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Guide to the Appendix

• In Appendix A, we present two formulations of the batch learning equivalent of the online
algorithm, and derive Theorem 2, a companion sample complexity bound.

• In Appendix B, we discuss some variants of our online algorithm, and offer some tips for
implementation. We also provide discussion on the connection of our filters to eigenfunc-
tions of a certain differential operator.

• In Appendix C, we prove the key approximate convex relaxation result (Theorem 3).
• In Appendix D, we complete the details for the proof sketch provided in Section 4.2, con-

cluding the main theorem, the regret bound for the online algorithm. Importantly, we ad-
dress the subtle issue of deriving upper bounds for the gradient and diameter of the decision
set.

• In Appendix E, we derive explicit non-asymptotic bounds for quantities of interest pertain-
ing to the Hankel matrix Z, notably spectral decay. Key results are adapted from [BT16].

• In Appendix F, we verify some easy-to-prove properties of the important vector µ(α), for
sake of completeness.

A Batch variants of the algorithm

The online prediction setting is sensitive to permutation of the time series: that is, the same LDS
does not in general map {xσ(1), . . . , xσ(T )} to {yσ(1), . . . , yσ(T )}. As such, one must take care
when defining the batch case: the output time series (and thus, loss functions) are correlated, so it
is not meaningful to assume that they are i.i.d. samples from a distribution. Thus, our online regret
bound, which concerns a single episode, does not translate directly. However, our convex relaxation
technique still allows us to do efficient improper learning with least-squares regression, giving inter-
esting and novel statistical guarantees. In this section, we provide two possible formulations of the
batch setting, along with accompanying theorems.

In both cases, it is most natural to fix an episode length T , and consider a rollout of the system
{(xt, yt)}Tt=1 to be a single example. For short, let Xi ∈ RTn denote the concatenated vector of
inputs for a single example, and Yi ∈ RTm the concatenated responses. The batch formulation is
to learn the dynamics of the system using N samples {(Xi, Yi)}. Recall that the samples satisfy
‖xt‖2 ≤ Rx and ‖yt − yt−1‖2 ≤ Ly .

Unlike in the online setting, it will be less confusing in the batch setting to measure the mean squared
error of predictions, rather than the total squared error. Thus, in this section, `X,Y (h) will always
refer to mean squared error. As well, to follow statistical learning conventions (for ease of reading),
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we use h to denote a hypothesis (an LDS) instead of Θ; this is distinguished from the hidden state
ht.

A.1 Learning the derivative: the direct analogue

Throughout this subsection, assume that h0 = 0.

As noted, the sequential prediction algorithm can be restricted so as to never make updates to the
submatrix M (y), keeping it to be the identity matrix. Notice that all other features in X̃ consist of
inputs xt and their convolutions. In other words, we can take the view that the matrix Mt can be
used to predict the differences yt − yt−1 between successive responses, as a function of the entire
(aligned) input time series (xt, xt−1, . . . , xtT ).

Thus, we can formulate a direct analogue for the online algorithm: learn the mapping from an input
time series Xi ∈ RTn to the differences Y ′i ∈ RTm, the concatenation of all yt − yt−1. For this,
we can use Theorem 3 (the approximation result) directly, and obtain an improper agnostic learning
guarantee.

Specifically, letH be a subset of the hypothesis class of LDS parameters Θ = (A,B,C,D, h0 = 0),
subject to ‖B‖F , ‖C‖F , ‖D‖F ≤ RΘ, and choose any approximation tolerance ε > 0.1 Then, The-
orem 3 states that choosing Ĥ with k = Ω (log T log(RΘRxLynT/ε)) ensures the ε-approximate
relaxation property. In the language of the batch setting: for each h ∈ H which predicts on the
sample (X,Y ′) with a mean squared error `X(h), there is some ĥ ∈ Ĥ so that

`X,Y (h) ≤ `X,Y (ĥ) + ε.

The choice of batch algorithm is clear, in order to mimic Algorithm 1: run least-squares regression
on X̃ and Y , where X̃ is the same featurization of the inputs as used in the online algorithm. We
describe this procedure fully in Algorithm 2.

Algorithm 2 Offline wave-filtering algorithm for learning the derivative of an LDS

1: Input: S = {(Xi, Y
′
i )}, a set of N training samples, each of length T ; filter parameter k.

2: Compute {(σj , φj)}kj=1, the top k eigenpairs of ZT .
3: Initialize matrices X ∈ R(nk+2n)×NT ,Y′ ∈ Rm×NT .
4: for each sample (X,Y ′) do
5: for t = 1, . . . , T do
6: Compute X̃t ∈ Rnk+2n, with first nk entries X̃(i,j) := σ

1/4
j

∑T−1
u=1 φj(u)xt−u(i), fol-

lowed by the 2n entries of xt−1, xt.
7: Append (X̃t, Y

′
t ) as new columns to the matrices X,Y′.

8: end for
9: end for

10: return least-squares solution (XX>)†X>Y′.

A.1.1 Generalization bound

By definition, Algorithm 2 minimizes the empirical MSE loss on the samples; as such, we can derive
a PAC-learning bound for regression. We begin with some definitions and assumptions, so that we
can state the theorem.

