
Multi-View Decision Processes:
The Helper-AI Problem

Christos Dimitrakakis David C. Parkes
Chalmers University of Technology & University of Lille Harvard University

christos.dimitrakakis@gmail.com parkes@eecs.harvard.edu

Goran Radanovic Paul Tylkin
Harvard University Harvard University

gradanovic@g.harvard.edu ptylkin@g.harvard.edu

Abstract

We consider a two-player sequential game in which agents have the same reward
function but may disagree on the transition probabilities of an underlying Marko-
vian model of the world. By committing to play a specific policy, the agent with
the correct model can steer the behavior of the other agent, and seek to improve
utility. We model this setting as a multi-view decision process, which we use to for-
mally analyze the positive effect of steering policies. Furthermore, we develop an
algorithm for computing the agents’ achievable joint policy, and we experimentally
show that it can lead to a large utility increase when the agents’ models diverge.

1 Introduction.

In the past decade, we have been witnessing the fulfillment of Licklider’s profound vision on AI
[Licklider, 1960]:

Man-computer symbiosis is an expected development in cooperative interaction
between men and electronic computers.

Needless to say, such a collaboration, between humans and AIs, is natural in many real-world AI
problems. As a motivating example, consider the case of autonomous vehicles, where a human driver
can override the AI driver if needed. With advances in AI, the human will benefit most if she allows
the AI agent to assume control and drive optimally. However, this might not be achievable—due to
human behavioral biases, such as over-weighting the importance of rare events, the human might
incorrectly override the AI. In the way, the misaligned models of the two drivers can lead to a decrease
in utility. In general, this problem may occur whenever two agents disagree on their view of reality,
even if they cooperate to achieve a common goal.

Formalizing this setting leads to a class of sequential multi-agent decision problems that extend
stochastic games. While in a stochastic game there is an underlying transition kernel to which all
agents (players) agree, the same is not necessarily true in the described scenario. Each agent may
have a different transition model. We focus on a leader-follower setting in which the leader commits
to a policy that the follower then best responds to, according to the follower’s model. Mapped to our
motivating example, this would mean that the AI driver is aware of human behavioral biases and
takes them into account when deciding how to drive.

To incorporate both sequential and stochastic aspects, we model this as a multi-view decision process.
Our multi-view decision process is based on an MDP model, with two, possibly different, transition
kernels. One of the agents, hereafter denoted as P1, is assumed to have the correct transition kernel
and is chosen to be the leader of the Stackelberg game—it commits to a policy that the second agent

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

(P2) best-responds to according to its own model. The agents have the same reward function, and
are in this sense cooperative. In an application setting, while the human (P2) may not be a planner,
we motivate our set-up as modeling the endpoint of an adaptive process that leads P2 to adopt a
best-response to the policy of P1.

Using the multi-view decision process, we analyze the effect of P2’s imperfect model on the achieved
utility. We place an upper bound on the utility loss due to this, and also provide a lower bound on
how much P1 gains by knowing P2’s model. One of our main analysis tools is the amount of
influence an agent has, i.e. how much its actions affect the transition probabilities, both according
to its own model, and according to the model of the other agent. We also develop an algorithm,
extending backwards induction for simultaneous-move sequential games [c.f. Bošanskỳ et al., 2016],
to compute a pair of policies that constitute a subgame perfect equilibrium.

In our experiments, we introduce intervention games as a way to construct example scenarios. In
an intervention game, an AI and a human share control of a process, and the human can intervene
to override the AI’s actions but suffers some cost in doing so. This allows us to derive a multi-view
process from any single-agent MDP. We consider two domains: first, the intervention game variant of
the shelter-food game introduced by Guo et al. [2013], as well as an autonomous driving problem
that we introduce here. Our results show that the proposed approach provides a large increase in
utility in each domain, thus overcoming the deficiencies of P2’s model, when the latter model is
known to the AI.

1.1 Related work

Environment design [Zhang et al., 2009, Zhang and Parkes, 2008] is a related problem, where a
first agent seeks to modulate the behavior of a second agent. However, the interaction between
agents occurs through finding a good modification of the second agent’s reward function: the AI
observes a human performing a task, and uses inverse reinforcement learning [Ng et al., 2000] to
estimate the human’s reward function. Then it can assign extrinsic reward to different states in order
to improve the human’s policy. A similar problem in single-agent reinforcement learning is how
to use internal rewards to improve the performance of a computationally-bounded, reinforcement
learning agent [Sorg et al., 2010]. For example, even a myopic agent can maximize expected utility
over a long time horizon if augmented with appropriately designed internal rewards. Our model
differs from these prior works, in that the interaction between a ‘helper agent’ and a second agent is
through taking actions in the same environment as the second agent.

In cooperative inverse reinforcement learning [Hadfield-Menell et al., 2016], an AI wants to cooperate
with a human but does not initially understand the task. While their framework allows for simultaneous
moves of the AI and the human, they only apply it to two-stage games, where the human demonstrates
a policy in the first stage and the AI imitates in the second stage. They show that the human should
take into account the AI’s best response when providing demonstrations, and develop an algorithm
for computing an appropriate demonstration policy. Our focus is on joint actions in a multi-period,
uncertain environment, rather than teaching. The model of Amir et al. [2016] is also different, in that
it considers the problem of how a teacher can optimally give advice to a sub-optimal learner, and
is thus focused on communication and adaptation rather than interaction through actions. Finally,
Elmalech et al. [2015] consider an advice-giving AI in single-shot games, where the human has an
incorrect model. They experimentally find that when the AI heuristically models human expectations
when giving advice, their performance is improved. We find that this also holds in our more general
setting.

We cannot use standard methods for computing optimal strategies in stochastic games [Bošanský
et al., 2015, Zinkevich et al., 2005], as the two agents have different models of the transitions between
states. On the other extreme, a very general formalism to represent agent beliefs, such as that of
Gal and Pfeffer [2008] is not well suited, because we have a Stackelberg setting and the problem of
the follower is standard. Our approach is to extend backwards induction [c.f. Bošanskỳ et al., 2016,
Sec. 4] to the case of misaligned models in order to obtain a subgame perfect policy for the AI.

Paper organization. Section 2 formalises the setting and its basic properties, and provides a lower
bound on the improvement P1 obtains when P2’s model is known. Section 3 introduces a backwards
induction algorithm, while Section 4 discusses the experimental results. We conclude with Section 5.
Finally, Appendix A collects all the proofs, additional technical material and experimental details.

