Supplementary Material for

“On Tensor Train Rank Minimization:
Statistical Efficiency and Scalable Algorithm”

A Proof of Theorem 1

The theorem is obtained immediately by combining Li et al. [12] and Mu et al. [15].
Let IT : R® — R be a sparse random projection defined by
++/s/k probability 1/2s,
IL;; =<0 probability 1 — 1/s, 11
—+/s/k probability 1/2s.
Then the following theorem holds.

Lemma 6 (Lemma 4 in [12]). Let u be a unit vector. Then \/k(ITu); — N(0,1) and k||Tul|3 — x?
in law with the convergence rate

|P(VE(TTu); < t) — P(N(0,1) < 1)] <0.8/5 > _|u;[*, (12)

O
3 —ke? /4
Suppose that }_; |u;|* < e /(1.6k+/s). Then

IP(ITufl3 € [1 — e, 1+ €]) — POG € [k(1— ), k(1 + e)])| < e 7/, (13)

By using
P2 € [k(1—€), k(1 +¢)]) < 2eFE=</4 (14)

we have
P(|Tul2 € [1 — 6,1+ €]) < 3eF /4, (15)

The preservation of L, norm implies the preservation of the Schatten-1 norm as follows.

Lemma 7 (Restatement of Theorem 1 in [15]). Let Z be an m x n matrix with rank r. If k > r and
|ITu||3 € [1 — €, 1 + € for all singular vectors u of Z, we have

VA =e/r|Z]s < TZ|s < V1+e|Z]s. (16)
O
Now we prove Theorem 1. Let Z = Qx(X) be a HZ,:I I x ngk_ﬂ I} matrix obtained by

reshaping tensor X . Since X is a TT of rank (Ry, ..., Rk ), the rank of matrix Z is at most Ry. By
applying Lemma 7 twice, we obtain

1—c¢

s < [TZ]ls < (1 + )] Z ]l (17)

with some probability. If }_ |u; 3 < ek<*/4/(1.6k+/5) for all singular vectors of Z, the probability

is at least 1 — 6Rke_’“2/4 since there are 2 R, singular vectors.

B Proof of Theorem 3

Proof. Since X is the minimizer of the optimization problem, we have the following basic inequality
SV = 2R + Z 1QKR)s < o IV = XX + A, Z 1Qu(X*)]l,.
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Using the relation that
1Y = 2(X)” = (Y = 2(X™)) - (B(X) — 2(X)|
=Y = (X + | X(X) = XX = 2(Y = X(X7), X(X) - X(X7)),
we rewrite the basic inequality as

1 > N 1 BN -~
Sl (X) = TP < —(X(X) - X(X7),6) + A Z (1K (X = 1RR(X)s) -
Define the error A := X — X*. Applying the Holder’s inequality, we have

K—1

Lan)e=taxey =11 Z (Qu(A), X7 (€))

n n nkK-—-1 —

=
e Y €l Q) <
k=1
where X* is an adjoint operator of X and the last inequality holds by the setting of A,,. Also, the

triangle inequality and the linearity of Q(-) yield

1Qk(X) s — 1QK(X)]ls < 1Qr(A) .

Then, we bound the inequality as

1
5, IXQ)7 < ZHQk s + 2

To bound ||Qx(A)]s, we apply the result of Lemma 1 in [16] and Lemma 2 in [28]. Along with
proof of the lemmas, we obtain the property that a rank of Q(A) is bounded by 2Ry, thus the
Cauchy-Schwartz inequality implies

1Qr(A)]ls < V2R Qr(A)] -

K—

A)lls-

Then we obtain

1X(A)]1% < 2Ry,

A)llF.

We apply the completion theory by [3] and [2] to bound [|X(A)|% below. Let & € {1,..., K}

be the index which satisfies Assumption 2, and we have ||X(A)[|2 = ||X(Qx (A))||? where X is a
rearranging operator for the reshaped tensor. Then, Theorem 7 in [3] yields that

1Qu (A)lF < W Bmintlor ek | 1) 12(Qu (AN,

with probability at least 1 — (max{/<j/, Ir< }) > and

n Z C’m/,uﬁ, maX{ng/, Ik/<}Rk/ 10g3 max{ng/, Ik/<},
with a constant C,,,; > 0. Then we obtain that
1 ~
EI\%(Q;«(A))H2 > Cor|Qu (A7 = Cur A7,
where CK = (144mi11{]§k,/,[k/<} + 3’11)_1 > 0.
Finally, we have

2)\K

[Ny Z V2Ri[|Qk(A)|
k=1
K-
2A
= CIAllr 3
k=1

-1

=3C, 1HAII \/
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Dividing both hands side by ||A||r provides the result.