As in the statement of the online algorithm, as a soft dimensionality restriction, we constrain
the comparator class H to contain LDSs with parameters Θ = (A,B,C,D, h0 = 0) such
that 0 4 A 4 I and ‖B‖F , ‖C‖F , ‖D‖F , ‖h0‖ ≤ RΘ. For an empirical sample set S, let
`S(h) = 1

|S|
∑

(X,Y )∈S `X,Y (h). Similarly, for a distribution D, let `D(h) = E(X,Y )∼D[`X,Y (h)].

Then, we are able to obtain a sample complexity bound:

1The distinction between measuring total vs. mean squared error is hidden in the constant in front of the
log T when choosing the number of filters k.
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Theorem 2 (Generalization of the batch algorithm). Choose any ε > 0. Let S = {(Xi, Y
′
i )}Ni=1 be

a set of i.i.d. training samples from a distribution D. Let ĥ
def
= argminh∈Ĥ `S(h) be the output of

Algorithm 2, with a choice of k = Θ(log T log(RΘRxLynT/ε)). Let h∗
def
= argminh∗∈H `D(h) be

the true loss minimizer. Then, with probability at least 1− δ, it holds that

`D(ĥ)−min
h∈H

`D(h) ≤ ε+
O
(
R4

ΘR
2
xLy log2(RΘRxLyn/ε)n log6 T +

√
log 1/δ

)
√
N

.

Proof. Lemma D.1 shows that we can restrict Ĥ by a Frobenius norm bound:

‖M‖F ≤ O
(
R2

Θ

√
k
)
.

Thus, the empirical Rademacher complexity of Ĥ on N samples, with this restriction, thus satisfies

RN (Ĥ) ≤ O

(
R2

ΘRx
√
k√

N

)
.

Also, no single prediction error (and thus neither the empirical nor population loss) will exceed the
upper bound

`max
def
= Θ(R4

ΘR
2
xL

2
yk).

Finally, the loss is Gmax-Lipschitz in the matrix h, where Gmax is the same upper bound
for the gradient as mentioned in Section 4.2. Lemma D.5, states that this is bounded by
O
(
R2

ΘR
2
xLy · nk3/2 log2 T

)
.

With all of these facts in hand, a standard Rademacher complexity-dependent generalization bound
holds in the improper hypothesis class Ĥ (see, e.g. [BM02]):

Lemma A.1 (Generalization via Rademacher complexity). With probability at least 1− δ, it holds
that

`D(ĥ)− `D(ĥ∗) ≤ GmaxRN (Ĥ) + `max

√
8 ln 2/δ

N

With the stated choice of k, an upper bound for the RHS of Lemma A.1 is

O
(
R4

ΘR
2
xLy log2(RΘRxLyn/ε)n log6 T +

√
log 1/δ

)
√
N

.

Combining this with the approximation result (Theorem 3) yields the theorem.

A.2 The pure batch setting

A natural question is whether there exists a batch learning algorithm that can use X to predict Y
directly, as opposed to the differences Y ′. This is possible in the regime of low noise: if one has
predictions on Y ′ that are correct up to MSE ε, an easy solution is to integrate and obtain predictions
for Y ; however, the errors will accumulate to Tε. The same agnostic learning guarantee costs a
rather dramatic factor of T 2 in sample complexity.

In the regime of low noise, an analogue of our approximation theorem (Theorem 3) is powerful
enough to guarantee low error. For convenience and concreteness, we record this here:
Theorem 3b (Pure-batch approximation). Let Θ be an LDS specified by parameters
(A,B,C,D, h0 = 0), with 0 4 A 4 I , and ‖B‖F , ‖C‖F , ‖D‖F ≤ RΘ. Suppose Θ takes an
input sequence X = {x1, . . . , xT }, and produces output sequence Y = {y1, . . . , yT }, assuming all
noise vectors ξt, ηt are 0. Then, for any ε > 0, with a choice of k = Ω (log T log(RΘRxLynT/ε)),
there exists an MΘ ∈ Rm×(nk+2n) such that

T∑
t=1

∥∥∥∥
(

t∑
u=1

MΘX̃u

)
− yt

∥∥∥∥2

≤
T∑
t=1

‖ŷt − yt‖2 + ε,

where X̃t is defined as in Algorithm 1, without the yt−1 entries.
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This fact follows from Theorem 3, setting ε/T as the desired precision; the cost of this additional
precision is only a constant factor in k. Furthermore, this MΘ is subject to the same Frobenius norm
constraint ‖MΘ‖F ≤ O(R2

Θ

√
k) as in Lemma D.1.

A.2.1 Filters from the Hilbert matrix

Alternatively, in the realizable case (when the samples from D are generated by an LDS, possibly
with small noise), one can invoke a similar approximate relaxation theorem as Theorem 3. The filters
become the eigenvectors of the Hilbert matrixHT,−1, the matrix whose (i, j)-th entry is 1/(i+j−1).
This matrix exhibits the same spectral decay as ZT ; see [BT16] for precise statements. the proof
follows the sketch from Section 4.1, approximating the powers of α` by a spectral truncation of a
different curve µ′(α)(i) = αi−1, sometimes called the moment curve in RT . The Hilbert matrix
arises from taking the second moment matrix of the uniform distribution on this curve.