2

2 The Setting and Basic Properties

We consider two-agent sequential stochastic game, with two agents P1,P2, who disagree on the
underlying model of the world, with the i-th agent’s model being µi, but share the same reward
function. More formally,

Definition 1 (Multi-view decision process (MVDP)). A multi-view decision process G =
〈S,A, σ1, σ2, µ1, µ2, ρ, γ〉 is a game between two agents, P1, P2, who share the same reward
function. The game has a state space S, with S , |S|, action space A =

∏
iAi, with A , |A|,

starting state distribution σ, transition kernel µ, reward function1 ρ : S → [0, 1], and discount factor
γ ∈ [0, 1].

At time t, the agents observe the state st, take a joint action at = (at,1, at,2) and receive reward
rt = ρ(st). However, the two agents may have a different view of the game, with agent i modelling
the transition probabilities of the process as µi(st+1 | st,at) for the probability of the next state
st+1 given the current state st and joint action at. Each agent’s actions are drawn from a policy πi,
which may be an arbitrary behavioral policy, fixed at the start of the game. For a given policy pair
π = (π1, π2), with πi ∈ Πi and Π ,

∏
i Πi, the respective payoff from the point of view of the i-th

agent ui : Π→ R is defined to be:

ui(π) = Eπµi
[U | s1 ∼ σ], U ,

T∑
t=t

γt−1ρ(st). (2.1)

For simplicity of presentation, we define reward rt = ρ(st) at time t, as a function of the state only,
although an extension to state-action reward functions is trivial. The reward, as well, as well as the
utility U (the discounted sum of rewards over time) are the same for both agents for a given sequence
of states. However, the payoff for agent i is their expected utility under the model i, and can be
different for each agent.

Any two-player stochastic game can be cast into an MVDP:

Lemma 1. Any two-player general-sum stochastic game (SG) can be reduced to a two-player MVDP
in polynomial time and space.

The proof of Lemma 1 is in Appendix A.

2.1 Stackelberg setting

We consider optimal policies from the point of view of P1, who is trying to assist a misguided
P2. For simplicity, we restrict our attention to the Stackelberg setting, i.e. where P1 commits to
a specific policy π1 at the start of the game. This simplifies the problem for P2, who can play the
optimal response according to the agent’s model of the world. We begin by defining the (potentially
unachievable) optimal joint policy, where both policies are chosen to maximise the same utility
function:

Definition 2 (Optimal joint policy). A joint policy π̄ is optimal under σ and µ1 iff u1(π̄) ≥ u1(π),
∀π ∈ Π. We furthermore use ū1 , u1(π̄) to refer to the value of the jointly optimal policy.

This value may not be achievable, even though the two agents share a reward function, as the second
agent’s model does not agree with the first agent’s, and so their expected utilities are different. To
model this, we define the Stackelberg utility of policy π1 for the first agent as:

uSt
1 (π1) , u1(π1, π

B
2 (π1)), πB

2 (π1) = arg max
π2∈Π2

u2(π1, π2), (2.2)

i.e. the value of the policy when the second agent best responds to agent one’s policy under the
second agent’s model.2 The following defines the highest utility that P1 can achieve.

1For simplicity we consider state-dependent rewards bounded in [0, 1]. Our results are easily generalizable to
ρ : S ×A → [0, 1], through scaling by a factor of B and shifting by a factor of bm for any reward function in
[b, b+B].

2If there is no unique best response, we define the utility in terms of the worst-case, best response.

3

Definition 3 (Optimal policy). The optimal policy for P1, denoted by π∗1 , is the one maximizing the
Stackelberg utility, i.e. uSt

1 (π∗1) ≥ uSt
1 (π1), π1 ∈ Π1, and we use u∗1 , uSt(π∗1) to refer to the value of

this optimal policy.

In the remainder of the technical discussion, we will characterize P1 policies in terms of how much
worse they are than the jointly optimal policy, as well as how much better they can be than the policy
that blithely assumes that P2 shares the same model.

We start with some observations about the nature of the game when one agent fixes its policy, and we
argue how the difference between the models of the two agents affects the utility functions. We then
combine this with a definition of influence to obtain bounds on the loss due to the difference in the
models.

When agent i fixes a Markov policy πi, the game is an MDP for agent j. However, if agent i’s policy
is not Markovian the resulting game is not an MDP on the original state space. We show that if P1

acts as if P2 has the correct transition kernel, then the resulting joint policy has value bounded by
the L1 norm between the true kernel and agent 2’s actual kernel. We begin by establishing a simple
inequality to show that knowledge of the model µ2 is beneficial for P1.
Lemma 2. For any MVDP, the utility of the jointly optimal policy is greater than that of the
(achievable) optimal policy, which is in turn greater than that of the policy that assumes that µ2 = µ1.

u1(π̄) ≥ uSt
1 (π∗1) ≥ uSt

1 (π̄1) (2.3)

Proof. The first inequality follows from the definition of the jointly optimal policy and uSt
1 . For the

second inequality, note that the middle term is a maximizer for the right-hand side.

Consequently, P1 must be able to do (weakly) better if it knows µ2 compared to if it just assumes
that µ2 = µ1. However, this does not tell us how much (if any) improvement we can obtain. Our
idea is to see what policy π1 we would need to play in order to make P2 play π̄2, and measure the
distance of this policy from π̄1. To obtain a useful bound, we need to have a measure on how much
P1 must deviate from π̄1 in order for P2 to play π̄2. For this, we define the notion of influence. This
will capture the amount by which a agent i can affect the game in the eyes of agent j. In particular,
it is the maximal amount by which an agent i can affect the transition distribution of agent j by
changing i’s action at each state s:
Definition 4 (Influence). The influence of agent i on the transition distribution of model µj is defined
as the vector:

Ii,j(s) , max
at,−i

max
at,ia′t,i

‖µj(· | st = s, at,i, at,−i)− µj(· | st = s, a′t,i, at,−i)‖1, (2.4)

where the norm is over the difference in next-state distributions st+1 for the two models.

Thus, I1,1 describes the actual influence of P1 on the transition probabilities, while I1,2 describes
the perceived influence of P1 by P2. We will use influence to define an µ-dependent distance
between policies, capturing the effect of an altered policy on the model:
Definition 5 (Policy distance). The distance between policies πi, π′i under model µj is:

‖πi − π′i‖µj
, max

s∈S
‖πi(· | s)− π′i(· | s)‖1Ii,j(s). (2.5)

These two definitions result in the following Lipschitz condition on the utility function, whose proof
can be found in Appendix A.
Lemma 3. For any fixed π2, and any π1, π

′
1: ui(π1, π2) ≤ ui(π′1, π2) + ‖π1 − π′1‖µi

γ
(1−γ)2 , with

a symmetric result holding for any fixed policy π1, and any pair π2, π
′
2.

