
Safe Adaptive Importance Sampling

Sebastian U. Stich
EPFL

sebastian.stich@epfl.ch

Anant Raj
Max Planck Institute for Intelligent Systems

anant.raj@tuebingen.mpg.de

Martin Jaggi
EPFL

martin.jaggi@epfl.ch

Abstract

Importance sampling has become an indispensable strategy to speed up optimiza-
tion algorithms for large-scale applications. Improved adaptive variants—using
importance values defined by the complete gradient information which changes
during optimization—enjoy favorable theoretical properties, but are typically com-
putationally infeasible. In this paper we propose an efficient approximation of
gradient-based sampling, which is based on safe bounds on the gradient. The
proposed sampling distribution is (i) provably the best sampling with respect to
the given bounds, (ii) always better than uniform sampling and fixed importance
sampling and (iii) can efficiently be computed—in many applications at negligible
extra cost. The proposed sampling scheme is generic and can easily be integrated
into existing algorithms. In particular, we show that coordinate-descent (CD) and
stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel
scheme. The proven efficiency of the proposed sampling is verified by extensive
numerical testing.

1 Introduction

Modern machine learning applications operate on massive datasets. The algorithms that are used
for data analysis face the difficult challenge to cope with the enormous amount of data or the vast
dimensionality of the problems. A simple and well established strategy to reduce the computational
costs is to split the data and to operate only on a small part of it, as for instance in coordinate
descent (CD) methods and stochastic gradient (SGD) methods. These kind of methods are state of
the art for a wide selection of machine learning, deep leaning and signal processing applications [9,
11, 35, 27]. The application of these schemes is not only motivated by their practical preformance,
but also well justified by theory [18, 19, 2].

Deterministic strategies are seldom used for the data selection—examples are steepest coordinate
descent [4, 34, 20] or screening algorithms [14, 15]. Instead, randomized selection has become
ubiquitous, most prominently uniform sampling [27, 29, 7, 8, 28] but also non-uniform sampling based
on a fixed distribution, commonly referred to as importance sampling [18, 19, 2, 33, 16, 6, 25, 24].
While these sampling strategies typically depend on the input data, they do not adapt to the information
of the current parameters during optimization. In contrast, adaptive importance sampling strategies
constantly re-evaluate the relative importance of each data point during training and thereby often
surpass the performance of static algorithms [22, 5, 26, 10, 21, 23]. Common strategies are gradient-
based sampling [22, 36, 37] (mostly for SGD) and duality gap-based sampling for CD [5, 23].

The drawbacks of adaptive strategies are twofold: often the provable theoretical guarantees can be
worse than the complexity estimates for uniform sampling [23, 3] and often it is computationally

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

inadmissible to compute the optimal adaptive sampling distribution. For instance gradient based
sampling requires the computation of the full gradient in each iteration [22, 36, 37]. Therefore one
has to rely on approximations based on upper bounds [36, 37], or stale values [22, 1]. But in general
these approximations can again be worse than uniform sampling.

This makes it necessary to develop adaptive strategies that can efficiently be computed in every
iteration and that come with theoretical guarantees that show their advantage over fixed sampling.

Our contributions. In this paper we propose an efficient approximation of the gradient-based
sampling in the sense that (i) it can efficiently be computed in every iteration, (ii) is provably better
than uniform or fixed importance sampling and (iii) recovers the gradient-based sampling in the full-
information setting. The scheme is completely generic and can easily be added as an improvement to
both CD and SGD type methods.

As our key contributions, we

(1) show that gradient-based sampling in CD methods is theoretically better than the classical fixed
sampling, the speed-up can reach a factor of the dimension n (Section 2);

(2) propose a generic and efficient adaptive importance sampling strategy that can be applied in CD
and SGD methods and enjoys favorable properties—such as mentioned above (Section 3);

(3) demonstrate how the novel scheme can efficiently be integrated in CD and SGD on an important
class of structured optimization problems (Section 4);

(4) supply numerical evidence that the novel sampling performs well on real data (Section 5).