However, we find that this approximation guarantee is insufficient to show the strong regret and
agnostic learning bounds we exhibit for learning the derivative of the impulse response function.
Nonetheless, we find that regression with these filters works well in practice, even interchangeably
in the online algorithm; see Section B.1 for some intuition.

A.3 Learning the initial hidden state via hints

In either of the above settings, it is not quite possible to apply the same argument as in the online
setting for pretending that the initial hidden state is zero. When this assumption is removed, the
quality of the convex relaxation degrades by an additive Õ( log2 T

T ); see Section D.4. This does not
matter much for the regret bound, because it is subsumed by the worst-case regret of online gradient
descent.

However, in the batch setting, we take the view of fixed T and increasing N , so the contribution of
the initial state is no longer asymptotically negligible. In other words, this additive approximation
error hinders us from driving ε arbitrarily close to zero, no matter how many filters are selected. In
settings where T is large enough, one may find this acceptable.

We present an augmented learning problem in which we can predict as well as an LDS: the initial
hidden state is provided in each sample, up to an arbitrary linear transformation. Thus, each sample
takes the form (X,Y, h̃0), and it is guaranteed that h̃0 = Qh0 for each sample, for a fixed matrix
Q ∈ Rd′×d. This Q must be well-conditioned for the problem to remain well-posed: our knowledge
of h0 should be in the same dynamic range as the ground truth. Concretely, we should assume that
σmax(Q)/σmin(Q) is bounded.

The construction is as follows: append d′ “dummy” dimensions to the input, and add an impulse
of h̃0 in those dimensions at time 0. During the actual episode, these dummy inputs are always
zero. Then, replacing B with the augmented block matrix [B Q−1] recovers the behavior of the
system. Thus, we can handle this formulation of hidden-state learning in the online or batch setting,
incurring no additional asymptotic factors.

A.3.1 Initializations with finite support

We highlight an important special case of the formulation discussed above, which is perhaps the
motivating rationale for this altered problem.

Consider a batch system identification setting in which there are only finitely many initial states h0

in the training and test data, and the experimenter can distinguish between these states. This can
be interpreted a set of nhidden known initial “configurations” of the system. Then, it is sufficient
to augment the data with a one-hot vector in Rnhidden , corresponding to the known initialization
in each sample. An important case is when nhidden = 1: when there is only one distinct initial
configuration; this occurs frequently in control problems.

In summary, the stated augmentation takes the original LDS with dimensions (n,m, d, T ), and trans-
forms it into one with dimensions (n + nhidden,m, d, T + 1). The matrix Q−1, as defined above,
is the nhidden-by-d matrix whose columns are the possible initial hidden states, which can be in
arbitrary dimension. For convenience, we summarize this observation:
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Proposition A.2 (Learning an LDS with few, distinguishable hidden states). When there are d′
known hidden states, with d′‖h0‖ ≤ RΘ, Theorems 2, 3, and 3b apply to the modified LDS learning
problem, with samples of the form (h̃0, X, Y ). The dimension n becomes n+ d′.

B Implementation and variants

We discuss the points mentioned in Section 3 at greater length. Unlike the rest of the appendix,
this section contains no technical proofs, and is intended as a user-friendly guide for making the
wave-filtering method usable in practice.

B.1 Computing the filters via Sturm-Liouville ODEs

We begin by expanding upon the observation, noted in Section 3, that the eigenvectors resemble
inhomogeneously-oscillating waves, providing some justification for the heuristic numerical com-
putation of the top eigenvectors of ZT .

Computing the filters directly from ZT is difficult. In fact, the Hilbert matrix (its close cousin) is
notoriously super-exponentially ill-conditioned; it is probably best known for being a pathological
benchmark for finite-precision numerical linear algebra algorithms. One could ignore efficiency
issues, and view this as a data-independent preprocessing step: these filters are deterministic. How-
ever, this difficult numerical problem poses an issue for using our method in practice.

Fortunately, as briefly noted in Section 3, some recourse is available. In [Grü82], Grünbaum con-
structs a tridiagonal matrix Tn,θ which commutes with each Hilbert matrix Hn,θ, as defined in Sec-
tion 2.4. In the appropriate scaling limit as T →∞, this Tn,θ becomes a Sturm-Liouville differential
operator D which does not depend on θ, given by

D =
d

dx

(
(1− x2)x2 d

dx

)
− 2x2.

Notice that ZT = HT,−1 − 2HT,0 + HT,1. This suggests that for large T , the entries of the φj are
approximated by solutions to the second-order ODE

Dφ = λφ. (1)
It is difficult to quantify theoretical bounds for this rather convoluted sequence of approximations;
however, we find that this observation greatly aids with constructing these filters in practice. In
particular, the map between eigenvalues σj of Z and λj of D corresponding to the same eigen-
vector/eigenfunction proves challenging to characterize for finite T . In practice, we find that our
method’s performance is sensitive to neither the precise eigenvalues nor the ODE boundary condi-
tions.