C Proof of Theorem 5

Preliminarily, we introduce an alternative formation of the optimization problem. For each k£ €
{1,2,..., K}, we rewrite the term X (G) as

G X2 Gep X3 G,

where x; denotes the j-mode product (for detail, see [10]). Here, G« is a tensor with size
Ry, x Iy x --- x Ix_4 and its element is given as

(G<klrigi,geos = (Gl (Galjn,r o [Gr—1ljiy s

forjpy =1,..., Iy andr = 1,..., Ri. Namely, G is the left side of tensor train decomposition
of X than Gy. Similarly, G« is a tensor with size Ry11 X Ir411 X -+ - X Ik and its element is given
as

[Gk<}r7jk+1 ..... K [GkJrl]jk_H,r,: e [GK]jK,:,:a
forjpr =1,..., Ik and r = 1,..., Rg41. Using the result, the ALS optimization problem (9) is
rewritten as
K-1

1 An
min %HY—x(Gkx2G<kx3ak<>||2+K_1;||Pkf<GkxQG<k x5 Gre)lls| - (18)

When k£ = 1, we set G, = 1. Similarly, when k = K, Gy~ = 1 holds.

Using the formula, we investigate the convergence of G, by fixing other elements as G« = G <k

and G« = Gj<. Let {G5}E _, be aset of tensor which formulates the true tensor X *. Also, G% .
and G7,_ are defined similarly. To evaluate the convergence, we introduce that

2(0) =, _max,  [IGy~ Gillr].

We obtain the following lemma which evaluates the optimization of (18) with given G <k and G k<-
Lemma 8. Foreach k € {1,..., K}, consider the optimization (18) with respect to Gy, with given
G. Then, with probability at least 1 — (max{I<y/, I;s< }) ™3 and

n 2 lej,z/ maX{ISk/,Ik/<}Rk/ log" max{ng/, Ik/<},
we obtain
. S 20,246
|Gk — Gl < 6(CCi) ! {2<K ~ DOx(L+n")EG) + =2 3 \/sz/} .
k'=1

Proof. Our proof takes following four steps: 1) derive a basic inequality from the optimality condition,
2) bound terms of the RHS of the basis inequality, 3) bound below the LHS of the basis inequality,
and 4) combine the result.

Step 1. Derive a basic inequality.

By the optimality condition of (18) with given G <k and G k<, We have

1 R B B N, K R B B
%HY — X(Gk Xo G X3 Gk<)||2 + K1 kZ:_l ||Pk/(Gk Xo Gog X3 G}g<)||s
1 B B N B B

< %”Y — X(Gj x2 Gep x3 Gro)|I” + I - 1 l; [P (G X2 Gk X3 Gra)ls- (19)
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Using the triangle inequality and the linearity of X and the mode product x ;, we obtain
Yy — x(ék X2 é<k X3 ék<)”2

= [{Y — X(G}, %2 é<k X3 ék<)} - {x(é X2 G<k X3 Gk<) X(Gy %2 é<k X3 ék:<)}||2

= [{Y = 2(G} x2 Ger x5 Gre)} = X(G, — G) %2 Gp x5 G|

= |V = 2(G}; x2 G x3 Gra)|I* + 1X((Gh — Gf) X2 Gy, X3 Gro) |

—2Y = X(G% x2 Gep x5 Gre), X((Gr — G2) xo2 Gep, x3 Gre)).

Substituting the result into (19), we obtain that

K—-1
]. ooy ~ ~ )\n ~ ~ ~
2—||3€((Gk — G) x2 G X3 Gro)|)? (G x2 Geg, X3 Gro)|ls
n K—-1 =
1 - - N - -
E< x(G ZX2 Gep x3Gi<), X((Gr — G},) x2 G<p x3 Gre))

K—

(Gy, x2 Gogy X3 Gre)ls- (20)

About the regularization term, we apply the following inequality

An

N An e PO _
fra Z 1Pe (G 2 Gy, x5 G s (Gr %2 Gt x5 )l
=1 k=1
A _ ~ -
< K —1 Z 1Pe (G, — Gi) X2 Gei X3 Gr<) |l
k'=1
A K-1 N _ N
T K- (”Q’“'(( = Gi) X2 Gai X3 Go) s

k
—[Pu (G = Gr) 2 G x Guo)lls = Qu (G = Gi) x2 G xa Gro)lls) @1

by using the triangle inequality and the linearity of the random projection operator Py.. Here, we
apply Theorem 1 with € and obtain

