
A Lipschitz Continuity and Robustness

In order to understand capacity control in terms of Lipschitz continuity, we review here the relevant
guarantees. Given an input space X and metricM, a function f : X → R on a metric space (X ,M)
is called a Lipschitz function if there exists a constant CM, such that |f(x)− f(y)| ≤ CMM(x, y).
Luxburg and Bousquet [14] studied the capacity of functions with bounded Lipschitz constant on
metric space (X ,M) with a finite diameter diamM(X ) = supx,y∈XM(x, y) and showed that the

capacity is proportional to
(
CM
γmargin

)n
diamM(X ). This capacity bound is weak as it has an exponential

dependence on input size.

Another related approach is through algorithmic robustness as suggested by Xu and Mannor [29].
Given ε > 0, the model fw found by a learning algorithm is K robust if X can be partitioned into K
disjoint sets, denoted as {Ci}Ki=1, such that for any pair (x, y) in the training set s ,3

x, z ∈ Ci ⇒ |`(w,x)− `(w, z)| ≤ ε (6)

Xu and Mannor [29] showed the capacity of a model class whose models are K-robust scales as K.
For the model class of functions with bounded Lipschitz C‖.‖, K is proportional to C‖.‖

γmargin
-covering

number of the input domain X under norm ‖.‖. However, the covering number of the input domain

can be exponential in the input dimension and the capacity can still grow as
(
C‖.‖
γmargin

)n
4.

Returning to our original question, the C`∞ and C`2 Lipschitz constants of the network can be
bounded by

∏d
i=1 ‖Wi‖1,∞ (hence `1-path norm) and

∏d
i=1 ‖Wi‖2, respectively [29, 26]. This will

result in a very large capacity bound that scales as
(∏d

i=1‖Wi‖2
γmargin

)n
, which is exponential in both the

input dimension and depth of the network. This shows that simply bounding the Lipschitz constant
of the network is not enough to get a reasonable capacity control.

B Experiments Settings

In experiment with different network sizes, we train a two layer perceptron with ReLU activation and
varying number of hidden units without Batch Normalization or dropout. In the rest of the experiments,
we train a modified version of the VGG architecture [24] with the configuration 2 × [64, 3, 3, 1],
2 × [128, 3, 3, 1], 2 × [256, 3, 3, 1], 2 × [512, 3, 3, 1] where we add Batch Normalization before
ReLU activations and apply 2 × 2 max-pooling with window size 2 and dropout after each stack.
Convolutional layers are followed by 4× 4 average pooling, a fully connected layer with 512 hidden
units and finally a linear layer is added for prediction.

In all experiments we train the networks using stochastic gradient descent (SGD) with mini-batch
size 64, fixed learning rate 0.01 and momentum 0.9 without weight decay. In all experiments where
achieving zero training error is possible, we continue training until the cross-entropy loss is less than
10−4.

When calculating norms on a network with a Batch Normalization layer, we reparametrize the
network to one that represents the exact same function without Batch Normalization as suggested
in [21]. In all our figures we plot norm divided by margin to avoid scaling issues (see Section 2),
where we set the margin over training set S to be 5th-percentile of the margins of the data points in S,
i.e. Prc5 {fw(xi)[yi]−maxy 6=yi fw(x)[y]|(xi, yi) ∈ S} . We have also investigated other versions
of the margin and observed similar behavior to this notion.

We calculate the sharpness, as suggested in [12] - for each parameter wi we bound the magnitude
of perturbation by α(|wi| + 1) for α = 5.10−4. In order to compute the maximum perturbation
(maximize the loss), we perform 2000 updates of stochastic gradient ascent starting from the minimum,
with mini-batch size 64, fixed step size 0.01 and momentum 0.9.

To compute the expected sharpness, we perturb each parameter wi of the model with noise generated
from Gaussian distribution with zero mean and standard deviation, α(10 |wi| + 1). The expected

3Xu and Mannor [29] have defined the robustness as a property of learning algorithm given the model class
and the training set. Here since we are focused on the learned model, we introduce it as a property of the model.