Notation. For x ∈ Rn define [x]i := 〈x, ei〉 with ei the standard unit vectors in Rn. We abbreviate
∇if := [∇f]i. A convex function f : Rn → R with L-Lipschitz continuous gradient satisfies

f(x + ηu) ≤ f(x) + η 〈u,∇f(x)〉+ η2Lu

2 ‖u‖2 ∀x ∈ Rn,∀η ∈ R , (1)

for every direction u ∈ Rn and Lu = L. A function with coordinate-wise Li-Lipschitz continuous
gradients1 for constants Li > 0, i ∈ [n] := {1, . . . , n}, satisfies (1) just along coordinate directions,
i.e. u = ei, Lei

= Li for every i ∈ [n]. A function is coordinate-wise L-smooth if Li ≤ L for
i = 1, . . . , n. For convenience we introduce vector l = (L1, . . . , n)> and matrix L = diag(l). A
probability vector p ∈ ∆n := {x ∈ Rn≥0 : ‖x‖1 = 1} defines a probability distribution P over [n]
and we denote by i ∼ p a sample drawn from P .

2 Adaptive Importance Sampling with Full Information

In this section we argue that adaptive sampling strategies are theoretically well justified, as they
can lead to significant improvements over static strategies. In our exhibition we focus first on CD
methods, as we also propose a novel stepsize strategy for CD in this contribution. Then we revisit the
results regarding stochastic gradient descent (SGD) already present in the literature.

2.1 Coordinate Descent with Adaptive Importance Sampling

We address general minimization problems minx f(x). Let the objective f : Rn → R be convex with
coordinate-wise Li-Lipschitz continuous gradients. Coordinate descent methods generate sequences
{xk}k≥0 of iterates that satisfy the relation

xk+1 = xk − γk∇ikf(xk)eik . (2)

Here, the direction ik is either chosen deterministically (cyclic descent, steepest descent), or randomly
picked according to a probability vector pk ∈ ∆n. In the classical literature, the stepsize is often
chosen such as to minimize the quadratic upper bound (1), i.e. γk = L−1

ik
. In this work we

propose to set γk = αk[pk]−1
ik

where αk does not depend on the chosen direction ik. This leads to

1|∇if(x+ ηei)−∇if(x)| ≤ Li |η| , ∀x ∈ Rn, ∀η ∈ R.

2

directionally-unbiased updates, like it is common among SGD-type methods. It holds

Eik∼pk
[f(xk+1) | xk]

(1)

≤ Eik∼pk

[
f(xk)− αk

[pk]ik
(∇ikf(xk))

2
+
Likα

2
k

2[pk]2ik
(∇ikf(xk))

2 | xk
]

= f(xk)− αk ‖∇f(xk)‖22 +

n∑
i=1

Liα
2
k

2[pk]i
(∇if(xk))

2
. (3)

In adaptive strategies we have the freedom to chose both variables αk and pk as we like. We therefore
propose to chose them in such a way that they minimize the upper bound (3) in order to maximize the
expected progress. The optimal pk in (3) is independent of αk, but the optimal αk depends on pk.
We can state the following useful observation.
Lemma 2.1. If αk = αk(pk) is the minimizer of (3), then xk+1 := xk− αk

[pk]ik
∇ikf(xk)eik satisfies

Eik∼pk
[f(xk+1) | xk] ≤ f(xk)− αk(pk)

2
‖∇f(xk)‖22 . (4)

Consider two examples. In the first one we pick a sub-optimal, but very common [18] distribution:
Example 2.2 (Li-based sampling). Let pL ∈ ∆n defined as [pL]i = Li

Tr[L] for i ∈ [n], where
L = diag(L1, . . . , Ln). Then αk(pL) = 1

Tr[L] .

The distribution pL is often referred to as (fixed) importance sampling. In the special case when
Li = L for all i ∈ [n], this boils down to uniform sampling.

