
A-NICE-MC: Adversarial Training for MCMC

Jiaming Song
Stanford University

tsong@cs.stanford.edu

Shengjia Zhao
Stanford University

zhaosj12@cs.stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Abstract

Existing Markov Chain Monte Carlo (MCMC) methods are either based on general-
purpose and domain-agnostic schemes, which can lead to slow convergence, or
problem-specific proposals hand-crafted by an expert. In this paper, we propose A-
NICE-MC, a novel method to automatically design efficient Markov chain kernels
tailored for a specific domain. First, we propose an efficient likelihood-free adver-
sarial training method to train a Markov chain and mimic a given data distribution.
Then, we leverage flexible volume preserving flows to obtain parametric kernels
for MCMC. Using a bootstrap approach, we show how to train efficient Markov
chains to sample from a prescribed posterior distribution by iteratively improving
the quality of both the model and the samples. Empirical results demonstrate that
A-NICE-MC combines the strong guarantees of MCMC with the expressiveness of
deep neural networks, and is able to significantly outperform competing methods
such as Hamiltonian Monte Carlo.

1 Introduction

Variational inference (VI) and Monte Carlo (MC) methods are two key approaches to deal with
complex probability distributions in machine learning. The former approximates an intractable
distribution by solving a variational optimization problem to minimize a divergence measure with
respect to some tractable family. The latter approximates a complex distribution using a small number
of typical states, obtained by sampling ancestrally from a proposal distribution or iteratively using a
suitable Markov chain (Markov Chain Monte Carlo, or MCMC).

Recent progress in deep learning has vastly advanced the field of variational inference. Notable
examples include black-box variational inference and variational autoencoders [1–3], which enabled
variational methods to benefit from the expressive power of deep neural networks, and adversarial
training [4, 5], which allowed the training of new families of implicit generative models with efficient
ancestral sampling. MCMC methods, on the other hand, have not benefited as much from these recent
advancements. Unlike variational approaches, MCMC methods are iterative in nature and do not
naturally lend themselves to the use of expressive function approximators [6, 7]. Even evaluating
an existing MCMC technique is often challenging, and natural performance metrics are intractable
to compute [8–11]. Defining an objective to improve the performance of MCMC that can be easily
optimized in practice over a large parameter space is itself a difficult problem [12, 13].

To address these limitations, we introduce A-NICE-MC, a new method for training flexible MCMC
kernels, e.g., parameterized using (deep) neural networks. Given a kernel, we view the resulting
Markov Chain as an implicit generative model, i.e., one where sampling is efficient but evaluating the
(marginal) likelihood is intractable. We then propose adversarial training as an effective, likelihood-
free method for training a Markov chain to match a target distribution. First, we show it can be used in
a learning setting to directly approximate an (empirical) data distribution. We then use the approach
to train a Markov Chain to sample efficiently from a model prescribed by an analytic expression (e.g.,
a Bayesian posterior distribution), the classic use case for MCMC techniques. We leverage flexible
volume preserving flow models [14] and a “bootstrap” technique to automatically design powerful

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

domain-specific proposals that combine the guarantees of MCMC and the expressiveness of neural
networks. Finally, we propose a method that decreases autocorrelation and increases the effective
sample size of the chain as training proceeds. We demonstrate that these trained operators are able to
significantly outperform traditional ones, such as Hamiltonian Monte Carlo, in various domains.

2 Notations and Problem Setup

A sequence of continuous random variables {xt}1t=0, xt 2 Rn, is drawn through the following
Markov chain:

x0 ⇠ ⇡0 xt+1 ⇠ T✓(xt+1|xt)

where T✓(·|x) is a time-homogeneous stochastic transition kernel parametrized by ✓ 2 ⇥ and ⇡0

is some initial distribution for x0. In particular, we assume that T✓ is defined through an implicit
generative model f✓(·|x, v), where v ⇠ p(v) is an auxiliary random variable, and f✓ is a deterministic
transformation (e.g., a neural network). Let ⇡t

✓ denote the distribution for xt. If the Markov chain is
both irreducible and positive recurrent, then it has an unique stationary distribution ⇡✓ =

lim

t!1 ⇡t
✓. We

assume that this is the case for all the parameters ✓ 2 ⇥.

Let pd(x) be a target distribution over x 2 Rn, e.g, a data distribution or an (intractable) posterior
distribution in a Bayesian inference setting. Our objective is to find a T✓ such that:

1. Low bias: The stationary distribution is close to the target distribution (minimize |⇡✓ � pd|).
2. Efficiency: {⇡t

✓}1t=0 converges quickly (minimize t such that |⇡t
✓ � pd| < �).

3. Low variance: Samples from one chain {xt}1t=0 should be as uncorrelated as possible
(minimize autocorrelation of {xt}1t=0).