In summary, aside from the name wave-filtering, this observation yields a numerically stable recipe
for computing filters (without a theorem): for each of k hand-selected eigenvalues λ, compute a
filter φλ using an efficient numerical solver to Equation 1.

B.2 Alternative low-regret algorithms

We use online gradient descent as our prototypical low-regret learning algorithm due to its simplic-
ity and stability under worst-case noise. However, in practice, particularly when there are additional
structural assumptions on the data, we can replace the update step with that of any low-regret algo-
rithm. AdaGrad [DHS11] is a particularly appealing one, as it is likely to find learning rates which
are better than those guaranteed theoretically.

Furthermore, if noise levels are relatively low, and it is known a priori that the data are generated
from a true LDS, a better approach might be to use follow-the-leader [KV05] or any of its variants.
This amounts to replacing the update step with

Mt+1 := min
M

t∑
t′=1

‖yt′ − ŷt′(M)‖2,

a linear regression problem solvable via, e.g. conjugate gradient. For such iterative methods, we
further note that it is possible to use the previous predictor Mt−1 as a warm start.
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B.3 Accelerating convolutions

In the batch setting (or in the online setting, when all the inputs xt are known in advance), it is easy
to see that the convolution components of all feature vectors X̃t can be computed in a single pass, by
pointwise multiplication in the Fourier domain. Using the fast Fourier transform, one can implement
all convolutions in time O(nkT log T ), nearly linear in the size of the input. This mitigates what
would otherwise be a quadratic dependence on T . Many software libraries provide an FFT-based
implementation of convolution.

C Proof of the relaxation theorem

In this section, we follow the proof structure given in Section 4.1, and conclude Theorem 3.

Before proceeding, we note here that the algorithm could have used filters of length T − 1 instead
of T , obtained from the eigenvectors of ZT−1. However, since carrying this −1 through the state-
ments and analysis degrades clarity significantly, we use a slightly suboptimal matrix throughout
this exposition.

C.1 Proof of Lemma 4.1

First, we develop a spectral bound for average reconstruction error of µ(α), when α is drawn uni-
formly from the unit interval [0, 1]. This is controlled by the tail eigenvalues of the second moment
matrix of µ(α), just as in PCA:
Lemma C.1. Let {(σj , φj)}Tj=1 be the eigenpairs of Z, in decreasing order by eigenvalue. Let Ψk

be the linear subspace of RT spanned by {φ1, . . . , φk}. Then,∫ 1

0

‖µ(α)− ProjΨk
(α)‖2 dα ≤

T∑
j=k+1

σj .

Proof. Let r(α) denote the residual µ(α) − ProjΨk
(α), and let Ur ∈ RT×r whose columns are

φ1, . . . , φr, so that
r(α) = Πrµ(α) := (I − UrU>r )µ(α).

Write the eigendecomposition ZT = UTΣU>T . Then,∫ 1

0

‖r(α)‖2 dα =

∫ 1

0

Tr(r(α)⊗ r(α)) dα =

∫ 1

0

Tr
(
Πrµ(α)µ(α)>Πr

)
dα

=

∫ 1

0

Tr (ΠrZΠr) dα =

∫ 1

0

Tr
(
ΠrUTΣU>T Πr

)
dα.

Noting that ΠrUT is justUT with the first r columns set to zero, the integrand becomes
∑T
j=k+1 Σjj ,

which is the stated bound.

In fact, this bound in expectation turns into a bound for all α. We show this by noting that ‖r(α)‖2
is Lipschitz in α, so its maximum over α ∈ [0, 1] cannot be too much larger than its mean. We state
and prove this here:
Lemma C.2. For all α ∈ [0, 1], it holds that

‖r(α)‖2 ≤

√√√√6

T∑
j=k+1

σj .

Proof. By part (ii) of Lemma F.4, ‖µ(α)‖2 is 3-Lipschitz; since Πr is contractive, ‖r(α)‖2 is also
3-Lipschitz. Now, let R := max0≤α≤1‖r(α)‖2. Notice that R ≤ max0≤α≤1‖µ(α)‖2 ≤ 1, by
part (i) of Lemma F.4. Subject to achieving a maximum at R, the non-negative 3-Lipschitz function
g : [0, 1]→ R with the smallest mean is given by the triangle-shaped function

∆(α) = max(R− 3α, 0),
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for which ∫ 1

0

∆(α) dα = R2/6.

In other words,

R2/6 ≤
∫ 1

0

‖r(α)‖2 dα.

But Lemma C.1 gives a bound on the RHS, so we conclude

max
α∈[0,1]

‖r(α)‖2 ≤ R ≤

√√√√6

T∑
j=k+1

σj ,

as desired. The stated upper bound on this quantity comes a bound of this spectral tail of the Hankel
matrix ZT (see Lemmas E.2 and E.3); this completes the proof of Lemma 4.1.

C.2 Proof of Theorem 3

It remains to apply Lemma 4.1 to the original setting, which will complete the low-rank approxima-
tion result of Theorem 3. Indeed, following Section 4.1, we have

ζt
def
= MΘX̃t − ŷt =

d∑
l=1

(cl ⊗ bl)
T−1∑
i=1

[µ̃(αl)− µ(αl)](i) · xt−i.