4Similar to margin-based bounds, we drop the term that depends on the diameter of the input space.
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sharpness is average over 1000 random perturbations each of which are averaged over a mini-batch
of size 64. We compute the expected sharpness for different choices of α. For each value of α the KL

divergence can be calculated as 1
α2

∑
i

(
wi

(10|wi|+1)

)2

.

C Bounding Sharpness

We have discussed margin based and sharpness based complexity measures to understand capacity.
We have also discussed how sharpness based complexity measures in combination with norms
characterize the generalization behavior under the PAC-Bayes framework. In this section we study the
question of what affects the sharpness of neural networks? For the case of linear predictors, sharpness
only depends on the norm of the predictor. In contrast, for multilayered networks, interaction between
the layers plays a major role and consequently two different networks with the same norm can have
drastically different sharpness values. For example, consider a network where some subset of the
layers despite having non-zero norm interact weakly with their neighbors, or are almost orthogonal to
each other. Such a network will have very high sharpness value compared to a network where the
neighboring layers interact strongly.

In this section we establish sufficient conditions to bound the expected sharpness of a feedforward
network with ReLU activations. Such conditions serve as a useful guideline in studying what
helps an optimization method to converge to less sharp optima. Unlike existing generalization
bounds [5, 19, 14, 29, 26], our sharpness based bound does not suffer from exponential dependence
on depth.

For a given x ∈ Rn, let Dx,w
i denote the diagonal {1, 0} matrix corresponding to activation in layer

i. To simplify the presentation we drop the x superscript and use Di instead. We can therefore write
fw(x) = WdDd−1Wd−1 · · · D1W1 x = Wd

(
Πd−1
i=1DiWi

)
x where we drop the x,w superscript

from Dx,w
i and use Di instead but remember that Di depends on x and the parameters Wj for any

j ≤ i.
Now we discuss the conditions that affect the sharpness of a network. As discussed earlier, weak
interactions between layers can cause the network to have high sharpness value. Condition C1 below
prevents such weak interactions (cancellations). A network can also have high sharpness if the
changes in the number of activations is exponential in the perturbations to its weights, even for small
perturbations. Condition C2 avoids such extreme situations on activations. Finally, if a non-active
node with large weights becomes active because of the perturbations in lower layers, that can lead to
huge changes to the output of the network. Condition C3 prevents having such spiky (in magnitude)
hidden units. This leads us to the following three conditions, that help in avoiding such pathological
cases.

(C1) : Given x, let x = W0 and D0 = I . Then, for all 0 ≤ a < c < b ≤ d, ‖
(
Πb
i=aDiWi

)
‖F ≥

µ√
hc
‖Πb

i=c+1DiWi‖F ‖ (Πc
i=aDiWi) ‖F .

(C2) : Given x, for any level k, 1
hk

∑
i∈[hk] 1Wk,iΠ

k−1
j=1DjWjx≤δ ≤ C2δ.

(C3) : For all i, ‖Wi‖22,∞hi ≤ C2
3‖DiWi‖2F .

Here, Wk,i denotes the weights of the ith output node in layer k. ‖Wi‖2,∞ denotes the maximum
L2 norm of a hidden unit in layer i. Now we state our result on the generalization error of a ReLU
network, in terms of average sharpness and its norm. Let ‖x‖ = 1 and h = maxdi=1 hi.

Theorem 1. Let νi be a random hi×hi−1 matrix with each entry distributed according toN (0, σ2
i ).

Then, under the conditions C1, C2, C3, with probability ≥ 1− δ,

Eν∼N (0,σ)n [L(fw+ν)]− L̂(fw) ≤ O
([

Πd
i=1 (1 + γi)− 1

+Πd
i=1 (1 + γiC2C3)

(
Πd
i=1(1 + γiCδC2)− 1

)]
CL
∑
x

‖fw(x)‖F
m

)
+

√√√√ 1

m

(
d∑
i=1

‖Wi‖2F
σ2
i

+ ln
2m

δ

)
.

where γi =
σi
√
hi
√
hi−1

µ2‖Wi‖F and Cδ = 2
√

ln(dh/δ).
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Figure 5: Verifying the conditions of Theorem 1 on a 10 layer perceptron with 1000 hidden units in each layer,
i.e. more than 10,000,000 parameters on MNIST. We have numerically checked that all values are within the
displayed range. Left: C1: condition number of the network, i.e. 1

µ
. Middle: C2: the ratio of activations that

flip based on magnitude of perturbation. Right: C3 : the ratio of norm of incoming weights to each hidden units
with respect to average of the same quantity over hidden units in the layer.

