0, for all x ∈ X , x∗ ∈ C. (3.1)

with equality if and only if x ∈ C.
Remark 3.1. If C is λ-stable with λi = 1 for all i, it is called simply stable [15].

We emphasize that in a game setting, λ-variational stability is more general than an important
concept called operator monotonicity in variational analysis. Specifically, v(·) is called a monotone
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operator [21] if the following holds (with equality if and only if x = x̃):

〈v(x)− v(x̃),x− x̃〉 ,
N∑
i=1

〈vi(x)− vi(x̃), xi − x̃i〉 ≤ 0,∀x, x̃ ∈ X . (3.2)

If v(·) is monotone, the game admits a unique Nash equilibrium x∗ which (per the property of a Nash
equilibrium) satisfies 〈v(x∗),x− x∗〉 ≤ 0. Consequently, if v(·) is a monotone operator, it follows
that 〈v(x),x− x∗〉 ≤ 〈v(x∗),x− x∗〉 ≤ 0, where equality is achieved if and only if x = x∗. This
implies that when v(x) is a monotone operator, the singleton set of the unique Nash equilibrium is
1-variationally stable, where 1 is the all-ones vector. The converse is not true: when v(x) is not a
monotone operator, we can still have a unique Nash equilibrium that is λ-variationally stable, or more
generally, have a λ-variationally stable set C.

3.2 Properties of λ-Variational Stability

Lemma 3.2. If C is nonempty and λ-stable, then it is closed, convex and contains all Nash equilibria
of the game.

The following lemma gives us a convenient sufficient condition ensuring that a singleton λ-
variationally stable set {x∗} exists; in this case, we simply say that x∗ is λ-variationally stable.

Lemma 3.3. Given a game with continuous actions (N ,X =
∏N
i=1 Xi, {ui}Ni=1), where each ui is

twice continuously differentiable. For each x ∈ X , define the λ-weighted Hessian matrix Hλ(x) as
follows:

Hλ
ij(x) =

1

2
λi∇xj

vi(x) +
1

2
λj(∇xi

vj(x))
T . (3.3)

If Hλ(x) is negative-definite for every x ∈ X , then the game admits a unique Nash equilibrium x∗

that is λ-globally variational stable.

Remark 3.2. It is important to note that the Hessian matrix so defined is a block matrix: each Hλ
ij(x)

is a di×dj matrix. Writing it in terms of the utility function, we haveHλ
ij(x) =

1
2λi∇xj

∇xi
ui(x)+

1
2λj(∇xi ∇xj uj(x))

T .

4 Convergence under Synchronous and Bounded Delays

In this section, we tackle the convergence of the last iterate of OMD under delays. We start by
defining an important divergence measure, λ-Fenchel coupling, that generalizes Bregman divergence.
We then establish its useful properties that play an indispensable role in both this and next sections.

4.1 λ-Fenchel Coupling

Definition 4.1. Fix a game with continuous action spaces (N ,X =
∏N
i=1 Xi, {ui}Ni=1) and for each

player i, let hi : Xi → R be a regularizer with respect to the norm ‖ · ‖i that is Ki-strongly convex.

1. The convex conjugate function h∗i : Rdi → R of hi is defined as:

h∗i (yi) = max
xi∈Xi

{〈xi, yi〉 − hi(xi)}.

2. The choice function Ci : Rdi → Xi associated with regularizer hi for player i is defined as:

Ci(yi) = arg max
xi∈Xi

{〈xi, yi〉 − hi(xi)}.