View each of the n coordinates in the inner summation as an inner product between the length-T
sequence µ̃(αl)−µ(αl) and coordinatesX(j) := (x1(j), . . . , xT (j)), which are entrywise bounded
by Rx. Then, by Hölder’s inequality and Lemma 4.1, we know that this inner product has absolute
value at most

‖X(j)‖∞‖µ̃(αl)−µ(αl)‖1 ≤ ‖X(j)‖∞·
√
T‖µ̃(αl)−µ(αl)‖2 ≤ O

(
Rx
√
T · c−k/ log T

1 log1/4 T
)
,

with c1 =
√
c0. There are n such coordinates, so this inner summation is a vector with `2 norm at

most
O
(
Rx
√
nT · c−k/ log T

1 log1/4 T
)
.

Thus, in all, we have

‖ζt‖2 ≤ O
(
‖B‖F ‖C‖FRx

√
nT · c−k/ log T

1 log1/4 T
)
.

In summary, we have shown that for every system Θ from which a predictor for the discrete deriva-
tive of the LDS arises, there is some MΘ whose predictions are pointwise ‖ζt‖2-close. This residual
bound can be driven down exponentially by increasing the number of filters k.

Finally, to get an inequality on the total squared error, we compute
T∑
t=1

‖MΘX̃t − yt‖2 =

T∑
t=1

‖ŷt − yt + ζt‖2 ≤
T∑
t=1

(
‖ŷt − yt‖2 + ‖ζt‖2 + 2‖ŷt − yt‖ ‖ζt‖

)
≤

T∑
t=1

‖ŷt − yt‖2 +O
(

(R4
ΘR

2
xL

2
yk)T 3/2n1/2 · c−k/ log T

1 log1/4 T
)
, (2)

≤
T∑
t=1

‖ŷt − yt‖2 +O
(
R4

ΘR
2
xL

2
y T

5/2n1/2 · c−k/ log T
1 log1/4 T

)
,

where inequality (2) invokes Corollary D.2. Thus, in all, it suffices to choose

k

log T
≥ Ω

(
log

RΘRxLy nT

ε

)
to force the O(·) term to be less than ε, noting that the powers of n and T show up as a constant
factor in front of the log(·). This completes the proof.
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D Proof of the main regret bound

In this part of the appendix, we follow the proof structure outlined Section 4.2, to establish Theo-
rem 1. The lemmas involved also appear in the proof of the batch variant (Theorem 2).

D.1 Diameter bound: controlling the comparator matrix

We will show that the MΘ that competes with a system Θ is not too much larger than Θ, justifying
the choice of RM = Ω

(
R2

Θ

√
k
)

. Of course, this implies that the diameter term in the regret bound
is Dmax = 2RM . Concretely:

Lemma D.1. For any LDS parameters Θ = (A,B,C,D, h0 = 0) with 0 4 A 4 I and
‖B‖F , ‖C‖F , ‖D‖F , ‖h0‖ ≤ RΘ, the corresponding matrix MΘ ∈ Ĥ (which realizes the relax-
ation in Theorem 3) satisfies

‖MΘ‖2F ≤ O
(
R2

Θ

√
k
)
.

Proof. Recalling our construction MΘ in the proof of Theorem 3, we have

• ‖M (j)‖F ≤ ‖B‖F ‖C‖F ·max`∈[d] σ
−1/4
j 〈φj , µ(αl)〉, for each 1 ≤ j ≤ k.

• ‖M (x′)‖F = ‖D‖F ≤ O(RΘ).

• ‖M (x)‖F ≤ ‖B‖F ‖C‖F + ‖D‖F ≤ O(R2
Θ).

Recall that we do not considerM (y) as part of the online learning algorithm; it is always the identity
matrix. Thus, for the purposes of this analysis, it does not factor into regret bounds.

In Lemma E.4, we show that the reconstruction coefficients σ−1/4
j 〈φj , µ(αl)〉 are bounded by an

absolute constant; thus, those matrices each have Frobenius norm at most O(R2
Θ). These terms

dominate the Frobenius norm of the entire matrix, concluding the lemma.

This has a very useful consequence:

Corollary D.2. The predictions ŷt = MX̃t made by choosing M such that ‖M‖F ≤ O(R2
Θ

√
k)

satisfy
‖ŷt − yt‖2 ≤ O(R4

ΘR
2
xL

2
yk).

D.2 Gradient bound and final details

A subtle issue remains: the gradients may be large, as they depend on X̃t, defined by convolutions
of the entire input time series by some filters φj . Note that these filters do not preserve mass: they
are `2 unit vectors, which may cause the norm of the part of X̃t corresponding to each filter to be as
large as

√
T .

Fortunately, this is not the case. Indeed, we have:

Lemma D.3. Let {(σj , φj)}Tj=1 be the eigenpairs of Z, in decreasing order by eigenvalue. Then,
for each 1 ≤ j, t ≤ T , it holds that

‖σ1/4(φj ∗X)t‖∞ ≤ O (Rx log T ) .