Example 2.3 (Optimal sampling2). Equation (3) is minimized for probabilities [p?k]i =
√
Li|∇if(xk)|
‖√L∇f(xk)‖

1

and αk(p?k) =
‖∇f(xk)‖22
‖√L∇f(xk)‖2

1

. Observe 1
Tr[L] ≤ αk(p?k) ≤ 1

Lmin
, where Lmin := mini∈[n] Li.

To prove this result, we rely on the following Lemma—the proof of which, as well as for the claims
above, is deferred to Section A.1 of the appendix. Here |·| is applied entry-wise.

Lemma 2.4. Define V (p,x) :=
∑n
i=1

Li[x]2i
[p]i

. Then arg minp∈∆n V (p,x) = |
√
Lx|

‖√Lx‖
1

.

The ideal adaptive algorithm. We propose to chose the stepsize and the sampling distribution for
CD as in Example 2.3. One iteration of the resulting CD method is illustrated in Algorithm 1. Our
bounds on the expected one-step progress can be used to derive convergence rates of this algorithm
with the standard techniques. This is exemplified in Appendix A.1. In the next Section 3 we develop
a practical variant of the ideal algorithm.

Efficiency gain. By comparing the estimates provided in the examples above, we see that the
expected progress of the proposed method is always at least as good as for the fixed sampling. For
instance in the special case where L = Li for i ∈ [n], the Li-based sampling is just uniform sampling

with αk(punif) = 1
Ln . On the other hand αk(p?k) =

‖∇f(xk)‖22
L‖∇f(xk)‖21

, which can be n times larger than
αk(punif). The expected one-step progress in this extreme case coincides with the one-step progress
of steepest coordinate descent [20].

2.2 SGD with Adaptive Sampling

SGD methods are applicable to objective functions which decompose as a sum

f(x) = 1
n

∑n
i=1 fi(x) (5)

with each fi : Rd → R convex. In previous work [22, 36, 37] is has been argued that the following
gradient-based sampling [p̃?k]i =

‖∇fi(xk)‖2∑n
i=1‖∇fi(xk)‖2

is optimal in the sense that it maximizes the
expected progress (3). Zhao and Zhang [36] derive complexity estimates for composite functions.
For non-composite functions it becomes easier to derive the complexity estimate. For completeness,
we add this simpler proof in Appendix A.2.

2Here “optimal” refers to the fact that p?
k is optimal with respect to the given model (1) of the objective

function. If the model is not accurate, there might exist a sampling that yields larger expected progress on f .

3

Algorithm 1 Optimal sampling
(compute full gradient)

Compute∇f(xk)
(define optimal sampling)

Define (p?k, α
?
k) as in Example 2.3

ik ∼ p?k

xk+1 := xk − α?
k

[p?
k]ik
∇ikf(xk)

Algorithm 2 Proposed safe sampling
(update l.- and u.-bounds)

Update `, u
(compute safe sampling)

Define (p̂k, α̂k) as in (7)
ik ∼ p̂k
Compute∇ikf(xk)

xk+1 := xk − α̂k

[p̂k]ik
∇ikf(xk)

Algorithm 3 Fixed sampling

(define fixed sampling)
Define (pL, ᾱ) as in Example 2.2
ik ∼ pL
Compute∇ikf(xk)

xk+1 := xk − ᾱ
[pL]ik

∇ikf(xk)

Figure 1: CD with different sampling strategies. Whilst Alg. 1 requires to compute the full gradient,
the compute operation in Alg. 2 is as cheap as for fixed importance sampling, Alg. 3. Defining the
safe sampling p̂k requires O(n log n) time.

3 Safe Adaptive Importance Sampling with Limited Information

In the previous section we have seen that gradient-based sampling (Example 2.3) can yield a massive
speed-up compared to a static sampling distribution (Example 2.2). However, sampling according
to p?k in CD requires the knowledge of the full gradient ∇f(xk) in each iteration. And likewise,
sampling from p̃?k in SGD requires the knowledge of the gradient norms of all components—both
these operations are in general inadmissible, i.e. the compute cost would void all computational
benefits of the iterative (stochastic) methods over full gradient methods.