Lemma 3 bounds the change in utility due to a change in policy by P1 with respect to i’s payoff. As
shall be seen in the next section, it allows us to analyze how close the utility we can achieve comes
to that of the jointly optimal policy, and how much can be gained by not naively assuming that the
model of P2 is the same.

4

2.2 Optimality

In this section, we illuminate the relationship between different types of policies. First, we show that
if P1 simply assumes µ2 = µ1, it only suffers a bounded loss relative to the jointly optimal policy.
Subsequently, we prove that knowing µ2 allows P1 to find an improved policy.

Lemma 4. Consider the optimal policy π̄1 for the modified game Ĝ = 〈S,A, σ1, σ1, µ1, µ1, ρ, γ〉
where P2’s model is correct. Then π̄1 is Markov and achieves utility ū in Ĝ, while its utility in G is:

uSt
1 (π̄1) ≥ ū− 2‖µ1 − µ2‖1

(1− γ)2
, ‖µ1 − µ2‖1 , max

st,at

‖µ1(st+1 | st,at)− µ2(st+1 | st,at)‖1.

As this bound depends on the maximum between all state action pairs, we refine it in terms of the
influence of each agent’s actions. This also allows us to measure the loss in terms of the difference in
P2’s actual and desired response, rather than the difference between the two models, which can be
much larger.

Corollary 1. If P2’s best response to π̄1 is πB
2(π̄1) 6= π̄2, then our loss relative to the jointly optimal

policy is bounded by u1(π̄1, π̄2)− u1(π̄1, π
B
2(π̄1)) ≤

∥∥πB
2(π̄1)− π̄2

∥∥
µ1

γ
(1−γ)2 .

Proof. This follows from Lemma 3 by fixing π̄1 for the policy pairs πB
2 (π̄1), π̄2 under µ1.

While the previous corollary gave us an upper bound on the loss we incur if we ignore the beliefs of
P2, we can bound the loss of the optimal Stackelberg policy in the same way:

Corollary 2. The difference between the optimal utility u1(π̄1, π̄2) and the optimal Stackleberg utility
uSt

1 (π∗1) is bounded by u1(π̄1, π̄2)− uSt
1 (π∗1) ≤

∥∥πB
2(π̄1)− π̄2

∥∥
µ1

γ
(1−γ)2 .

Proof. The result follows directly from Corollary 1 and Lemma 2.

This bound is not very informative by itself, as it does not suggest an advantage for the optimal
Stackelberg policy. Instead, we can use Lemma 3 to lower bound the increase in utility obtained
relative to just playing the optimistic policy π̄1. We start by observing that when P2 responds with
some π̂2 to π̄1, P1 could improve upon this by playing π̂1 = πB

1 (π̂2), the best response of to π̂2, if
P1 could somehow force P2 to stick to π̂2. We can define

∆ , u1(π̂1, π̂2)− u1(π̄1, π̂2), (2.6)

to be the potential advantage from switching to π̂1. Theorem 1 characterizes how close to this
advantage P1 can get by playing a stochastic policy πα1 (a | s) , απ̄1(a | s) + (1 − α)π̂1(a | s),
while ensuring that P2 sticks to π̂2.

Theorem 1 (A sufficient condition for an advantage over the naive policy). Let π̂2 = πB
2(π̄1) be the

response of P2 to the optimistic policy π̄1 and assume ∆ > 0. Then we can obtain an advantage of
at least:

∆−
γ ‖π̄1 − π̂1‖µ1

(1− γ)2
+
δ

2

‖π̄1 − π̂1‖µ1

‖π̄1 − π̂1‖µ2

(2.7)

where δ , u2(π̄1, π̂2) − maxπ2 6=π̂2 u2(π̄1, π2) is the gap between π̂2 and all other deterministic
policies of P2 when P1 plays π̄1.

We have shown that knowledge of µ2 allows P1 to obtain improved policies compared to simply
assuming µ2 = µ1, and that this improvement depends on both the real and perceived effects of a
change in P1’s policy. In the next section we develop an efficient dynamic programming algorithm
for finding a good policy for P1.

5

3 Algorithms for the Stackelberg Setting

In the Stackelberg setting, we assume that P1 commits to a policy π1, and this policy is observed
by P2. Because of this, it is sufficient for P2 to use a Markov policy, and this can be calculated in
polynomial time in the number of states and actions.

However, there is a polynomial reduction from stochastic games to MVDPs (Lemma 1), and since
Letchford et al. [2012] show that computing optimal commitment strategies is NP-hard, then the
planning problem for MVDPs is also NP-hard. Another difficulty that occurs is that dominating
policies in the MDP sense may not exist in MVDPs.

Definition 6 (Dominating policies). A dominating policy π satisfies V π(s) ≥ V π
′
(s),∀s ∈ S,

where V π(s) = Eπ(u | s0 = s).

Dominating policies have the nice property that they are also optimal for any starting distribution σ.
However, dominating, stationary Markov polices need not exist in our setting.
Theorem 2. A dominating, stationary Markov policy may not exist in a given MVDP.

The proof of this theorem is given by a counterexample in Appendix A, where the optimal policy
depends on the history of previously visited states.

In the trivial case when µ1 = µ2, the problem can be reduced to a Markov decision process, which
can be solved in O(S2A) [Mansour and Singh, 1999, Littman et al., 1995]. Generally, however, the
commitment by P1 creates new dependencies that render the problem inherently non-Markovian
with respect to the state st and thus harder to solve. In particular, even though the dynamics of the
environment are Markovian with respect to the state st, the MVDP only becomes Markov in the
Stackelberg setting with respect to the hyper-state ηt = (st, πt:T,1) where πt:T,1 is the commitment
by P1 for steps t, . . . , T . To see that the game is non-Markovian, we only need to consider a single
transition from st to st+1. P2’s action depends not only on the action at,1 of P1, but also on the
expected utility the agent will obtain in the future, which in turn depends on πt:T,1. Consequently,
state st is not a sufficient statistic for the Stackelberg game.

3.1 Backwards Induction

These difficulties aside, we now describe a backwards induction algorithm for approximately solving
MVDPs. The algorithm can be seen as a generalization of the backwards induction algorithm for
simultaneous-move stochastic games [c.f. Bošanskỳ et al., 2016] to the case of disagreement on the
transition distribution.