Proof. Each coordinate of (σ1/4φj ∗ X)t is the inner product between φj and a sequence of T
real numbers, entrywise bounded by σ1/4

j Rx. Corollary E.6 shows that this is at most O(log T ), a
somewhat delicate result which uses matrix perturbation.

Thus, X̃t has nk entries with absolute value bounded by O (Rx log T ), concatenated with xt and
xt−1. So, we have:
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Corollary D.4. Let X̃t be defined as in Algorithm 1, without the yt−1 portion. Then,

‖X̃t‖2 ≤ O
(
Rx log T

√
nk
)
.

Our bound on the gradient follows:

Lemma D.5. SupposeM is chosen with diameter O(R2
Θ). Then, the gradients satisfy

Gmax
def
= max

M∈M,
1≤t≤T

‖∇ft(M)‖F ≤ O
(
R2

ΘR
2
xLy · nk3/2 log2 T

)
.

Proof. We compute the gradient, and apply Lemma D.3:

∇ft(M) = ∇
(
‖yt −MX̃t‖2

)
= 2(MX̃t − y)⊗ X̃t,

so that

‖∇ft(M)‖F = 2‖MX̃t − yt‖2 · ‖X̃t‖2

≤ 2
(
‖M‖F ‖X̃t‖2 + Ly

)
‖X̃t‖2

≤ 2
((
R2

Θ

√
k
)(

Rx log T
√
nk
)

+ Ly

)(
Rx log T

√
nk
)

≤ O
(
R2

ΘR
2
xLy · nk3/2 log2 T

)
,

as desired.

D.3 Assembling the regret bound

Using Lemma 4.2, collecting all terms from Lemmas D.1 and D.5, we have in summary

DmaxGmax = O
(
R2

Θ

√
k
)
·O
(
R2

ΘR
2
xLy · nk3/2 log2 T

)
= O

(
R4

ΘR
2
xLynk

2 log2 T
)
.

To compete with systems with parameters bounded by RΘ, in light of Theorem 3, k should be
chosen to be Θ

(
log2 T log(RxLyRΘn)

)
. It suffices to set the relaxation approximation error ε to

be a constant; in the online case, this is not the bottleneck of the regret bound. In all, the regret
bound from online gradient descent is

Regret(T ) ≤ O
(
R4

ΘR
2
x Ly log2(RΘRxLyn) · n

√
T log6 T

)
,

as claimed.

D.4 Diminishing effect of the initial hidden state

Finally, we show that h0 is not significant in this online setting, thereby proving a slightly more
general result. Throughout the rest of the analysis, we considered the comparator Θ∗, which forces
the initial hidden state to be the zero vector. We will show that this does not make much worse
predictions than Θ∗∗, which is allowed to set ‖h0‖2 ≤ RΘ. We quantify this below:

Lemma D.6. Relaxing the condition h0 = 0 for the comparator in Theorem 1 increases the regret
(additively) by at most

O
(
R4

ΘRxLy log(RΘRxLyn) log2 T
)
.

Proof. First, an intuitive sketch: Lemma F.1 states that for any α, there is an “envelope” bound
µ(α)(t) ≤ 1

t+1 . This means that the influence of h0 on the derivative of the impulse response
function decays as 1/t; thus, we can expect the total “loss of expressiveness” caused by forcing
h0 = 0 to be only logarithmic in T .

9



Indeed, with a nonzero initial hidden state, we have

ŷt − yt−1 = (CB +D)xt −Dxt−1 +

T−1∑
i=1

C(Ai −Ai−1)Bxt−i + C(At −At−1)h0.

Let ŷ1, . . . , ŷT denote the predictions made by an LDS Θ∗∗ = (A,B,C,D, h0) whose; ŷ∅1 , . . . , ŷ
∅
T

denote the predictions made by the LDS with the same (A,B,C,D), but h0 set to 0. Then, we have

‖ŷt − ŷ∅t ‖ = ‖C(At −At−1)h0‖ =
∥∥ d∑
l=1

C [µ(αl)(t) · el ⊗ el]h0

∥∥
≤ ‖C‖F ‖h0‖

√
n

t
≤ R2

Θ

√
n

t
.

Thus we have, for vectors ut satisfying ‖ut‖ ≤ R2
Θ/t:

T∑
t=1

‖ŷ∅t − yt‖2 =

T∑
t=1

‖ŷt + ut − yt‖2 ≤
T∑
t=1

‖ŷt − yt‖2 + ‖ut‖2 + 2‖ŷt − yt‖ ‖ut‖

≤
T∑
t=1

‖ŷt − yt‖2 +O
(
R4

Θn
)

+O
(

(R2
ΘRxLy

√
k) ·R2

Θ

√
n log T

)
≤

T∑
t=1

‖ŷt − yt‖2 +O
(
R4

ΘRxLy log(RΘRxLyn)n log2 T
)
,

where the inequalities respectively come from Cauchy-Schwarz, Lemma F.1, and Lemma D.2. This
completes the proof.

Thus, strengthening the comparator by allowing a nonzero h0 does not improve the asymptotic regret
bound from Theorem 1.

E Properties of the Hankel matrix ZT

In this section, we show some technical lemmas about the family of Hankel matrices ZT , whose
entries are given by

Zij =
2

(i+ j)3 − (i+ j)
.