However, it is often possible to efficiently compute approximations of p?k or p̃?k instead. In contrast
to previous contributions, we here propose a safe way to compute such approximations. By this we
mean that our approximate sampling is provably never worse than static sampling, and moreover, we
show that our solution is the best possible with respect to the limited information at hand.

3.1 An Optimization Formulation for Sampling

Formally, we assume that we have in each iteration access to two vectors `k,uk ∈ Rn≥0 that
provide safe upper and lower bounds on either the absolute values of the gradient entries ([`k]i ≤
|∇if(xk)| ≤ [uk]i) for CD, or of the gradient norms in SGD: ([`k]i ≤ ‖∇fi(xk)‖2 ≤ [uk]i). We
postpone the discussion of this assumption to Section 4, where we give concrete examples.

The minimization of the upper bound (3) amounts to the equivalent problem3

min
αk

min
pk∈∆n

[
−αk ‖ck‖22 +

α2
k

2
V (pk, ck)

]
⇔ min

pk∈∆n

V (pk, ck)

‖ck‖22
(6)

where ck ∈ Rn represents the unknown true gradient. That is, with respect to the bounds `k,uk,
we can write ck ∈ Ck := {x ∈ Rn : [`k]i ≤ [x]i ≤ [uk]i, i ∈ [n]}. In Example 2.3 we derived the
optimal solution for a fixed ck ∈ Ck. However, this is not sufficient to find the optimal solution for
an arbitrary ck ∈ Ck. Just computing the optimal solution for an arbitrary (but fixed) ck ∈ Ck is
unlikely to yield a good solution. For instance both extreme cases ck = `k and ck = uk (the latter
choice is quite common, cf. [36, 23]) might be poor. This is demonstrated in the next example.
Example 3.1. Let ` = (1, 2)>, u = (2, 3)>, c = (2, 2)> and L1 = L2 = 1. Then V

(
`
‖`‖1

, c
)

=
9
4 ‖c‖

2
2, V

(
u
‖u‖1

, c
)

= 25
12 ‖c‖

2
2, whereas for uniform sampling V

(
c
‖c‖1

, c
)

= 2 ‖c‖22.

The proposed sampling. As a consequence of these observations, we propose to solve the follow-
ing optimization problem to find the best sampling distribution with respect to Ck:

vk := min
p∈∆n

max
c∈Ck

V (p, c)

‖c‖22
, and to set (αk,pk) :=

(
1
vk
, p̂k
)
, (7)

where p̂k denotes a solution of (7). The resulting algorithm for CD is summarized in Alg. 2.

In the remainder of this section we discuss the properties of the solution p̂k (Theorem 3.2) and how
such a solution can be efficiently be computed (Theorem 3.4, Algorithm 4).

3Although only shown here for CD, an equivalent optimization problem arises for SGD methods, cf. [36].

4

3.2 Proposed Sampling and its Properties

Theorem 3.2. Let (p̂, ĉ) ∈ ∆n × Rn≥0 denote a solution of (7). Then Lmin ≤ vk ≤ Tr [L] and

(i) max
c∈Ck

V (p̂, c)

‖c‖22
≤ max

c∈Ck

V (p, c)

‖c‖22
, ∀p ∈ ∆n; (p̂ has the best worst-case guarantee)

(ii) V (p̂, c) ≤ Tr [L] · ‖c‖22, ∀c ∈ Ck. (p̂ is always better than Li-based sampling)
Remark 3.3. In the special case Li = L for all i ∈ [n], the Li-based sampling boils down to uniform
sampling (Example 2.2) and p̂ is better than uniform sampling: V (p̂, c) ≤ Ln ‖c‖22, ∀c ∈ Ck.