In our setting, at stage t of the interaction, P2 has observed the current state st and also knows the
commitment of P1 for all future periods. P2 now chooses the action

a∗t,2(π1) ∈ arg max
at,2

ρ(st) + γ
∑
at,1

π1(at,1 | st)
∑
st+1

µ2(st+1|st, at,1, at,2) · V2,t+1(st+1). (3.1)

Thus, for every state, there is a well-defined continuation for P2. Now, P1 needs to choose an action.
This can be done easily, since we know P2’s continuation, and so we can define a value for each
state-action-action triplet for either agent:

Qi,t(st, at,1, at,2) = ρ(s) + γ
∑
st+1

µi(st+1|st, at,1, at,2) · Vi,t+1(st+1).

As the agents act simultaneously, the policy of P1 needs to be stochastic. The local optimization
problem can be formed as a set of linear programs (LPs), one for each action a2 ∈ A2:

max
π1

∑
a1

π1(a1|s) ·Qt,1(s, a1, a2)

s.t. ∀â2 :
∑
a1

π1(a1|s) ·Qt,2(s, a1, a2) ≥
∑
a1

π(a1) ·Qt,2(s, a1, â2),

∀â1 : 0 ≤ π1(â1|s) ≤ 1, and
∑
a1

π1(a1|s) = 1.

6

Each LP results in the best possible policy at time t, such that we force P2 to play a2. From these,
we select the best one. At the end, the algorithm, given the transitions (µ1, µ2), and the time horizon
T , returns an approximately optimal joint policy, (π∗1 , π

∗
2) for the MVDP. The complete pseudocode

is given in Appendix C, algorithm 1.

As this solves a finite horizon problem, the policy is inherently non-stationary. In addition, because
there is no guarantee that there is a dominating policy, we may never obtain a stationary policy (see
below). However, we can extract a stationary policy from the policies played at individual time steps
t, and select the one with the highest expected utility. We can also obtain a version of the algorithm
that attains a deterministic policy, by replacing the linear program with a maximization over P1’s
actions.

Optimality. The policies obtained using this algorithm are subgame perfect, up to the time horizon
adopted for backward induction; i.e. the continuation policies are optimal (considering the possibly
incorrect transition kernel of P2) off the equilibrium path. As a dominating Markov policy may not
exist, the algorithm may not converge to a stationary policy in the infinite horizon discounted setting,
similarly to the cyclic equilibria examined by Zinkevich et al. [2005]. This is because the commitment
of P1 affects the current action of P2, and so the effective transition matrix for P1. More precisely,
the transition actually depends on the future joint policy πn+1:T , because this determines the value
Q2,t and so the policy of P2. Thus, the Bellman optimality condition does not hold, as the optimal
continuation may depend on previous decisions.

4 Experiments

We focus on a natural subclass of multi-view decision processes, which we call intervention games.
Therein, a human and an AI have joint control of a system, and the human can override the AI’s
actions at a cost. As an example, consider semi-autonomous driving, where the human always has an
option to override the AI’s decisions. The cost represents the additional effort of human intervention;
if there was no cost, the human may always prefer to assume manual control and ignore the AI.
Definition 7 (c-intervention game). A MVDP is a c-intervention game if all of P2’s actions override
those of P1, apart from the null action a0 ∈ A2, which has no effect.

µ1(st+1 | st, at,1, at,2) = µ1(st+1 | st, a′t,1, at,2) ∀at,1, a′t,1 ∈ A, at,2 6= a0. (4.1)

In addition, the agents subtract a cost c(s) > 0 from the reward rt = ρ(st) whenever P2 takes an
action other than a0.

Any MDP with action space A′ and reward function ρ′ : S → [0, 1] can be converted into a c-
intervention game, and modeled as an MVDP, with action space A = A1 × A2, where A1 = A′,
A2 = A1 ∪

{
a0
}

, a1 ∈ A1, a2 ∈ A2, a = (a1, a2) ∈ A,

rMIN = min
s′∈S, a′2∈A2

ρ′(s′)− c(s′), (4.2)

rMAX = max
s′∈S, a′2∈A2

ρ′(s′) (4.3)

and reward function3 ρ : S ×A → [0, 1], with

ρ(s, a) =
ρ′(s)− c(s) I

{
a2 6= a0

}
− rMIN

rMAX − rMIN
. (4.4)

The reward function in the MVDP is defined so that it also has the range [0, 1].

Algorithms and scenarios. We consider the main scenario, as well as three variant scenarios, with
different assumptions about the AI’s model. For the main scenario, the human has an incorrect model
of the world, which the AI knows. For this, we consider three types of AI policies:

PURE: The AI only uses deterministic Markov policies.
3Note that although our original definition used a state-only reward function, we are using a state-action

reward function.

7

(a) Multilane Highway

0 10 20 30 40 50

human error (factor)

-15

-10

-5

0

5

10

15

20

u
ti
lit

y

opt

pure

m ixed

naive

hum an

stat

(b) Highway: Error

0.0 0.05 0.1 0.15 0.2

cost (safety+intervention)

-15

-10

-5

0

5

10

15

20

25

u
ti
lit

y

opt

pure

m ixed

naive

hum an

stat

(c) Highway: Cost

(d) Food and Shelter

0.0 0.1 0.2 0.3 0.4 0.5

human error (skewness)

-2

-1

0

1

2

3

4

u
ti
lit

y

opt

pure

m ixed

naive

hum an

stat

(e) Food and Shelter: Error

0.0 0.1 0.2 0.3 0.4 0.5

cost (intervention)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

u
ti
lit

y

opt

pure

m ixed

naive

hum an

stat

(f) Food and Shelter: Cost

Figure 1: Illustrations and experimental results for the ‘multilane highway’ and ‘food and shelter’
domains. Plots (b,e) show the effect of varying the error in the human’s transition kernel with fixed
intervention cost. Plots (c,f) show the effect of varying the intervention cost for a fixed error in the
human’s transition kernel.

MIXED: The AI may use stochastic Markov policies.
STAT: As above, but use the best instantaneous deterministic policy of the first 25 time-steps found

in PURE as a stationary Markov policy (running for the same time horizon as PURE).

We also have three variant scenarios of AI and human behaviour.

OPT: Both the AI and human have the correct model of the world.
NAIVE: The AI assumes that the human’s model is correct.
HUMAN: Both agents use the incorrect human model to take actions. It is equivalent to the human

having full control without any intervention cost.

