
A Ms. Pac-Man - experimental details

A.1 General information about Atari 2600 Ms. Pac-Man

The second domain is the Atari 2600 game Ms. Pac-Man. Points are obtained by eating pellets, while
avoiding ghosts (contact with one causes Ms. Pac-Man to lose a life). Eating one of the special power
pellets turns the ghost blue for a small duration, allowing them to be eaten for extra points. Bonus
fruits can be eaten for further increasing points, twice per level. When all pellets have been eaten, a
new level is started. There are a total of 4 different maps (see Figure 1 and Table 1) and 7 different
fruit types, each with a different point value (see Table 2).

Ms. Pac-Man is considered as one of hard games from the ALE benchmark set. When comparing
performance, it is important to realise that there are two different evaluation methods for ALE games
used across literature which result in hugely different scores (see Table 3). Because ALE is ultimately
a deterministic environment (it implements pseudo-randomness using a random number generator that
always starts with the same seed), both evaluation metrics aim to create randomness in the evaluation
in order to discourage methods from exploiting this deterministic property and rate methods with
more generalising behaviour higher. The first metric introduces a mild form of randomness by taking
a random number of no-op actions before control is handed over to the learning algorithm. In the case
of Ms. Pac-Man, however, the game starts with a certain inactive period that exceeds the maximum
number of random no-op steps, resulting in the game having a fixed start after all. The second metric
selects random starting points along a human trajectory and results in much stronger randomness,
and does result in the intended random start evaluation.

The best method with fixed start evaluation is STRAW with 6.673 points (Vezhnevets et al., 2016);
the best with random start evaluation is the dueling network architecture with 2.251 points (Wang
et al., 2016). The human baseline, as reported by Mnih et al. (2015), is 15.693 points. The highest
reported score by a human is 266.330. For reference, A3C scored 654 points with random start
evaluation (Mnih et al., 2016); no score is reported for fixed start evaluation.

Figure 1: The four different maps of Ms. Pac-Man.
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Table 1: Map type and fruit type per level.

level map fruit
1 red cherry
2 red strawberry
3 blue orange
4 blue pretzel
5 white apple
6 white pear
7 green banana
8 green 〈random〉
9 white 〈random〉

10 green 〈random〉
11 white 〈random〉
12 green 〈random〉
...

...
...

Table 2: Points breakdown of edible objects.

object points
pellet 10

power pellet 50
1st blue ghost 200
2nd blue ghost 400
3th blue ghost 800
4th blue ghost 1,600

cherry 100
strawberry 200

orange 500
pretzel 700
apple 1,000
pear 2,000

banana 5,000

Table 3: Reported scores on Ms. Pac-Man for fixed start evaluation (called ‘random no-ops’ in
literature) and random start evaluation (‘human starts’ in literature).

algorithm fixed start source rand start source
Human 15,693 Mnih et al. (2015) 15,375 Nair et al. (2015)
Random 308 Mnih et al. (2015) 198 Nair et al. (2015)

DQN 2,311 Mnih et al. (2015) 764 Nair et al. (2015)
DDQN 3,210 van Hasselt et al. (2016b) 1,241 van Hasselt et al. (2016b)

Prio. Exp. Rep 6,519 Schaul et al. (2016) 1,825 Schaul et al. (2016)
Dueling 6,284 Wang et al. (2016) 2,251 Wang et al. (2016)

A3C — — 654 Mnih et al. (2016)
Gorila 3,234 Nair et al. (2015) 1,263 Nair et al. (2015)

Pop-Art 4,964 van Hasselt et al. (2016a) — —
STRAW 6,673 Vezhnevets et al. (2016) — —

HRA 25,304 (this paper) 23,770 (this paper)

A.2 HRA architecture

GVF heads. Ms. Pac-Man state is defined as its position on the map and her direction (heading
North, East, South or West). Depending on the map, there are about 400 positions and 950 states
(not all directions are possible for each position). A GVF is created online for each visited Ms.
Pac-Man position. Each GVF is then in charge of determining the value of the random policy of Ms.
Pac-Man state for getting the pseudo-reward placed on the GVF’s associated position. The GVFs are
trained online with off-policy 1-step bootstrapping with α = 1 and γ = 0.99. Thus, the full tabular
representation of the GVF grid contains nbmaps×nbpositions×nbstates×nbactions ≈ 14M entries.

Aggregator. For each object of the game: pellets, ghosts and fruits, the GVF corresponding to its
position is activated with a multiplier depending on the object type. Edible objects’ multipliers are
consistent with the number of points they grant: pellets’ multiplier is 10, power pellets’ 50, fruits’
200, and blue and edible ghosts’ 1,000. A ghosts’ multiplier of -1,000 has demonstrated to be a fair
balance between gaining points and not being killed. Finally, the aggregator sums up all the activated
and multiplied GVFs to compute a global score for each of the nine actions and chooses the action
that maximises it.