3. For a λ ∈ RN++, the λ-Fenchel coupling Fλ : X × R
∑N

i=1 di → R is defined as:

Fλ(x,y) =

N∑
i=1

λi(hi(xi)− 〈xi, yi〉+ h∗i (yi)).
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Note that although the domain of hi is Xi ⊂ Rdi , the domain of its conjugate (gradient space) h∗i
is Rdi . The two key properties of λ-Fenchel coupling that will be important in establishing the
convergence of OMD are given next.
Lemma 4.2. For each i ∈ {1, . . . , N}, let hi : Xi → R be a regularizer with respect to the norm
‖ · ‖i that is Ki-strongly convex and let λ ∈ RN++. Then ∀x ∈ X ,∀ỹ,y ∈ R

∑N
i=1 di :

1. Fλ(x,y) ≥ 1
2

∑N
i=1Kiλi‖Ci(yi)− xi‖2i ≥ 1

2 (miniKiλi)
∑N
i=1 ‖Ci(yi)− xi‖2i .

2. Fλ(x, ỹ) ≤ Fλ(x,y)+
∑N
i=1 λi〈ỹi−yi, Ci(yi)−xi〉+

1
2 (maxi

λi

Ki
)
∑N
i=1(‖ỹi−yi‖∗i )2,

where ‖ · ‖∗i is the dual norm of ‖ · ‖i (i.e. ‖yi‖∗i = max‖xi‖i≤1〈xi, yi〉.
Remark 4.1. Collecting each individual choice map into a vector, we obtain the aggregate choice
map C : R

∑N
i=1 di → X , with C(y) = (C1(y1), . . . , CN (yN )). Since each space Xi is endowed

with norm ‖ · ‖i, we can define the induced aggregate norm ‖ · ‖ on the joint space X as follows:
‖x‖ =

∑N
i=1 ‖xi‖i. We can also similarly define the aggregate dual norm: ‖y‖∗ =

∑N
i=1 ‖yi‖∗i .

Henceforth, it shall be clear that the convergence in the joint space (e.g. C(yt)→ x, yt → y) will
be defined under the respective aggregate norm.

Finally, we assume throughout the paper that the choice maps are regular in the following (very weak)
sense: a choice map C(·) is said to be λ-Fenchel coupling conforming if

C(yt)→ x implies Fλ(x,yt)→ 0 as t→∞. (4.1)

Unless one aims for relatively pathological cases, choice maps induced by typical regularizers are
always λ-Fenchel coupling conforming: examples include the Euclidean and entropic regularizers.

4.2 Convergence of OMD to Nash Equilibrium

We start by characterizing the assumption on the delay model:
Assumption 1. The delays are assumed to be:

1. Synchronous: Gti = Gtj ,∀i, j, ∀t.

2. Bounded: dti ≤ D,∀i, ∀t (for some positive integer D).

Theorem 4.3. Fix a game with continuous action spaces (N ,X =
∏N
i=1 Xi, {ui}Ni=1) that admits

x∗ as the unique Nash equilibrium that is λ-variationally stable. Under Assumption 1, the OMD
iterate xt given in Algorithm 1 converges to x∗, irrespective of the initial point x0.
Remark 4.2. The proof is rather long and involved. To aid the understanding and enhance the intuition,
we break it down into four main steps, each of which will be proved in the appendix in detail.

1. Since the delays are synchronous, we denote by Gt the common set and dt the common
delay at round t. The gradient update in OMD under delays can then be written as:

yt+1
i = yti + αt

∑
s∈Gt

vi(x
s) = yti + αt

{
|Gt|vi(xt) +

∑
s∈Gt

{vi(xs)− vi(xt)}

}
. (4.2)

Define bti =
∑
s∈Gt{vi(xs)− vi(xt)}. We show limt→∞ ‖bti‖∗i = 0 for each player i.