To understand the above generalization error bound, consider choosing γi = σ
Cδd

, and we get a bound
that simplifies as follows:

Eν∼N (0,σ)n [L(fw+ν)]− L̂(fw) ≤ O
(
σ (1 + (1 + σC2C3)C2)CL

∑
x ‖fw(x)‖F

m

)

+

√√√√ 1

m

(
d2

µ4

d∑
i=1

hihi−1

σ2
+ ln

2m

δ

)

If we choose large σ, then the network will have higher expected sharpness but smaller ’norm’ and
vice versa. Now one can optimize over the choice of σ to balance between the terms on the right hand
side and get a better capacity bound. For any reasonable choice of σ, the generalization error above,
depends only linearly on depth and does not have any exponential dependence, unlike other notions
of generalization. Also the error gets worse with decreasing µ and increasing C2, C3 as the sharpness
of the network increases which is in accordance with our discussion of the conditions above.

Additionally the conditions C1− C3 actually hold for networks trained in practice as we verify in
Figure 5, and our experiments suggest that, µ ≥ 1/4, C2 ≤ 5 and C3 ≤ 3. Figure 6 compares con-
dition C1, C2 and C3 on learned weights to that of random initialization respectively. Interestingly,
we observe that the network with learned weights is very similar to its random initialization in terms
of these conditions.

Proof of Theorem 1 We bound the expectation as follows:

E
∣∣∣L̂(fw+ν(x))− L̂(fw(x))

∣∣∣
≤ CLE‖fw+ν(x)− fw(x)‖F
(i)
= CLE‖(W + ν)d

(
Πd−1
i=1 D̂i(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

≤ CLE‖(W + ν)d
(

Πd−1
i=1Di(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

+ CLE‖(W + ν)d
(

Πd−1
i=1 D̂i(W + ν)i

)
∗ x− (W + ν)d

(
Πd−1
i=1Di(W + ν)i

)
∗ x‖F

≤ CLE‖(W + ν)d
(

Πd−1
i=1Di(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F + CLE‖Errd‖F , (7)

where Errd = ‖(W + ν)d

(
Πd−1
i=1 D̂i(W + ν)i

)
∗ x− (W + ν)d

(
Πd−1
i=1Di(W + ν)i

)
∗ x‖F and

D̂i is the diagonal matrix with 0’s and 1’s corresponding to the activation pattern of the perturbed
network fw+ν(x).

The first term in the equation (7) corresponds to error due to perturbation of a network with unchanged
activations (linear network). Intuitively this is small when any subset of successive layers of the
network do no interact weakly with each other (not orthogonal to each other). Condition C1 captures
this intuition and we bound this error in Lemma 8.
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(a) Condition C1: condition number 1
µ

of the network and its decomposition to two cases for learned weights.
Top: random initialization Bottom: learned weights. Left: distribution of all combinations of a ≤ c ≤ b− 1.
Middle: when a < c < b− 1. Right: when c = a or c = b− 1.
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(b) Condition C1: condition number 1
µ

of the network and its decomposition to two cases for random
initialization. Top: random initialization Bottom: learned weights. Left: distribution of all combinations of
a ≤ c ≤ b− 1. Middle: when a < c < b− 1. Right: when c = a or c = b− 1.
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Figure 6: Comparing conditions in Theorem 1 on learned weights to that of random initialization.
We have trained a 10 layer perceptron with 1000 hidden units in each layer, i.e. more than 10,000,000
parameters on MNIST. We have numerically checked that all values are within the displayed range.
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Lemma 1. Let νi be a random hi × hi−1 matrix with each entry distributed according to N (0, σ2
i ).