In all of these, the AI uses a MIXED policy. We consider two simulated problem domains in which
to evaluate our methods. The first is a multilane highway scenario, where the human and AI have
shared control of a car, and the second is a food and shelter domain where they must collect food
and maintain a shelter. In all cases, we use a finite time horizon of 100 steps and a discount factor of
γ = 0.95.

Multilane Highway. In this domain, a car is under joint control of an AI agent and a human, with
the human able to override the AI’s actions at any time. There are multiple lanes in a highway,
with varying levels of risk and speed (faster lanes are more risky). Within each lane, there is some
probability of having an accident. However, the human overestimates this probability, and so wants
to travel in a slower lane than is optimal. We denote a starting state by A, a destination state by B,
and, for lane i, intermediate states Ci1, ..., CiJ , where J is the number of intermediate states in a
lane, and an accident state D. See Figure 1(a) for an illustration of the domain, and for the simulation
results. In the plots, the error parameter represents a factor by which the human is wrong in assessing
the accident probability (assumed to be small), while the cost parameter determines both the cost of
safety (slow driving) of different lanes as well as the cost of human intervening on these lanes. The
latter is because our experimental model couples the cost of intervention with the safety cost. The
rewards range from −10 to 10. More details are provided in the Appendix (Section B).

8

Food and Shelter Domain. The food and shelter domain [Guo et al., 2013] involves an agent
simultaneously trying to find randomly placed food (in one of the top five locations) while maintaining
a shelter. With positive probability at each time step, the shelter can collapse if it is not maintained.
There is a negative reward for the shelter collapsing and positive reward for finding food (food
reappears whenever it is found). In order to exercise the abilities of our modeling, we make the
original setting more complex by increasing the size of the grid to 5× 5 and allowing diagonal moves.
For our MVDP setting, we give the AI the correct model but assume the human overestimates the
probabilities. Furthermore, the human believes that diagonal movements are more prone to error.
See Figure 1(d) for an illustration of the domain, and for the simulation results. In the plots, the
error parameter determines how skewed the human’s belief about the error is towards the uniform
distribution, while the cost parameter determines the cost of intervention. The rewards range from
−1 to 1. More details are provided in the Appendix (Section B).

Results. In the simulations, when we change the error parameter, we keep the cost parameter
constant (0.15 for the multilane highway domain and 0.1 for the food and shelter domain), and vice
versa, when we change the cost, we keep the error constant (25 for the multilane highway domain
and 0.25 for the food and shelter domain). Overall, the results show that PURE, MIXED and STAT
perform considerably better than NAIVE and HUMAN. Furthermore, for low costs, HUMAN is better
than NAIVE. The reason is that in NAIVE the human agent overrides the AI, which is more costly than
having the AI perform the same policy (as it happens to be for HUMAN). Therefore, simply assuming
that the human has the correct model does not only lead to a larger error than knowing the human’s
model, but it can also be worse than simply adopting the human’s erroneous model when making
decisions.

As the cost of intervention increases, the utilities become closer to the jointly optimal one (OPT
scenario), with the exception of the utility for scenario HUMAN. This is not surprising since the
intervention cost has an important tempering effect—the human is less likely to take over the control
if interventions are costly. When the human error is small, the utility approaches that of the jointly
optimal policy. Clearly, the increasing error leads to larger deviations from the the optimal utility.

Out of the three algorithms (PURE, MIXED and STAT), MIXED obtains a slightly better performance
and shows the additional benefit from allowing for stochastic polices. PURE and STAT have quite
similar performance, which indicates that in most of the cases the backwards induction algorithm
converges to a stationary policy.

5 Conclusion

We have introduced the framework of multi-view decision processes to model value-alignment
problems in human-AI collaboration. In this problem, an AI and a human act in the same environment,
and share the same reward function, but the human may have an incorrect world model. We analyze
the effect of knowledge of the human’s world model on the policy selected by the AI.

More precisely, we developed a dynamic programming algorithm, and gave simulation results to
demonstrate that an AI with this algorithm can adopt a useful policy in simple environments and
even when the human adopts an incorrect model. This is important for modern applications involving
the close cooperation between humans and AI such as home robots or automated vehicles, where
the human can choose to intervene but may do so erroneously. Although backwards induction is
efficient for discrete state and action spaces, it cannot usefully be applied to the continuous case. We
would like to develop stochastic gradient algorithms for this case. More generally, we see a number
of immediate extensions to MVDP: estimating the human’s world model, studying a setting in which
human is learning to respond to the actions of the AI, and moving away from Stackelberg to the case
of no commitment.

Acknowledgements. The research has received funding from: the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement 608743, the Swedish national science foundation (VR), the Future of Life Institute,
the SEAS TomKat fund, and a SNSF Early Postdoc Mobility fellowship.

9

References
Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara Grosz. Interactive teaching strategies for agent

training. In IJCAI 2016, 2016.

Branislav Bošanský, Simina Brânzei, Kristoffer Arnsfelt Hansen, Peter Bro Miltersen, and
Troels Bjerre Sørensen. Computation of Stackelberg Equilibria of Finite Sequential Games.
2015.

Branislav Bošanskỳ, Viliam Lisỳ, Marc Lanctot, Jiří Čermák, and Mark HM Winands. Algorithms
for computing strategies in two-player simultaneous move games. Artificial Intelligence, 237:1–40,
2016.

Avshalom Elmalech, David Sarne, Avi Rosenfeld, and Eden Shalom Erez. When suboptimal rules.
In AAAI, pages 1313–1319, 2015.

Eyal Even-Dar and Yishai Mansour. Approximate equivalence of markov decision processes. In
Learning Theory and Kernel Machines. COLT/Kernel 2003, Lecture notes in Computer science,
pages 581–594, Washington, DC, USA, 2003. Springer.

Ya’akov Gal and Avi Pfeffer. Networks of influence diagrams: A formalism for representing agents’
beliefs and decision-making processes. Journal of Artificial Intelligence Research, 33(1):109–147,
2008.

Xiaoxiao Guo, Satinder Singh, and Richard L Lewis. Reward mapping for transfer in long-lived
agents. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 26, pages 2130–2138. 2013.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. Cooperative inverse
reinforcement learning, 2016.

Joshua Letchford, Liam MacDermed, Vincent Conitzer, Ronald Parr, and Charles L. Isbell. Computing
optimal strategies to commit to in stochastic games. In Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence, AAAI’12, 2012.