2. Define bt = (bt1, . . . , b
t
N ) and we have limt→∞ bt = 0 per Claim 1. Since each player’s

gradient update can be written as yt+1
i = yti +αt(|Gt|vi(xt)+ bti) per Claim 1, we can then

write the joint OMD update (of all players) as:

xt = C(yt), (4.3)
yt+1 = yt + αt {|Gt|v(xt) + bt} . (4.4)

Let B(x∗, ε) , {x ∈ X | ‖x− x∗‖ < ε} be the open ball centered around x∗ with radius
ε. Then, using λ-Fenchel coupling as a “energy" function and leveraging the handle on
bt given by Claim 1, we can establish that, for any ε > 0 the iterate xt will eventually
enter B(x∗, ε) and visit B(x∗, ε) infinitely often, no matter what the initial point x0 is.
Mathematically, the claim is that ∀ε > 0,∀x0, |{t | xt ∈ B(x∗, ε)}| =∞.
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3. Fix any δ > 0 and consider the set B̃(x∗, δ) , {C(y) | Fλ(x∗,y) < δ}. In other words,
B̃(x∗, δ) is some “neighborhood" of x∗, which contains every x that is an image of some y
(under the choice map C(·)) that is within δ distance of x∗ under the λ-Fenchel coupling
“metric". Although Fλ(x∗,y) is not a metric, B̃(x∗, δ) contains an open ball within it.
Mathematically, the claim is that for any δ > 0, ∃ε(δ) > 0 such that: B(x∗, ε) ⊂ B̃(x∗, δ).

4. For any “neighborhood" B̃(x∗, δ), after long enough rounds, if xt ever enters B̃(x∗, δ), it
will be trapped inside B̃(x∗, δ) thereafter. Mathematically, the claim is that for any δ > 0,
∃T (δ), such that for any t ≥ T (δ), if xt ∈ B̃(x∗, δ), then xt̃ ∈ B̃(x∗, δ),∀t̃ ≥ t.

Putting all four elements above together, we note that the significance of Claim 3 is that, since the
iterate xt will enter B(x∗, ε) infinitely often (per Claim 2), xt must enter B̃(x∗, δ) infinitely often. It
therefore follows that, per Claim 4, starting from iteration t, xt will remain in B̃(x∗, δ). Since this is
true for any δ > 0, we have Fλ(x∗,yt)→ 0 as t→∞. Per Statement 1 in Lemma 4.2, this leads to
that ‖C(yt)− x∗‖ → 0 as t→∞, thereby establishing that xt = C(yt)→ x∗ as t→ 0.

In fact, the result generalizes straightforwardly to multiple Nash equilibria. The proof of the con-
vergence to the set case is line-by-line identical, provided we redefine, in a standard way, every
quantity that measures the distance between two points to the corresponding quantity that measures
the distance between a point and a set (by taking the infimum over the distances between the point
and a point in that set). We directly state the result below.

Theorem 4.4. Fix a game with continuous action spaces (N ,X =
∏N
i=1 Xi, {ui}Ni=1) that admits

X ∗ as a λ-variationally stable set (of necessarily all Nash equilibria), for some λ ∈ RN
++. Under As-

sumption 1, the OMD iterate xt given in Algorithm 1 satisfies limt→∞ dist(xt,X ∗) = 0, irrespective
of x0, where dist(·, ·) is the standard point-to-set distance function induced by the norm ‖ · ‖.

5 Delayed Mirror Descent: Asynchronous and Unbounded Delays

The synchronous and bounded delay assumption in Assumption 1 is fairly strong. In this section,
by a simple modification of OMD, we propose a new learning algorithm called Delayed Mirror
Descent (DMD), that allows the last-iterate convergence-to-Nash result to be generalized to cases
with arbitrary asynchronous delays among players as well as unbounded delay growth.

5.1 Delayed Mirror Descent in Games

The main idea for the modification is that when player i doesn’t receive any gradient on round t,
instead of not doing any gradient updates as in OMD, he uses the most recent set of gradients to
perform updates. More formally, define the most recent information set6 as:

G̃ti =
{
Gti , if Gti 6= ∅
G̃t−1i , if Gti = ∅.

Under this definition, Delayed Mirror Descent is (note that G̃ti is always non-empty here):

We only make the following assumption on the delays:

Assumption 2. For each player i, limt→∞
∑t
s=min G̃t

i
αs = 0.