1—e¢ ~ ~ ~
(37 1) 100 (G - G x2 Gk 2 Gl
k/
< [P (G~ o) 3 Gt xs Gl @ (G

- ék) X3 Gep X3 ék<)“s
< €| Qi ((Gf — Gi) X2 Gep X3 Gro)s-

Here, the denominator in the left hand side follows Lemma 1 in [16]. Then we have

1P (G — Gi) X2 Gk x5 Grc)ls — ||Qu (G,

< max{e, |(1 - )/ (2R) — HQu (G}, = Gi) x2 Gap x5 Grc) s
< (14 )| Qu (G}, = G) X2 Gei x5 Gi)ls-

- ék) X2 é<k X3 ék<)”s

Using this result and continue (21) then we have

@n <

K-1
1 Z (24 6)||Qk ((Gy, — Gk) X2 Gk X3 Gr<)lls-

(22)
k'=1
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About the first term of the RHS of (20), we decompose it as

1 ~ ~ ~ ~ ~
E<Y — X(G}, X2 Gep X3 Gie), X((Gg — GY) x2 Geg X3 Gi<))
1

= (Y = X(G}, x2 G%y, x5 Gi2), X((Gx = G}) x2 G X3 Gke)
1 ~ _ _ _
E@(GZ X (Gak — GZyp) X3 G0 ), X((G — G) X2 Gk X3 Gr<))
1 - _ _ _
+ (R(GR x2 G X5 (Gre = Gie)) X(Gr = GR) X2 Gak X3 Gic))
1

+ L0(G1 o (Gt — G2) 3 (Be = G0). B((Co— G x2 G 3 G
=To+T + T+ T3.

About the term T}, we use the observation model (2) and the adjoint operator X* then obtain

(&, X((Gk —G}) X2 Gop, x3 Gre))

(X*(8), (Gr — Gf) x2 Gep, X3 Gre).

3\'—‘3\’—‘

Since the reshaping does not affect the value of the inner product, we continue to evaluate 7 as

Ty = <(5) (Gr, — Gf) x2 Gp, x3 Gro)

K—
= Z Qi (X (€)), Qu ((Gr, — G}) x2 G x5 Gio)
k:l
1 K-—1 R N B
- n(K 1) = ||le(:{*( ))HOOHQIC/((G]C - GZ) X9 G<k- X3 Gk<)HS
1 K-1 R - N
= m||3€*(5)||ooklz::1 1Qu (G — GF) X3 Gepp x5 Gro)lls
)\ K—-1
< oo 2 19w (G = GO xa Gar xa Gl
k'=1

The first inequality follows the Holder’s inequality, and the second inequality is derived by the setting
of \,,.

Substituting (22) and the bounds with T, T5, T and Ty into (20), finally we obtain

1,oa ~
%”x((Gk — Gy) X2 Geg X3 Gio)|?
K—1

71 2 2+ aQu((Gh — Gr) 2 Gar x5 Gr)lls - (23)
k'=1

:ZT4

Here, we obtain the basic inequality.

Step 2. Bound the RHS of the basic inequality.

For brevity, we introduce notation

= (ék - G}) X2 é<k X3 ék<-
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We bound 77 by using the Cauchy-Schwartz inequality as

1 ~ ~ -~ -
T = E<X(G;§ Xo (Gep — G%p) X3 Gro), X((Gr — Gf) X2 Geg X3 Gie))

1 ~ ~ N ~ ~

< EHX(GZ X2 (Gar — GZy) X3 GL) I X((Gr — Gy) X2 G X3 Gr<)||
1 ~ ~ ~ -

< EHGZ Xo (Gep — GZy) X3 G ||P[(Gr — G) X2 Gep X3 Gr<|lF

1 * ~ * * N
< ﬁHGk X2 (Gar — GZy) X3 Grcllpl| Akl 7,

here we use the relation | X(X)[|? < ||X||% for all X € ©. We introduce a constant ¢ for
k=1,..., K which satisfying ¢;, > ||A x;, G ||r/||A|| r where A is a tensor with proper size. Since
we suppose that the reshaped matrix from G has Ry, row rank, we can guarantee that ¢, is positive
and finite. Using cg, we have

HGZ X9 (é<k - G*<k) X3 G;;<||
<ep H e |Gk — GLillF

k'>k
<o [[ew D IGw —Gille ] e
K>k k'<k o<k l£k
< [ ewx =1 ] «2©)
K>k <k
K ~
= (k-1 ] ewZ(9).
k'=1

K .
Here, we define C := Hk/:l ¢y, We obtain
1

T < —(k = 1)CKE(G). (24)
Similarly, we obtain
1 -
T, < E(K — k)CrE(G). (25)

About T3, we have
1 - - N - -
Ty = (X(Gh x2 (Gar = GLp) X3 (Ghe = GRo)) X((Gr = G) X2 Gk X3 Gi<))

< LG %2 (Gek — O) X (Gre — Gl Al
We evaluate the first norm as
1G% %2 (Gar = G) %3 (Gre = Gl
< i (IG<r x3 (Gre = Giollr + 1G5, X3 (Gre — Gio) v

< 2(K —1)Cx=(0).