J. C. R. Licklider. Man-computer symbiosis. RE Transactions on Human Factors in Electronics, 1:
4–11, 1960.

Michael L Littman, Thomas L Dean, and Leslie Pack Kaelbling. On the complexity of solving
markov decision problems. In Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence, pages 394–402. Morgan Kaufmann Publishers Inc., 1995.

Yishay Mansour and Satinder Singh. On the complexity of policy iteration. In Proceedings of the
Fifteenth conference on Uncertainty in artificial intelligence, pages 401–408. Morgan Kaufmann
Publishers Inc., 1999.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In ICML, pages
663–670, 2000.

Jonathan Sorg, Satinder P Singh, and Richard L Lewis. Internal rewards mitigate agent boundedness.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages
1007–1014, 2010.

Haoqi Zhang and David C. Parkes. Value-based policy teaching with active indirect elicitation. In
Proc. 23rd AAAI Conference on Artificial Intelligence (AAAI’08), page 208–214, Chicago, IL, July
2008.

Haoqi Zhang, David C. Parkes, and Yiling Chen. Policy teaching through reward function learning.
In 10th ACM Electronic Commerce Conference (EC’09), page 295–304, 2009.

Martin Zinkevich, Amy Greenwald, and Michael Littman. Cyclic equilibria in markov games. In
Advances in Neural Information Processing Systems, 2005.

10

A Collected Proofs

Proof of Lemma 1. Let us start with an SG with transition kernel µSG and reward functions{
ρ1
SG, ρ

2
SG

}
on some state space SSG so that the reward of Pi at some state s is ρiSG(s). W.l.o.g.,

suppose that the states of SSG are enumerated as 0, ..., |SSG|−1. Now, let us define a new state space
SMVDP whose cardinality is |SMVDP | = 2|SSG|, and let the states of SMVDP be enumerated as 0,
..., |SMVDP | − 1. We define a new MVDP on state space SMVDP , with the same action space as
SG, but with the set of transition kernels

{
µ1
MVDP , µ

2
MVDP

}
defined as:

µ1
MVDP (k1|a1, a2, k2) =

{
µSG(k1/2|a1, a2, bk2/2c) if k1 mod 2 = 0

0 if k1 mod 2 = 1
,

µ2
MVDP (k1|a1, a2, k2) =

{
0 if k1 mod 2 = 0

µSG((k1 − 1)/2|a1, a2, bk2/2c) if k1 mod 2 = 1
,

a reward function ρMVDP defined as:

ρMVDP (k) =

{
ρ1
SG(k/2) if k mod 2 = 0

ρ2
SG((k − 1)/2) if k mod 2 = 1

,

and starting state distributions
{
σ1
MVDP , σ

2
MVDP

}
defined as:

σ1
MVDP (k1) =

{
σSG(k1/2) if k1 mod 2 = 0

0 if k1 mod 2 = 1
,

σ2
MVDP (k1) =

{
0 if k1 mod 2 = 0

σSG((k1 − 1)/2) if k1 mod 2 = 1
.

In other words, states in the original SG are mirrored into two different hyperstates: one for P1

and one for P2, and the reward of each state is equal to the reward of the corresponding agent in
the original state, while each agent believes that they can only transition to their own hyper-states,
with transition probabilities remaining identical to those in SG. This implies that for any pair of
policies (π1, π2), the resulting expected utilities u1(π1, π2) and u2(π1, π2) will be the same for SG
and MVDP. Therefore, the presented transformation defines a polynomial time and space reduction
from an SG to an MVDP.

To prove Lemma 3 we need the following remark that relates the distance between policy to the MDP
distance. All the related exposition is with respect to stationary policies. This is sufficient, since
when the one agent has a stationary policy, the other’s optimal response is always stationary for the
undiscounted infinite horizon setting.

Lemma 5. For any two policies π1, π
′
1 of P1, the resulting transition probability matrices

Pπ1,π2
µ (s′|s) ,

∑
a1,a2

µ(s′|s, a1, a2) · π1(a1|s) · π2(a2|s):

‖π1 − π′1‖µ ≥ ‖P
π1,π2
µ − Pπ

′
1,π2

µ ‖1 ∀π2. (A.1)

Proof. In the following we use π = (π1, π2) and π′ = (π′1, π2) to denote the two different joint
policies that arise. We also compactly denote the two resulting transition matrices by p , Pπ1,π2

i and
p′ , P

π′1,π2

i . The proof follows by elementary manipulations and norm inequalities:

11

‖p− p′‖1 = max
s
‖p(·|s)− p′(·|s)‖1

= max
s
‖
∑
a

µi(·|s,a)π(a|s)− µi(·|s,a)π′(a|s)‖1

= max
s
‖
∑
a

µi(·|s,a)[π(a|s)− π′(a|s)]‖1

= max
s
‖

∑
a1 6=a′1,a2|a,(a1,a2)

µi(·|s,a)[π(a|s)− π′(a|s)] +
∑

a2|a′,(a′1,a2)

µi(·|s,a′)[π(a′|s)− π′(a′|s)]‖1

= max
s
‖

∑
a1 6=a′1,a2

µi(·|s,a)[π(a|s)− π′(a|s)]

+
∑
a2

µi(·|s,a′)[π2(a2|s) · (1−
∑
a1 6=a′1

π1(a1|s))− π2(a2|s) · (1−
∑
a1 6=a′1

π′1(a1|s))]‖1

= max
s
‖

∑
a1 6=a′1,a2

µi(·|s,a)[π(a|s)− π′(a|s)]−
∑
a2

µi(·|s,a′)[
∑
a1 6=a′1

π(a|s)−
∑
a1 6=a′1

π′(a|s)]‖1

= max
s
‖

∑
a1 6=a′1,a2

[µi(·|s,a)− µi(·|s,a′)][π(a|s)− π′(a|s)]‖1

≤ max
s

∑
a1 6=a′1,a2

‖[µi(·|s,a)− µi(·|s,a′)][π(a|s)− π′(a|s)]‖1

= max
s

∑
a1 6=a′1,a2

‖µi(·|s,a)− µi(·|s,a′)‖1‖π(a|s)− π′(a|s)‖1

≤ max
s
I1,i(s)

∑
a1 6=a′1,a2

‖π(a|s)− π′(a|s)‖1

≤ max
s
I1,i(s)

∑
a1,a2

‖π(a|s)− π′(a|s)‖1

= max
s
I1,i(s)

∑
a1,a2

‖[π1(a1|s)− π′1(a1|s)] · π2(a2|s)‖1

= max
s
I1,i(s)