We think of ⇡✓ as a stochastic generative model, which can be used to efficiently produce samples
with certain characteristics (specified by pd), allowing for efficient Monte Carlo estimates. We
consider two settings for specifying the target distribution. The first is a learning setting where we do
not have an analytic expression for pd(x) but we have access to typical samples {si}mi=1 ⇠ pd; in the
second case we have an analytic expression for pd(x), possibly up to a normalization constant, but no
access to samples. The two cases are discussed in Sections 3 and 4 respectively.

3 Adversarial Training for Markov Chains

Consider the setting where we have direct access to samples from pd(x). Assume that the transition
kernel T✓(xt+1|xt) is the following implicit generative model:

v ⇠ p(v) xt+1 = f✓(xt, v) (1)

Assuming a stationary distribution ⇡✓(x) exists, the value of ⇡✓(x) is typically intractable to compute.
The marginal distribution ⇡t

✓(x) at time t is also intractable, since it involves integration over all the
possible paths (of length t) to x. However, we can directly obtain samples from ⇡t

✓, which will be
close to ⇡✓ if t is large enough (assuming ergodicity). This aligns well with the idea of generative
adversarial networks (GANs), a likelihood free method which only requires samples from the model.

Generative Adversarial Network (GAN) [4] is a framework for training deep generative models using
a two player minimax game. A generator network G generates samples by transforming a noise
variable z ⇠ p(z) into G(z). A discriminator network D(x) is trained to distinguish between “fake”
samples from the generator and “real” samples from a given data distribution pd. Formally, this
defines the following objective (Wasserstein GAN, from [15])

min

G
max

D
V (D,G) = min

G
max

D
Ex⇠pd [D(x)] � Ez⇠p(z)[D(G(z))] (2)

In our setting, we could assume pd(x) is the empirical distribution from the samples, and choose
z ⇠ ⇡0 and let G✓(z) be the state of the Markov Chain after t steps, which is a good approximation
of ⇡✓ if t is large enough. However, optimization is difficult because we do not know a reasonable t
in advance, and the gradient updates are expensive due to backpropagation through the entire chain.

2

Figure 1: Visualizing samples of ⇡1 to ⇡50 (each row) from a model trained on the MNIST dataset.
Consecutive samples can be related in label (red box), inclination (green box) or width (blue box).

Figure 2: T✓(yt+1|yt). Figure 3: Samples of ⇡1 to ⇡30 from models (top: without shortcut connec-
tions; bottom: with shortcut connections) trained on the CelebA dataset.

Therefore, we propose a more efficient approximation, called Markov GAN (MGAN):

min

✓
max

D
Ex⇠pd [D(x)] � �Ex̄⇠⇡b

!
[D(x̄)] � (1 � �)Exd⇠pd,x̄⇠Tm

! (x̄|xd)[D(x̄)] (3)

where � 2 (0, 1), b 2 N+,m 2 N+ are hyperparameters, x̄ denotes “fake” samples from the
generator and Tm

✓ (x|xd) denotes the distribution of x when the transition kernel is applied m times,
starting from some “real” sample xd.

We use two types of samples from the generator for training, optimizing ✓ such that the samples will
fool the discriminator:

1. Samples obtained after b transitions x̄ ⇠ ⇡b
✓, starting from x0 ⇠ ⇡0.

2. Samples obtained after m transitions, starting from a data sample xd ⇠ pd.

Intuitively, the first condition encourages the Markov Chain to converge towards pd over relatively
short runs (of length b). The second condition enforces that pd is a fixed point for the transition
operator. 1 Instead of simulating the chain until convergence, which will be especially time-consuming
if the initial Markov chain takes many steps to mix, the generator would run only (b+m)/2 steps
on average. Empirically, we observe better training times by uniformly sampling b from [1, B] and
m from [1,M] respectively in each iteration, so we use B and M as the hyperparameters for our
experiments.

3.1 Example: Generative Model for Images

We experiment with a distribution pd over images, such as digits (MNIST) and faces (CelebA). In
the experiments, we parametrize f✓ to have an autoencoding structure, where the auxiliary variable
v ⇠ N (0, I) is directly added to the latent code of the network serving as a source of randomness:

z = encoder✓(xt) z0 = ReLU(z + �v) xt+1 = decoder✓(z0) (4)

where � is a hyperparameter we set to 0.1. While sampling is inexpensive, evaluating probabilities
according to T✓(·|xt) is generally intractable as it would require integration over v. The starting
distribution ⇡0 is a factored Gaussian distribution with mean and standard deviation being the mean
and standard deviation of the training set. We include all the details, which ares based on the DCGAN
[16] architecture, in Appendix E.1. All the models are trained with the gradient penalty objective for
Wasserstein GANs [17, 15], where � = 1/3, B = 4 and M = 3.

We visualize the samples generated from our trained Markov chain in Figures 1 and 3, where each
row shows consecutive samples from the same chain (we include more images in Appendix F) From

1We provide a more rigorous justification in Appendix B.

3