Proof. Property (i) is an immediate consequence of (7). Moreover, observe that the Li-based
sampling pL is a feasible solution in (7) with value V (pL,c)

‖c‖22
≡ Tr [L] for all c ∈ Ck. Hence

Lmin ≤
‖
√
Lc‖21
‖c‖22

2.4
= min

p∈∆n

V (p, c)

‖c‖22
≤ V (p̂, c)

‖c‖22

(∗)
≤ V (p̂, ĉ)

‖ĉ‖22

(7)

≤ max
c∈Ck

V (pL, c)

‖c‖22
= Tr [L] , (8)

for all c ∈ Ck, thus vk ∈ [Lmin,Tr [L]] and (ii) follows. We prove inequality (∗) in the appendix, by
showing that min and max can be interchanged in (7).

A geometric interpretation. We show in Appendix B that the optimization problem (7) can
equivalently be written as

√
vk = maxc∈Ck

‖
√
Lc‖1
‖c‖2

= maxc∈Ck

〈
√
l,c〉
‖c‖2

, where [l]i = Li for i ∈ [n].
The maximum is thus attained for vectors c ∈ Ck that minimize the angle with the vector l.

Theorem 3.4. Let c ∈ Ck, p =
√
Lc

‖
√
Lc‖1

and denote m = ‖c‖22 · ‖
√
Lc‖−1

1 . If

[c]i =

[uk]i if [uk]i ≤

√
Lim,

[`k]i if [`k]i ≥
√
Lim,√

Lim otherwise,
∀i ∈ [n] , (9)

then (p, c) is a solution to (7). Moreover, such a solution can be computed in time O(n log n).

Proof. This can be proven by examining the optimality conditions of problem (7). This is deferred to
Section B.1 of the appendix. A procedure that computes such a solution is depicted in Algorithm 4.
The algorithm makes extensive use of (9). For simplicity, assume first L = In for now. In each
iteration t , a potential solution vector ct is proposed, and it is verified whether this vector satisfies all
optimality conditions. In Algorithm 4, ct is just implicit, with [ct]i = [c]i for decided indices i ∈ D
and [ct]i = [

√
Lm]i for undecided indices i /∈ D. After at most n iterations a valid solution is found.

By sorting the components of
√
L−1`k and

√
L−1uk by their magnitude, at most a linear number of

inequality checks in (9) have to be performed in total. Hence the running time is dominated by the
O(n log n) complexity of the sorting algorithm. A formal proof is given in the appendix.

Algorithm 4 Computing the Safe Sampling for Gradient Information `,u

1: Input: 0n ≤ ` ≤ u, L, Initialize: c = 0n, u = 1, ` = n, D = ∅.
2: `sort := sort_asc(

√
L−1`), usort := sort_asc(

√
L−1u), m = max(`sort)

3: while u ≤ ` do
4: if [`sort]` > m then (largest undecided lower bound is violated)
5: Set corresponding [c]index := [

√
L`sort]`; ` := `− 1; D := D ∪ {index}

6: else if [usort]u < m then (smallest undecided upper bound is violated)
7: Set corresponding [c]index := [

√
Lusort]u; u := u+ 1; D := D ∪ {index}

8: else
9: break (no constraints are violated)

10: end if
11: m := ‖c‖22 · ‖

√
Lc‖−1

1 (update m as in (9))
12: end while
13: Set [c]i :=

√
Lim for all i /∈ D and Return

(
c,p =

√
Lc

‖
√
Lc‖1

, v =
‖
√
Lc‖21
‖c‖22

)

5

Competitive Ratio. We now compare the proposed sampling distribution p̂k with the optimal
sampling solution in hindsight. We know that if the true (gradient) vector c̃ ∈ Ck would be given to
us, then the corresponding optimal probability distribution would be p?(c̃) =

√
Lc̃

‖
√
Lc̃‖1

(Example 2.3).