This assumption essentially requires that no player’s delays grow too fast. Note that in particular,
players delays can be arbitrarily asynchronous. To make this assumption more concrete, we next give
two more explicit delay conditions that satisfy the main delay assumption. As made formal by the
following lemma, if the delays are bounded (but not necessarily synchronous), then Assumption 2 is
satisfied. Furthermore, by appropriately choosing the sequence αt, Assumption 2 can accommodate
delays that are unbounded and grow super-linearly.

6There may not be any gradient information in the first few rounds due to delays. Without loss of generality,
we can always start at the first round when there is non-empty gradient information, or equivalently, assume that
some gradient is available at t = 0.
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Algorithm 2 Delayed Mirror Descent on Games

1: Each player i chooses an initial y0i .
2: for t = 0, 1, 2, . . . do
3: for i = 1, . . . , N do
4: xti = argmaxxi∈Xi

{〈yti , xi〉 − hi(xi)}
5: yt+1

i = yti +
αt

|G̃t
i |

∑
s∈G̃t

i
vi(x

s)

6: end for
7: end for

Lemma 5.1. Let {dsi}∞s=1 be the delay sequences for player i.

1. If each player i’s delay is bounded (i.e. ∃d ∈ Z, dsi ≤ d,∀s), then Assumption 2 is satisfied
for any positive, non-increasing, not-summable-but-square-summable sequence {αt}.

2. There exists a positive, non-increasing, not-summable-but-square-summable sequence (e.g.
αt = 1

t log t log log t ) such that if dsi = O(s log s),∀i, then Assumption 2 is satisfied.

Proof: We will only prove Statement 2, the more interesting case. Take αt = 1
t log t log log t ,

which is obviously positive, non-increasing and square-summable. Since
∫ t
s=4

1
s log s log log sds =

log log log t→∞ as t→∞, αt is not summable. Next, let G̃ti be given and let t̃ be the most recent
round (up to and including t) such that G t̃i is not empty. This means:

G̃ti = G t̃i ,Gki = ∅,∀k ∈ (t̃, t]. (5.1)

Note that since the gradient at time t̃ will be available at time t̃+ dt̃i − 1, it follows that

t− t̃ ≤ dt̃i. (5.2)

Note that this implies t̃→∞ as t→∞, because otherwise, t̃ is bounded, leading to the right-side dt̃i
being bounded, which contradicts to the left-side diverging to infinity.

Since dsi = O(s log s), it follows that dsi ≤ Ks log s for some K > 0. Consequently, Equation 5.2
implies: t ≤ t̃+Kt̃ log t̃. Denote stmin = min G̃ti , Equation 5.1 implies that stmin = minG t̃i , thereby

yielding stmin + d
stmin
i − 1 = t̃. Therefore:

d
stmin
i = t̃− stmin + 1. (5.3)

Equation (5.3) implies that stmin → ∞ as t → ∞, because otherwise, the left-hand side of Equa-
tion (5.3) is bounded while the right-hand side goes to infinity (since t̃→∞ as t→∞ as established
earlier).

With the above notation, it follows that:

lim
t→∞

t∑
s=min G̃t

i

αs ≤ lim
t→∞

t∑
s=stmin

αs = lim
t→∞


t̃∑

s=stmin

αs +

t∑
s=t̃+1

αs

 (5.4)

≤ lim
t→∞

{
d
stmin
i αs

t
min + (t̃ log t̃)αt̃

}
(5.5)

= lim
t→∞

{
d
stmin
i

(stmin) log(s
t
min) log log(s

t
min)

+
Kt̃ log t̃

(t̃+ 1) log(t̃+ 1) log log(t̃+ 1)

}
(5.6)

≤ lim
t→∞

{
K(stmin) log(s

t
min)

(stmin) log(s
t
min) log log(s

t
min)

+
Kt̃ log t̃

(t̃+ 1) log(t̃+ 1) log log(t̃+ 1)

}
(5.7)

≤ lim
t→∞

{
K

log log(stmin)
+

K

log log(t̃+ 1)

}
= 0. (5.8)

�
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Remark 5.1. The proof to the second claim of Lemma 5.1 indicates that one can also easily obtain
slightly larger delay growth rates: O(t log t log log t), O(t log t log log t log log log t) and so on, by
choosing the corresponding step size sequences. Further, it is conceivable that one can identify
meaningfully larger delay growth rates that still satisfy Assumption 2, particularly under more
restrictions on the degree of delay asynchrony among the players. We leave that for future work.