E.1 Spectral tail bounds

We use the following low-approximate rank property of positive semidefinite Hankel matrices, from
[BT16]:

Lemma E.1 (Cor. 5.4 in [BT16]). Let Hn be a psd Hankel matrix of dimension n. Then,

σj+2k(Hn) ≤ 16

[
exp

(
π2

4 log(8bn/2c/π)

)]−2k+2

σj(Hn).

Note that the Hankel matrix ZT is indeed positive semidefinite, because we constructed it as

Z =

∫ 1

0

µ(α)⊗ µ(α) dα,

for a certain µ(α) ∈ RT . Also, note that at no point do we rely upon ZT being positive definite or
having all distinct eigenvalues, although both seem to be true.

The first result we need is an exponential decay of the tail spectrum of Z.
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Lemma E.2. Let σj be the j-th top singular value of Z := ZT . Then, for all T ≥ 10, we have

σj ≤ min

(
3

4
,K · c−j/ log T

)
,

where c = eπ
2/4 ≈ 11.79, and K < 106 is an absolute constant.

Proof. We begin by noting that for all j, σj ≤ Tr(Z) =
∑T
i=1

1
(2i)3−2i <

∑∞
i=1

1
4i3 <

3
4 .

Now, since T ≥ 10 implies 8bT/2c/π > T , we have

σ2+2k ≤ σ1+2k < 12 ·
[
exp

(
π2

2 log T

)]−k+1

< 1680 · c−2k/ log T .

Thus, we have that for all j,

σj < 1680 · c−(j−2)/ log T < 235200 · c−j/ log T ,

completing the proof.

We also need a slightly stronger claim: that all spectral gaps are large. Lemma E.2 does not preclude
that there are closely clustered eigenvalues under the exponential tail bound. In fact, this cannot be
the case:

Lemma E.3. Let σj be the j-th top singular value of Z := ZT . Then, if T ≥ 60, we have∑
j′>j

σj′ < 400 log T · σj .

Proof. For convenience, define σj := 0 when j ≥ T . Picking k = 4 and using Lemma E.1, we have
that

βj :=

T∑
q=1

σj+4q < 16σj

∞∑
q=1

[
exp

(
−π4

4 log T

)]q
= 16σj ·

1

1− exp
(
−π4

4 log T

)
< 100 log T · σj ,

where the last inequality follows from the fact that

1

1− e−x
<

6

x

whenever x < 6, and setting x := −π4

4 log T ≤
−π4

4 log 60 < 6.

Thus, we have ∑
j′>j

σj′ = βj + βj+1 + βj+2 + βj+3 < 4βj < 400 log T · σj ,

as desired.

E.2 Decaying reconstruction coefficients

To show a bound on the entries of MΘ, we need the following property of ZT :

Lemma E.4. For any 0 ≤ α ≤ 1 and 1 ≤ j ≤ T , we have

|〈φj , µ(α)〉| ≤ 61/4 σ
1/4
j .
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Proof. We have ∫ 1

0

〈φj , µ(α)〉2 dα =

∫ 1

0

φTj (µ(α)⊗ µ(α))φj

= φTj ZTφj = σj .

Thus, we have a bound on the expectation of the squared coefficient, when α is drawn uniformly
from [0, 1]. We proceed with the same argument as was used to prove Lemma C.2: since ‖µ(α)‖2
is 3-Lipschitz in α, so is 〈φj , µ(α)〉2 (since projection onto the one-dimensional subspace spanned
by φj is contractive). Thus it holds that

max
α∈[0,1]

〈φj , µ(α)〉2 ≤
√

6σj ,

from which the claim follows.

E.3 Controlling the `1 norms of filters

To bound the size of the convolutions, we need to control the `1 norm of the eigenvectors φj with a
tighter bound than

√
T . Actually, we prove a more general result, bounding the `2 → `1 subordinate

norm of Z1/4:

Lemma E.5. Let Z := ZT . Then, for every T > 0, and v ∈ Rn with ‖v‖2 = 1, we have

‖Z1/4v‖1 ≤ 2 + 2 log2 T.

Proof. We take the following steps:

(i) Start with a constant T0; the subordinate norm of ZT0 is clearly bounded by a constant.

(ii) Argue that doubling the size of the matrix (T 7→ 2T ) comprises only a small perturbation,
which will only affect the eigenvalues of the matrix by a small amount. This will show up
in the subordinate norm as an additive constant.

(iii) Iterate the doubling argument O(log T ) times to reach ZT from ZT0
, to conclude the

lemma.

The only nontrivial step is (ii), which we prove first. Consider the doubling step from T to 2T . Let Z
denote the 2T -by-2T matrix which has ZT as its upper left T -by-T submatrix, and zero everywhere
else. Let Z ′ denote Z2T , and call E = Z ′ − Z, which we interpret as the matrix perturbation
associated with doubling the size of the Hankel matrix.

Notice that when T ≥ 2, E is entrywise bounded by 2
(T+2)3−(T+2) ≤

2
T 3 , which we call emax for

short. Then, ‖E‖op is at most Temax ≤ 2
T 2 .