Thus, for this c̃ we can now analyze the ratio V (p̂k,c̃)
V (p?(c̃),c̃) . As we are interested in the worst case ratio

among all possible candidates c̃ ∈ Ck, we define

ρk := max
c∈Ck

V (p̂, c)

V (p?(c), c)
= max

c∈Ck

V (p̂, c)

‖
√
Lc‖21

. (10)

Lemma 3.5. Let wk := minc∈Ck

‖
√
Lc‖21
‖c‖22

. Then Lmin ≤ wk ≤ vk, and ρk ≤ vk
wk

(≤ vk
Lmin

).

Lemma 3.6. Let γ ≥ 1. If [Ck]i ∩ γ[Ck]i = ∅ and γ−1[Ck]i ∩ [Ck]i = ∅ for all i ∈ [n] (here [Ck]i
denotes the projection on the i-th coordinate), then ρk ≤ γ4.

These two lemma provide bounds on the competitive ratio. Whilst Lemma 3.6 relies on a relative
accuracy condition, Lemma 3.5 can always be applied. However, the corresponding minimization
problem is non-convex. Note that knowledge of ρk is not needed to run the algorithm.

4 Example Safe Gradient Bounds

In this section, we argue that for a large class of objective functions of interest in machine learning,
suitable safe upper and lower bounds `,u on the gradient along every coordinate direction can be
estimated and maintained efficiently during optimization. A similar argument can be given for the
efficient approximation of component wise gradient norms in finite sum objective based stochastic
gradient optimization.

As the guiding example, we will here showcase the training of generalized linear models (GLMs) as
e.g. in regression, classification and feature selection. These models are formulated in terms of a
given data matrix A ∈ Rd×n with columns ai ∈ Rd for i ∈ [n].

Coordinate Descent - GLMs with Arbitrary Regularizers. Consider general objectives of the
form f(x) := h(Ax) +

∑n
i=1 ψi([x]i) with an arbitrary convex separable regularizer term given

by the ψi : R → R for i ∈ [n]. A key example is when h : Rd → R describes the least-squares
regression objective h(Ax) = 1

2 ‖Ax− b‖22 for a b ∈ Rd. Using that this h is twice differentiable
with ∇2h(Ax) = In, it is easy to see that we can track the evolution of all gradient entries, when
performing CD steps, as follows:

∇if(xk+1)−∇if(xk) = γk〈ai,aik〉 , ∀i 6= ik . (11)

for ik being the coordinate changed in step k (here we also used the separability of the regularizer).

Therefore, all gradient changes can be tracked exactly if the inner products of all datapoints are
available, or approximately if those inner products can be upper and lower bounded. For computa-
tional efficiency, we in our experiments simply use Cauchy-Schwarz |〈ai,aik〉| ≤ ‖ai‖ · ‖aik‖. This
results in safe upper and lower bounds [`k+1]i ≤ ∇if(xk+1) ≤ [uk+1]i for all inactive coordinates
i 6= ik. (For the active coordinate ik itself one observes the true value without uncertainty). These
bounds can be updated in linear time O(n) in every iteration.

For general smooth h (again with arbitrary separable regularizers ψi), (11) can readily be extended to
hold [32, Lemma 4.1], the inner product change term becoming 〈ai,∇2f(Ax̃)aik〉 instead, when
assuming h is twice-differentiable. Here x̃ will be an element of the line segment [xk,xk+1].

Stochastic Gradient Descent - GLMs. We now present a similar result for finite sum problems (5)
for the use in SGD based optimization, that is f(x) := 1

n

∑n
i=1 fi(x) = 1

n

∑n
i=1 hi(a

>
i x).

Lemma 4.1. Consider f : Rd → R as above, with twice differentiable hi : R→ R. Let xk,xk+1 ∈
Rd denote two successive iterates of SGD, i.e. xk+1 := xk − ηk aik∇hik(a>ikxk) = xk + γk aik .
Then there exists x̃ ∈ Rd on the line segment between xk and xk+1, x̃ ∈ [xk,xk+1] with

∇fi(xk+1)−∇fi(xk) = γk ∇2hi(a
>
i x̃) 〈ai,aik〉 ai , ∀ i 6= ik . (12)

6

This leads to safe upper and lower bounds for the norms of the partial gradient, [`k]i ≤ ‖∇fi(xk)‖2 ≤
[uk]i, that can be updated in linear time O(n), analogous to the coordinate case discussed above.4

We note that there are many other ways to track safe gradient bounds for relevant machine learn-
ing problems, including possibly more tight ones. We here only illustrate the simplest variants,
highlighting the fact that our new sampling procedure works for any safe bounds `,u.