3

Then, we have

Ty < 2(K — 1)CkE(@). 26)

3

To bound T}, we apply the same~line of the proof of Theorem 3. Along with Lemma 1 in [16], we
bound the Schatten norm of Qi (Ay) and apply the Cauchy-Schwartz inequality, then obtain

(24 €) o= - 200 (24 €) o= ~
Lis—p—7— Z V2R [|Qr (Ak)|| = K1 Z V2R || Akl

k=1 k=1
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Combining the bound with (24), (25) and (26), we update the bound (23) as

1~ 3(K —1)Cr .~ . ~ (24 €) il ~
xR < 2N Gy a0 )+ PO S A

K
k'=1
3(K —1)C A (24 €) e
- K—=/S\IX n N
<~ JKg SAnfTE) , _
< TSRO + T X VERGAL e

Step 3. Bound below the LHS of the basic inequality.

We apply the matrix completion theory developed by [3] and [2]. Let &’ € {1,..., K} be the index
satisfying Assumption 2. Since the value of the L?-norm and the Frobenius norm is invariant to

the shape of tensors, we compare the value of ||Qy (Ay) || » and || X(Q (Ax))|| 7 with &’ instead of
[Ak]| 7 and [[X(Ag)] F-

For the matrix Qp/(X™*), we apply Assumption 2 and obtain that Q. (X*) has the p/-incoherence
property. Then, we apply Theorem 2 and Theorem 7 in [3], we obtain the following inequality as

Qe (Ellr < <\/ Suintlce: Je<) +1> (@ (B)|

with probability at least 1 — (max{/<j, Is< }) > and

n 2 leii/ max{ng/ y Ik/< }Rk/ 10g3 max{ng/, Ik/< },
with a constant C,,, > 0. Then we obtain that

1 ~ e L ~ 9

XA = nH:{(Qk’(Ak))”

> (144 min{l<pr, I <} + 3n) M| Qu (Ak) |7 =: CullQr (Ap)IIF = Crll Akl
where C,; > 0 since n <[] & Ix. Using this result into (27), we have

K-1
Cui~ 3(K—-—1)Ck — 5~ 22, (24 € ~
o Rel < DGy A+ PRI S o R
k'=1

Then we obtain the inequality

C,. . ~ 3(K—1)Ck _ ~ ~ 20, (24 €) = -
?HAkH% <= S@NAllr+ ——— > V2R | Akllr-
k=1
We divide the both hands side by || Ay || about the first term, and consider the root about the second
term, then we have
K—1

Cr X 3(K —1)Ck - 5 2Mn(2+¢)
5 1Aklle < ==——=25(0) + === > V2Rw, (28)

n
r—1

X

by using the property ||X(X)|| < || X|| forall X € X.
Finally, we define
Ag = (G — G}) x2 Gy x5 Gic
and compare Ay, and Ek as
1Ak < I AKI+ 1Ak — Ayl

We evaluate the last term by the same way of the step 2 as

1Ak = Mgl

< H(@k — G}) %2 (G x3 Gie — Gag X3 ék<)HF

< 2¢ {H(Gik —Gap) X3 GZ<HF + Hé<k x3 (Gre — C~*ch<))’}7}

< 2(K — 1)Cx=(G).
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Then, we have
IAL]F — 2(K — 1)CLE(G) < || AkllF.
Substituting the result into (28), we obtain
C. e 5 2 —|— €)
5 1AklF < 2(K = 1)Cx (1407 1EG) + Z V2R (29)
k=1

Step 4. Combining the results.
Substituting the result of the step 3 into (29), we finally obtain

K-1

A * - N 2—1—

1G — GE|l < 6(CuCx) " 2(K — 1)Cr (1 +n~H)E(G) + 2 3 V2R
k'=1

O

We back to the proof of Theorem 5. Based on the result of Lemma 8, we will take two steps: (a)

evaluate the distance between X (G) and X (G*), and (b) show the convergence as the ALS iteration
proceeds.