5.2 Convergence of DMD to Nash Equilibrium

Theorem 5.2. Fix a game with continuous action spaces (N ,X =
∏N
i=1 Xi, {ui}Ni=1) that admits

x∗ as the unique Nash equilibrium that is λ-variationally stable. Under Assumption 2, the DMD
iterate xt given in Algorithm 2 converges to x∗, irrespective of the initial point x0.

The proof here uses a similar framework as the one in Remark 4.2, although the details are somewhat
different. Building on the notation and arguments given in Remark 4.2, we again outline three main
ingredients that together establish the result. Detailed proofs are omitted due to space limitation.

1. The gradient update in DMD can be rewritten as:

yt+1
i = yti +

αt

|G̃ti |

∑
s∈G̃t

i

vi(x
s) = yti + αtvi(x

t) + αt
∑
s∈G̃t

i

vi(x
s)− vi(xt)
|G̃ti |

.

By defining: bti =
∑
s∈G̃t

i

vi(x
s)−vi(xt)

|G̃t
i |

, we can write player i’s gradient update as:

yt+1
i = yti + αt(vi(x

t) + bti).

By bounding bti’s magnitude using the delay sequence, Assumption 2 allows us to establish
that bti has negligible impact over time. Mathematically, the claim is that limt→∞ ‖bti‖∗i = 0.

2. The joint DMD update can be written as:

xt = C(yt), (5.9)
yt+1 = yt + αt(v(xt) + bt). (5.10)

Here again using λ-Fenchel coupling as a “energy" function and leveraging the handle on bt

given by Claim 1, we show that for any ε > 0 the iterate xt will eventually enter B(x∗, ε)
and visit B(x∗, ε) infinitely often, no matter what the initial point x0 is. Furthermore, per
Claim 3 in Remark 4.2, B(x∗, ε) ⊂ B̃(x∗, δ). This implies that xt must enter B̃(x∗, δ)
infinitely often.

3. Again using λ-Fenchel coupling, we show that under DMD, for any “neighborhood"
B̃(x∗, δ), after long enough iterations, if xt ever enters B̃(x∗, δ), it will be trapped in-
side B̃(x∗, δ) thereafter.

Combining the above three elements, it follows that under DMD, starting from iteration t, xt will
remain in B̃(x∗, δ). Since this is true for any δ > 0, we have Fλ(x∗,yt) → 0 as t → ∞, thereby
establishing that xt = C(yt)→ x∗ as t→ 0.

Here again, the result generalizes straightforwardly to the multiple Nash equilibria case (with identical
proofs modulo using point-to-set distance metric). We omit the statement.

6 Conclusion

We examined a model of game-theoretic learning based on OMD with asynchronous and delayed
information. By focusing on games with λ- stable equilibria, we showed that the sequence of play
induced by OMD converges whenever the feedback delays faced by the players are synchronous and
bounded. Subsequently, to tackle fully decentralized, asynchronous environments with unbounded
feedback delays (possibly growing sublinearly in the game’s horizon), we showed that our conver-
gence result still holds under delayed mirror descent, a variant of vanilla OMD that leverages past
information even in rounds where no feedback is received. To further enhance the distributed aspect
of the algorithm, in future work we intend to focus on the case where the players’ gradient input is
not only delayed, but also subject to stochastic imperfections – or, taking this to its logical extreme,
when players only have observations of their in-game payoffs, and have no gradient information.
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