Computational Complexity. In this section, we have demonstrated how safe upper and lower
bounds `,u on the gradient information can be obtained for GLMs, and argued that these bounds can
be updated in time O(n) per iteration of CD and SGD. The computation of the proposed sampling
takes O(n log n) time (Theorem 3.4). Hence, the introduced overhead in Algorithm 2 compared
to fixed sampling (Algorithm 3) is of the order O(n log n) in every iteration. The computation of
one coordinate of the gradient, ∇ikf(xk), takes time Θ(d) for general data matrices. Hence, when
d = Ω(n), the introduced overhead reduces to O(log n) per iteration.

5 Empirical Evaluation

In this section we evaluate the empirical performance of our proposed adaptive sampling scheme on
relevant machine learning tasks. In particular, we illustrate performance on generalized linear models
with L1 and L2 regularization, as of the form (5),

min
x∈Rd

1

n

n∑
i=1

hi(a
>
i x) + λ · r(x) (13)

We use square loss, squared hinge loss as well as logistic loss for the data fitting terms hi, and
‖x‖1 and ‖x‖22 for the regularizer r(x). The datasets used in the evaluation are rcv1, real-sim and
news20.5 The rcv1 dataset consists of 20,242 samples with 47,236 features, real-sim contains 72,309
datapoints and 20,958 features and news20 contains 19,996 datapoints and 1,355,191 features. For
all datasets we set unnormalized features with all the non-zero entries set to 1 (bag-of-words features).
By real-sim’ and rcv1’ we denote a subset of the data chosen by randomly selecting 10,000 features
and 10,000 datapoints. By news20’ we denote a subset of the data chose by randomly selecting
15% of the features and 15% of the datapoints. A regularization parameter λ = 0.1 is used for all
experiments.

Our results show the evolution of the optimization objective over time or number of epochs (an epoch
corresponding to n individual updates). To compute safe lower and upper bounds we use the methods
presented in Section 4 with no special initialization, i.e. `0 = 0n, u0 = ∞n.

Coordinate Descent. In Figure 2 we compare the effect of the fixed stepsize αk = 1
Ln (denoted

as “small”) vs. the time varying optimal stepsize (denoted as “big”) as discussed in Section 2.
Results are shown for optimal sampling p?k (with optimal stepsize αk(p?k), cf. Example 2.3), our
proposed sampling p̂k (with optimal stepsize αk(p̂k) = v−1

k , cf. (7)) and uniform sampling (with
optimal stepsize αk(pL) = 1

Ln , as here L = LIn, cf. Example 2.2). As the experiment aligns
with theory—confirming the advantage of the varying “big” stepsizes—we only show the results for
Algorithms 1–3 in the remaining plots.

Performance for squared hinge loss, as well as logistic regression with L1 and L2 regularization is
presented in Figure 3 and Figure 4 respectively. In Figures 5 and 6 we report the iteration complexity
vs. accuracy as well as timing vs. accuracy results on the full dataset for coordinate descent with
square loss and L1 (Lasso) and L2 regularization (Ridge).

Theoretical Sampling Quality. As part of the CD performance results in Figures 2–6 we include
an additional evolution plot on the bottom of each figure to illustrate the values vk which determine
the stepsize (α̂k = v−1

k) for the proposed Algorithm 2 (blue) and the optimal stepsizes of Algorithm 1
(black) which rely on the full gradient information. The plots show the normalized values vk

Tr[L] , i.e.
the relative improvement over Li-based importance sampling. The results show that despite only
relying on very loose safe gradient bounds, the proposed adaptive sampling is able to strongly benefit
from the additional information.