∑
a1,a2

‖[π1(a1|s)− π′1(a1|s)]‖1 · π2(a2|s)

= max
s
I1,i(s)

∑
a1

‖π1(a1|s)− π′1(a1|s)‖1

= max
s
I1,i(s)‖π1(.|s)− π′1(.|s)‖1

= ‖π1 − π′1‖µi

Proof of Lemma 3. For a fixed stationary policy π2 of P2, the game is an MDP for P1. Let us
define

v , V π1,π2

i , v′ , V
π′1,π2

i , p , Pπ1,π2

i , p′ , P
π′1,π2

i ,

so that v, v′ ∈ R|S| are column vectors representing the unique value function for the given policy
pairs, and p, p′ ∈ R|S|×|S| are row-stochastic matrices. Although we can’t directly use the results of

12

Even-Dar and Mansour [2003], we can apply norm inequalities to obtain:

‖v − v′‖∞ ≤ ‖v − v′‖1 (norm property)

= γ‖pv − p′v′‖1 (by definition)

= γ‖pv − p′v + p′v − p′v′‖1 (addition of zero)

≤ γ‖pv − p′v‖1 + γ‖p′v − p′v′‖1 (triangle inequality)

= γ‖(p− p′)v‖1 + γ‖p′(v − v′)‖1 (linear algebra)

≤ γ‖p− p′‖1‖v‖∞ + γ‖p′‖1‖v − v′‖∞ (Hölder inequality)

≤ γ ‖π1 − π′1‖µi
(1− γ)−1 + γ‖v − v′‖∞,

In the above, we define the matrix norm ‖p‖1 , maxs ‖p(·|s)‖1 to be the row-wise induced matrix
norm, where the last part is due to equation (A.1), the boundedness of the rewards in [0, 1], and the
fact that p′ is a row-stochastic matrix so ‖p′‖1 = 1. Rearranging, we obtain

‖v − v′‖∞ ≤ γ ‖π1 − π′1‖µi
(1− γ)−2. (A.2)

To conclude, note that ui(π1, π2) = σ>v and ui(π
′
1, π2) = σ>v′. The symmetrical result is

obvious.

Proof of Lemma 4. Let π̄ = (π̄1, π̄2) be the optimal joint policy for Ĝ. Then π̄i is also the optimal
response to π̄j , as the game is fully co-operative. If P1 fixes π̄1, it selects a specific MDP for P2.
In G, agent P2 response will only be optimal according to its own model µ2. However, for any
fixed Markov policy of one agent, the original (G) and modified (Ĝ) game are ε-equivalent MDPs for
the other agent, with respect to L1 [Even-Dar and Mansour, 2003, Def. 2], where ε = ‖µ1 − µ2‖1.
By applying Even-Dar and Mansour [2003, Lemma 4], which states that the optimal policy in the
approximate MDP induces a 2ε(1− γ)−2-optimal policy in the true MDP, we obtain the claim. In
particular, the cited Lemma 4 states that for ε-equivalent MDPs, the optimal policy for one MDP is
2ε(1− γ)−1 · Vmax-optimal for the other. In our case, Vmax ≤ (1− γ)−1 as the rewards are bounded
in [0, 1]. Substituting ε gives us the result.

Proof of Theorem 1. We begin by noting that

‖πα1 − π̂1‖µ1
= max

s∈S
‖πα1 (· | s)− π̂1(· | s)‖1I1,1(s) (A.3)

‖πα1 (· | s)− π̂1(· | s)‖1 =
∑
a

|πα1 (a | s)− π̂1(a | s)|1 (A.4)

=
∑
a

|απ̄1(a | s) + (1− α)π̂1(a | s)− π̂1(a | s)|1 (A.5)

= α‖π̄1(· | s) + π̂1(· | s)‖1. (A.6)

Replacing, we obtain

‖πα1 − π̂1‖µ1
= αmax

s∈S
‖π̄1(· | s)− π̂1(· | s)‖1I1,1(s) (A.7)

= α ‖π̄1 − π̂1‖µ1
(A.8)

Combining with Lemma 3, we have u1(πα1 , π̂2) ≥ u1(π̂1, π̂2)− α ‖π̄1 − π̂1‖µ1
C. Combining with

the theorem’s hypothesis,

u1(πα1 , π̂2) + α ‖π̄1 − π̂1‖µ1
C ≥ u1(π̂1, π̂2) = u1(π̄1, π̂2) + ∆

u1(πα1 , π̂2) ≥ u1(π̄1, π̂2) + ∆− α ‖π̄1 − π̂1‖µ1
C.

Let us now define
α∗ , min

{
α
∣∣ πB

2 (πα1) = π̂2∀α ∈ [α∗, 1]
}

to be the smallest mixing coefficient for which P2 sticks to π̂2. Then the achievable improvement
over π̄1 is

∆− α∗C ‖π̄1 − π̂1‖µ1
. (A.9)

13

We can characterise α∗ by noting that, by Lemma 3, for P2:

u2(πα1 , π̂2) ≥ u2(π̄1, π̂2)− (1− α) ‖π̄1 − π̂1‖µ2
C

u2(πα1 , π2) ≤ u2(π̄1, π2) + (1− α) ‖π̄1 − π̂1‖µ2
C.

P2 will not switch to any other deterministic π2 6= π̂2 as long as u2(πα1 , π̂2) > u2(πα1 , π2). For this,
it is sufficient that:

u2(π̄1, π̂2)− (1− α) ‖π̄1 − π̂1‖µ2
C ≥ u2(π̄1, π2) + (1− α) ‖π̄1 − π̂1‖µ2

C

δ ≥ 2(1− α) ‖π̄1 − π̂1‖µ2
C.

As this means that P2 responds with π̂2 for all α ≥ 1 − δ/(2C ‖π̄1 − π̂1‖µ2
), we conclude that

α∗ ≤ 1− δ/(2C ‖π̄1 − π̂1‖µ2
). Replacing in (A.9) completes the proof.

1

0

2

0

3

−2ε

4

0

5

−1ε

6

1− ε

7

1

C

D

D

C

A

B

B

Figure 2: Counterexample. Blue arrowed-lines indicate AI model, red lines human model. Black
lines indicate agreement, with dashes indicating a stochastic transition. The transitions from state 3
and 4 are identical and are represented by the subgraph to the right of the dotted line.

Proof of Theorem 2. This follows from a counterexample with 7 states and action setsA1 = {A,B},
A2 = {C,D}, shown in Figure 2. Notice that in every state, at most one agent’s action affects the
outcome.