Diversification head. The blue curve on Figure 2 reveals that this naïve setting performs bad
because it tends to deterministically repeat a bad trajectory like a robot hitting a wall continuously.
In order to avoid this pitfall, we need to add an exploratory mechanism. An ε-greedy exploration is
not suitable for this problem since it might unnecessarily put Ms. Pac-Man in danger. A Boltzmann
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Figure 2: Training curves for incrementally head additions to the HRA architecture.

distributed exploration is more suitable because it favours exploring the safe actions. It would
be possible to apply it on top of the aggregator, but we chose here to add a diversification head
Qdiv(st, a) that generates for each action a random value. This random value is drawn according to a
uniform distribution in [0,20]. We found that it is only necessary during the 50 first steps, to ensure
starting each episode randomly.

Qdiv(st, a) ∼ U(0, 20) if t < 50, (1)
Qdiv(st, a) = 0 otherwise. (2)

Score heads normalisation. The orange curve on Figure 2 shows that the diversification head
solves the determinism issue. The so-built architecture progresses fast, up to 10,000 points, but then
starts regressing. The analysis of the generated trajectories reveals that the system has difficulty to
finish levels: indeed, when only a few pellets remain on the screen, the aggregator gets overwhelmed
by the ghost avoider values. The regression in score is explained by the fact that the more the system
learns the more is gets easily scared by the ghosts, and therefore the more difficult it is for it to finish
the levels. We solve this issue by modifying the additive aggregator with a normalisation over the
score heads between 0 and 1. To fit this new value scale, the ghost multiplier is modified to -10.

Targeted exploration head. The green curve on Figure 2 grows over time as expected. It might
be surprising at first look that the orange curve grows faster, but it is because the episodes without
normalisation tend to last much longer, which allows more GVF updates per episode. In order to
speed up the learning, we decide to use a targeted exploration head Qteh(s, a), that is motivated by
trying out the less explored state-action couples. The value of this agent is computed as follows:

Qteh(s, a) = κ

√
4
√
N

n(s, a)
, (3)

where N is the number of actions taken until now and n(s, a) the number of times action a has been
performed in state s. This formula is inspired from upper confidence bounds Auer et al. (2002), but
replacing the stochastically motivated logarithmic function by a less drastic one is more compliant
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with our need for bootstrapping propagation. Note that this targeted exploration head is not a
replacement for the diversification head. They are complementary: diversification for making each
trajectory unique, and targeted exploration for prioritised exploration. The red curve on Figure 2
reveals that the new targeted exploration head helps exploration and makes the learning faster. This
setting constitutes the HRA architecture that is used in every experiment.

Executive memory head. When a human game player reaches the maximum of his cognitive and
physical ability, he starts to look for favourable situations or even glitches and memorises them. This
cognitive process is referred as executive memory in cognitive science literature (Fuster, 2003; Gluck
et al., 2013). The executive memory head records every sequence of actions that led to pass a level
without any kill. Then, when facing the same level, the head gives a high value to the recorded action,
in order to force the aggregator’s selection. Nota bene: since it does not allow generalisation, this
head is only employed for the level-passing experiment.

A.3 A3C baselines

Since we use low level features for the HRA architecture, we implement A3C and evaluate it both on
the pixel-based environment and on the low-level features. The implementation is performed in a
way to reproduce results of Mnih et al. (2015).

They are both trained similarly as in Mnih et al. (2016) on 8.108 frames, with γ = 0.99, entropy
regularisation of 0.01, n-step return of 5, 16 threads, gradient clipping of 40, and α is set to take the
maximum performance over the following values: [0.0001, 0.00025, 0.0005, 0.00075, 0.001]. The
pixel-based environment is a reproduction of the preprocessing and the network, except we only use
a history of 2, because our steps are twice as long.

With the low features, five channels of a 40 by 40 map are used embedding the positions of Ms.
Pac-Man, the pellets, the ghosts, the blue ghosts, and the special fruit. The input space is therefore
5 by 40 by 40 plus the direction appended after convolutions: 2 of them with 16 (respectfully 32)
filters of size 6 by 6 (respectfully 4 by 4) and subsampling of 2 by 2 and ReLU activation (for both).
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Figure 3: Gridsearch on γ values without executive memory smoothed over 500 episodes.
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Figure 4: Gridsearch on γ values with executive memory.

Then, the network uses a hidden layer of 256 fully connected units with ReLU activation. Finally, the
policy head has nbactions = 9 fully connected unit with softmax activation, and the value head has 1
unit with a linear activation. All weights are uniformly initialised He et al. (2015).

A.4 Results

Training curves. Most of the results are already presented in the main document. For more
completeness, we propose here the results of the gridsearch over γ values for both with and without
the executive memory. Values [0.95, 0.97, 0.99] have been tried independently for γscore and γghosts.

Figure 3 compares the training curves without executive memory. We can notice the following:

• all γ values turn out to yield very good results,
• those good results generalise over random human starts (not shown),
• high γ values for the ghosts tend to be better,
• the γ value for the score is less impactful.

Figure 4 compares the training curves with executive memory. We can notice the following:

• the comments on Figure 3 are still holding,
• it looks like that there is a bit more randomness in the level passing efficiency.
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