4Here we use the efficient representation∇fi(x) = θ(x) · ai for θ(x) ∈ R.
5All data are available at www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

7

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Epochs

Uniform
Proposed (big step)
Proposed (small step)

0 1 2 5 6

1.00

0.99

0.98

0.97

0.96

0.95

0.94 f(x)

vk

k

10

0
-1
-2
-3
-4

(a) rcv1’, L1 reg.

Epochs0 1 2 5 6

Optimal (big step)
Optimal (small step)

1.00

0.95

0.90

0.85
f(x)

vk

k

10

0
-1
-2
-3
-4

(b) rcv1’, L2 reg.

Figure 2: (CD, square loss) Fixed vs. adaptive
sampling strategies, and dependence on stepsizes.
With “big” αk = v−1

k and “small” αk = 1
Tr[L] .

0.98
0.96
0.94
0.92
0.90
0.88
0.86

1.00

f(x)

vk

k

10

0
-1
-2
-3
-4

Epochs0 1 2 5 6

Uniform
Proposed
Optimal

(a) rcv1’, L1 reg.

Uniform
Proposed
Optimal

f(x)

vk

k

Epochs0 0.5 1 2.5 3

1.00

0.90

0.80

0.70

10

0
-1
-2
-3
-4

0.95

0.85

0.75

0.65

(b) real-sim’, L2 reg.

Figure 3: (CD, squared hinge loss) Function
value vs. number of iterations for optimal step-
size αk = v−1

k .

(a) rcv1’, L1 reg. (b) rcv1’, L2 reg. (c) real-sim’, L1 reg. (d) real-sim’, L2 reg.

Figure 4: (CD, logistic loss) Function value vs. number of iterations for different sampling strategies.
Bottom: Evolution of the value vk which determines the optimal stepsize (α̂k = v−1

k). The plots
show the normalized values vk

Tr[L] , i.e. the relative improvement over Li-based importance sampling.

(a) rcv1, L1 reg.

Uniform
Proposed
Optimal

Epochs0 0.5 1 2

1.00

0.95

0.90

0.85

0.80

0.75

0.70
f(x)

vk

k

10

0
-1
-2
-3
-4

(b) real-sim, L1 reg.

Figure 5: (CD, square loss) Function value vs.
number of iterations on the full datasets.

Time0 2 4 146 1612

Uniform
Proposed

1.00

0.95

0.90

0.85

0.80

0.75
f(x)

vk

k

10

0
-1
-2
-3
-4

(a) real-sim, L1 reg.

Uniform
Proposed

1.00

0.95

0.90

0.85

0.80

0.75

Time0 2 4 146 1612

f(x)

vk

k

10

0
-1
-2
-3
-4

(b) real-sim, L2 reg.

Figure 6: (CD, square loss) Function value vs.
clock time on the full datasets. (Data for the
optimal sampling omitted, as this strategy is not
competitive time-wise.)

65

60

55

50

45

40

35

Uniform
Proposed
Optimal

Epochs0 0.5 1 2.52

(a) rcv1’, L1 reg.

Uniform
Proposed
Optimal

Epochs0 0.5 1 2

90

80

70

60

50

40

(b) rcv1’, L2 reg.

Uniform
Proposed
Optimal

Epochs0 0.5 1 2.52

140

120

100

80

60

40

(c) real-sim’, L1 reg.

Uniform
Proposed
Optimal

Epochs0 0.5 1 2.52

100

80

60

40

20

(d) real-sim’, L2 reg.

Figure 7: (SGD, square loss) Function value vs. number of iterations.

Uniform
Proposed
Optimal

Epochs0 1 2 4

7

6

5

4

3

2

(a) news20’, L1 reg.

Figure 8: (SGD, square loss) Function value vs.
number of iterations.

Uniform
Proposed

40
35
30
25
20
15
10

Time0 5 10 2520

(a) news20’, L1 reg.

Figure 9: (SGD square loss) Function value vs.
clock time.

8