In state 1, C leads to state 4 and D to state 3, but the human thinks the converse is true. In state 2,
both players agree that there is a 0.5 probability of reaching either 3 or 4. These two states have
identical transition probabilities. However, the AI knows that if it chooses A, the next state is 7, and
if it chooses B, the next state is 6. The human disagrees, and thinks B leads to the “bad” state 5.

Consequently, it is advantageous for the AI to commit to playing B if the players arrive at state 4
from state 1, otherwise to commit to playing A from both states 3 and 4. Thus, the optimal AI policy
(as well as the value of a state) is history-dependent.

B Experimental Setup

Two parameters, the discount factor and the horizon, are the same for both domains. They are set to
0.95 and 100, respectively. The other parameters are problem dependent and are described below.

Multilane Highway. The multilane highway problem is described by a 5 lane road. We have 4 basic
types of states: A (starting state), B (destination state), {Cij} for i ∈ {1, . . . , I}, j ∈ {1, . . . , J},
where I = 5 is the number of lanes in the highway and J = 5 is the discretized length of each lane,
and D (accident state). Since our reward functions is only state-dependent, to model the fact that
the human can intervene, we double every state, except A. In one of the two states in each pair, the
reward takes into account that the human intervenes.

There are 4 basic types of transitions: A→ Ci,1, Ci,j → Ci′,j+1, Ci,5 → B, and (A− or−Ci,j)→
D, but only 5 (active) actions, which correspond to choosing i′ in Ci′,j+1 (if B is the next state, all

14

the actions lead to B). Transitions A → Ci,1, Ci,j → Ci′,j+1, and Ci,5 → B, happen with a high
probability; otherwise, the transitions end in D. Therefore, all the transition probabilities can be
defined via the accident probability (transitioning to D), which in the experiments is selected as
α · i/(5 + 1), with α = 0.001 — small α corresponds to a small accident probability. The lanes with
smaller index i are safer, however, we also model them to be more expensive because more time is
needed to traverse them. Furthermore, the human overestimates α by an error factor, which in our
experiments ranges from 0 to 50.

Before we describe how the human’s interventions are modeled, we define the reward when the
human does not intervene. Rewards are equal to: 0 in state A, 10 in state B, −10 in state D,
−10 · β · (1− i/(5 + 1)) in state Ci,j , where β is a cost factor, which ranges from 0 to 0.2 in our
experiments. This implies that safer lanes lead to smaller penalty.

To model the human’s intervention, we extend the human agent with an additional passive action.
The human’s active actions always override the AI, so the AI can act only when human is not active.
This implies that i in the Ci,j state is chosen from the human’s action if the human is active, and
otherwise, the AI’s action determines it. We also need to define the cost of intervention (the cost of
the human not selecting the passive action). In this case, it is defined to be equal (in absolute value)
to the penalty in Ci,j , so the overall reward is negative. Notice that the interventions have different
costs in different states. For B and D, we consider it to be equal to Ci,j with i = 6.

Food and Shelter. We are in a 5 × 5 grid world, with the shelter located at a fixed location and
food randomly appearing at one of the five top locations. Whenever we pick food, it reappears in one
of the remaining locations at the top. The reward for food is equal to 1, the penalty for the shelter
being destroyed is −0.1, and the starting point is the location of the shelter. As shown in Figure 1(d),
boundaries of the world are surrounded by the wall as well as some parts of the world near food
locations. The experimental setup follows the food and shelter domain from Guo et al. [2013], with
the following differences:

• Our world size is 5× 5.
• We allow diagonal moves.
• Error in movement happens with probability equal to 0.1 and takes the agent uniformly at

random to one of 8 neighbouring locations.
• We introduce a human with the ability to intervene by overriding the AI’s actions, with cost

of intervention β that we vary from 0 to 0.5 in the experiments.
• The human has an incorrect error model— in particular, the transition probabilities (of a

move) are skewed toward uniformly random move by a factor:
– α for non-diagonal moves (i.e. the probability of the correct move is modulated by

1− α);
– 2α for diagonal moves (i.e. the probability of the correct move is modulated by 1−2α);

where α is a parameter that we vary between 0 and 0.5 in the experiments.

C Algorithm Pseudocode

Pseudocode for the backwards induction algorithm sketched in the main text is given in Algorithm 1.
For the deterministic version of the algorithm, we can simply replace the linear program with a
maximisation over P1’s actions. As this algorithm runs for T steps, and it does not necessarily
converge to a stationary policy (see Section 3.1), the output may be a time-dependent policy. We can
then extract the best stationary policy by considering the policy π(at,1 | st) at each step t of the first
player.

15

Algorithm 1: Backwards induction for MVDPs
Data: T , µ1, µ2;

1 begin
2 V1 = [ρ(0), ..., ρ(S)];
3 V2 = [ρ(0), ..., ρ(S)];
4 Q∗1 = [0, ..., S];
5 Q∗2 = [0, ..., S];
6 for t = T to t = 1 do
7 for s ∈ S do
8 for (a1, a2) ∈ A1 ×A2 do
9 Q1(s, a1, a2)← ρ(s) + γ ·

∑
s′ µ1(s′ | a1, a2, s) · V1(s′);

10 Q2(s, a1, a2)← ρ(s) + γ ·
∑
s′ µ2(s′ | a1, a2, s) · V2(s′);

11 Q∗1(s)← −∞;
12 for a2 ∈ A2 do
13 Find policy πQs

for state s with value Qs using the LP:

max
π1(.|s)

∑
a1

π1(a1|s) ·Q1(s, a1, a2)

s.t. ∀â2 :
∑
a1

π1(a1|s) ·Q2(s, a1, a2) ≥
∑
a1

π(a1|s) ·Q2(s, a1, â2),

∀â1 : 0 ≤ π1(a1|s) ≤ 1, and
∑
a1

π1(a1|s) = 1.

if Qs 6= NULL and Qs > Q∗1(s) then
14 Q∗1(s)← Qs;
15 π∗1(at | st = s)← πQs

;
16 π∗2(at | st = s)← a2;
17 else if Qs 6= NULL and Qs = Q∗1(s) then
18 we randomly break the tie

19 V1 ← Q∗1;
20 V2 ← Q∗2;
21 return (π∗1 , π

∗
2)

16

	Introduction.
	Related work

	The Setting and Basic Properties
	Stackelberg setting
	Optimality

	Algorithms for the Stackelberg Setting
	Backwards Induction

	Experiments
	Conclusion
	Collected Proofs
	Experimental Setup
	Algorithm Pseudocode