Hence, by the generalized Mirsky inequality of [Aud14] (setting f(x) = x1/4), we have a bound on
how much E perturbs the fourth root of Z:

‖Z1/4 − Z ′1/4‖2 ≤ ‖E‖1/42 ≤
(

2

T 2

)1/4

<
2√
T
.

Thus we have

‖Z ′1/4‖2→1 ≤ ‖Z1/4‖2→1 + ‖Z1/4 − Z ′1/4‖2→1

≤ ‖Z1/4‖2→1 +
√
T · ‖Z1/4 − Z ′1/4‖2

≤ ‖Z1/4‖2→1 +
√
T · 2√

T

= ‖Z1/4‖2→1 + 2.
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Thus, doubling the dimension increases the subordinate norm by at most a constant. We finish the
argument: start at T0 = 2, for which it clearly holds that

‖Z1/4
2 ‖2→1 <

√
2‖Z1/4

2 ‖F <
√

2‖Z4‖F < 2.

Noting that the norm is clearly monotonic in T , we repeat the doubling argument blog2 T c times, so
that

‖Z1/4
T ‖2→1 ≤ ‖Z1/4

2·2blog2 Tc‖2→1 < ‖Z1/4
2 ‖2→1 + 2blog2 T c < 2 + 2 log2 T,

as claimed.

We give an alternate form here:

Corollary E.6. Let (σj , φj) be the j-th largest eigenvalue-eigenvector pair of Z. Then,

‖φj‖1 ≤ O

(
log T

σ
1/4
j

)
.

F Properties of µ(α)

Throughout this section, fix some T ≥ 1; then, recall that µ(α) ∈ RT is defined as the vector whose
i-th entry is (1 − α)αi−1. At various points, we will require some elementary properties of µ(α),
which we verify here.

Lemma F.1 (1/t envelope of µ). For any t ≥ 0 and 0 ≤ α ≤ 1, it holds that

(1− α)αt ≤ 1

t+ 1
.

Proof. Setting the derivative to zero, the global maximum occurs at α∗ = t
t+1 . Thus,

(1− α∗)(α∗)t =
1

t+ 1

(
1− 1

t+ 1

)t
≤ 1

t+ 1
,

as claimed.

Corollary F.2. Let T ≥ 1. For t = 1, . . . , T , let αt ∈ [0, 1] be different in general. Then,

T∑
t=1

(1− αt)αt−1
t ≤ Hn = O(log T ),

where Hn denotes the n-th harmonic number.

Lemma F.3 (`1-norm is small). For all T ≥ 1 and 0 ≤ α ≤ 1, we have

‖µ(α)‖1 ≤ 1.

Proof. We have

‖µ(α)‖1 = (1− α)

T∑
t=1

αt−1 ≤ (1− α)

∞∑
t=1

αt−1 = 1,

proving the claim.

Lemma F.4 (`2-norm is small and Lipschitz). For all T ≥ 1 and 0 ≤ α ≤ 1, we have

(i) ‖µ(α)‖2 ≤ 1.

(ii)
∣∣ d
dα‖µ(α)‖2

∣∣ ≤ 3.

13



Proof. For the first inequality, compute

‖µ(α)‖2 =

T∑
i=1

(
(α− 1)αi−1

)2
=

T∑
i=1

α2i − 2α2i−1 + α2i−2

=
(α2 − 2α+ 1)(1− α2T )

1− α2
=

(1− α)(1− α2T )

1 + α
≤ 1.

For the second, differentiate the closed form to obtain∣∣∣∣ ddα‖µ(α)‖2
∣∣∣∣ =

∣∣∣∣2(αT − 1) + TαT−1(α2 − 1)

(1 + α)2

∣∣∣∣ ≤ 2(1− αT ) + TαT−1(1− α2)

(1 + α)2

=
2− αT

(1 + α)2
+
TαT−1(1− α)

1 + α
≤ 2 + TαT−1(1− α) ≤ 3,

where the final inequality uses Lemma F.1.

F.1 The Lipschitzness of a true LDS

We claim in Section 2.2 thatLy , the Lipschitz constant of a true LDS, is bounded by ‖B‖F ‖C‖FRx.
We now prove this fact, which is a consequence of the above facts.

Lemma F.5. Let Θ = (A,B,C,D, h0) be a true LDS, which produces outputs y1, . . . , yT from
inputs x1, . . . , xT by the definition in the recurrence, without noise. Let 0 4 A 4 I , and
‖B‖F , ‖C‖F , ‖D‖F , ‖h0‖ ≤ RΘ. Then, we have that for all t,

‖yt − yt−1‖ ≤ O(R2
ΘRx).

Proof. We have that for all 1 ≤ t ≤ T ,

‖yt − yt−1‖ =

∥∥∥∥(CB +D)xt −Dxt−1 +

T−1∑
i=1

C(Ai −Ai−1)Bxt−i + C(At −At−1)h0

∥∥∥∥
≤ (‖B‖F ‖C‖F + 2‖D‖F )Rx + ‖B‖F ‖C‖FRx +

‖C‖F ‖h0‖
t

,

where the inequality on the second term arises from Lemma F.3 and the inequality on the third from
Lemma F.2. This implies the lemma.
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