Step (a). Evaluate the distance between X (G) and X (G*).
For brevity, we introduce new notation for X (G). Using the tensor product, we denote
X(G) =G1 x2Ga X3+ xg—1 Gr-1 Xk Gk.
Then, we evaluate the distance between X (G) and X (G*) as
X(9) - X(9")
=Gy X9 xKéKfGT Xo - Xg Gy
= (G %2+ xg-1Gg_1 xx G — G1 X3+ xg_1 Gr_1 xx G)

+(Gr g X1 Gr1 Xx Gy — G1 Xo -+ X1 Gy Xx G)

+(él XQG; ><3"'XK_1G;(_1 XKG*K—GT XQ"'XKG;()
K

= Zéd@ Xk (ék = G}) Xp41 Gle-
k=1

Then, we consider the Frobenius norm as

IX(G) - X(G")%

2

K
ZG<I<: X ( Gk - G}) Xet1 Grc
k=1

F

K
Z <G<k Xk Gk — Gk) Xk+1 Gk<;G<k’ X (Gk/ GZ/) Xk +1 GZ/<>
k'=1

M 11>

|Gt % (@1 - G1) i G|

b
I
—

K

+ Z Z <é<k Xk (ék — G;;) X 41 GZ<,é<kl X g/ (ék/ — GZ,) X g/ 41 GZ/<>.
k=1 k/#£k
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As same as the proof of Lemma 8, we bound the first term as

|G i (@ = G1) i Gue| < B2,
For the second term, we obtain
<é<k~ %1, (G — Gp) Xps1 Grc, Gap xir (G — Giy) X1 ék/<>
< Hé<k xk (G — G}) Xk 11 ék<HF Hé<k’ i (G — Gi) w1 ék’<HF
< C%E%(G).
Combining the results, we obtain

I1X(G) - X(G")13 < (K + K*)CRE*(G).

Step (b). Show convergence with the ALS iteration.
Let G? be a set G obtained by ¢-th ALS iteration. By the result of the step (a), we have

1X(G") = X(G)|[F < (K + K*)CRE(G).

Applying the result of Lemma 8, let CA?Z be the minimizer of optimization of (18) with the ¢-th ALS
iteration, we obtain foreacht =1,2,.. .,

K—
- St _ e 2+
2(¢") = max||G}, — Gillr < 6(CuCi) ™" 2(K = 1)Cx(1+n")E(G) + 2 Z 2Ry

The inequality holds since Gt 1 is the fixed g~ for the ¢t-th ALS iteration. We define the contraction
coefficient

X = 1201 (K —1)Ck (1.5 4+n"1),
and using the assumption that x < 1, we have
K—1
22 (2
2(G") < max {xtE(go),fi(CnCK)‘l"(KM > \/2ka} , (30)
k=1

where GY is an initial value of G. With Assumption 4, we set ¢ sufficiently large as

t> (logx)~" {log (6(CHCK)_1 ( Z V 2Rk’>> log= )} ;

k=1
we obtain
K-1 2
* _ 20, (2 +
[X(G") — X(G)|% < 12C'K*Ck <(K€) > «/sz,> .
k=1

As we set X := X (G'), we obtain the result.

D Time Complexity of TT-RAM

To update gl(fﬂ), we need to compute

o A =0TQ, which requires O(nI?R*),
e B= Zg i LT, which requires O(K D212 RY),
e the inversion of an I R? x I R? matrix (A + B), which requires O(I3R®),

19



o ¢ = OTY, which requires O(nlR?),
o d= ‘N/k(W,E,é)), which requires O(D?),

A SR (nd — B, which requires O(K D21 R?),

e =
To update W,g,“l), we need to compute

e a= I‘k/g,(fﬂ), which requires O(D?I R?),
o V. '(a+ B, which requires O(D?),
e the proximal operation, which requires O(D?).

To update 3 ](fﬂ) , we need to compute

o a=Tg!"™"), which requires O(D2I R?),

o b= f/k(W]E,Hl)), which requires O(D?),

Because there are g,(fﬂ) fork =1,..., K, W,Efﬂ) fork,k' =1,...,K, and ﬁl(fﬂ) for k, k' =
1,..., K, the total time complexity is

O(K(nI*R* + KD?I*R* + I*R° + nIR* + D? + K D*IR?))
+ O(K?*(D?IR* + D? + D?®)) + O(K?(D?*IR?* 4+ D?))

= O(K(nI*R* + KD?*I?R* + I’R%)) + O(K*(D*IR? + D?))

= O(K(nI’R* + KD*I*’R* + I’R%)) + O(K*D?*IR?)

= O(nKI*R* + K?D?*I*R* + KI*R")

= O(nKI*R* + K?D?*I*R?)

In the third line and the last line, we assumed D = O(IR?) and I R? = O(n), respectively.
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