Then, under the condition C1,

E‖(W + ν)d
(
Πd−1
i=1Di(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

≤

(
Πd
i=1

(
1 +

σi
√
hihi−1

µ2‖DiWi‖F

)
− 1

)
‖fw(x)‖F .

The second term in the equation (7) captures the perturbation error due to change in activations. If a
tiny perturbation can cause exponentially many changes in number of active nodes, then that network
will have huge sharpness. Condition C2 and C3 essentially characterize the behavior of sensitivity of
activation patterns to perturbations, leading to a bound on this term in Lemma 2.

Lemma 2. Let νi be a random hi × hi−1 matrix with each entry distributed according to N (0, σ2
i ).

Then, under the conditions C1, C2 and C3, with probability ≥ 1− δ, for all 1 ≤ k ≤ d,

‖D̂k −Dk‖1 ≤ O
(
C2hkCδσk‖fk−1

w ‖F
)

and
E‖Errk‖F ≤ O

(
Πk
i=1 (1 + γiC2C3)

(
Πk
i=1(1 + γiCδC2)− 1

)
‖fkw‖F

)
.

where γi =
σi
√
hi
√
hi−1

µ2‖DiWi‖F and Cδ = 2
√

ln(dh/δ).

Hence, from Lemma 8 and Lemma 2 we get,

E
∣∣∣L̂(fw+ν(x))− L̂(fw(x))

∣∣∣
≤
[
Πd
i=1 (1 + γi)− 1 + Πd

i=1 (1 + γiC2C3)
(

Πd
i=1(1 + γiCδC2)− 1

)]
CL‖fw(x)‖F .

Here γi =
σi
√
hi
√
hi−1

µ2‖DiWi‖F
. Substituting the above bound on expected sharpness in the PAC-Bayes result

(equation (5)), gives the result.

Proof of Lemma 1. Define gw,ν,s(x) as the network fw with weight Wi in every layer i ∈ s replaced
by νi. Hence,

‖(W + ν)d
(
Πd−1
i=1Di(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

≤ ‖
∑
i

gw,ν,{i}(x)‖F + ‖
∑
i,j

gw,ν,{i,j}(x)‖F + · · ·+ ‖fν(x)‖F (8)

Base case: First we show the bound for terms with one noisy layer. Let gw,ν,{k}(x) denote fw(x)
with weights in layer k, Wk replaced by νk. Now notice that,

E‖gw,ν,{k}(x)‖F = E‖WdΠ
d−1
i=k+1DiWi ∗Dkνk ∗

(
Πk−1
i=1 DiWi

)
∗ x‖F

(i)

≤ σk‖WdΠ
d−1
i=k+1DiWi‖F ‖‖

(
Πk−1
i=1 DiWi

)
∗ x‖F

(ii)

≤ σk

√
hkhk−1

µ2‖DkWk‖F
‖Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

= σk

√
hkhk−1

µ2‖DkWk‖F
‖fw(x)‖F .

(i) follows from Lemma 3. (ii) follows from condition C1.

Induction step: Let for any set s ⊂ [d], |s| = k, the following holds:

E‖gw,ν,s(x)‖F ≤ ‖fw(x)‖FΠi∈sσi

√
hihi−1

µ2‖DiWi‖F
.
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We will prove this now for terms with k + 1 noisy layers.

E‖gw,ν,s∪{j}, x)‖F ≤ σj
√
hjhj−1

µ2‖DjWj‖
E‖gw,ν,s(x)‖F

≤ σj
√
hjhj−1

µ2‖DjWj‖
‖fw(x)‖FΠi∈sσi

√
hihi−1

µ2‖DiWi‖F

= ‖fw(x)‖FΠi∈s∪{j}σi

√
hihi−1

µ2‖DiWi‖F

Substituting the above expression in equation (8) gives,

‖(W + ν)d
(
Πd−1
i=1Di(W + ν)i

)
∗ x−Wd

(
Πd−1
i=1DiWi

)
∗ x‖F

≤

(
Πd
i=1

(
1 +

σi
√
hihi−1

µ2‖DiWi‖F

)
− 1

)
‖fw(x)‖F .

Proof of Lemma 2. We prove this lemma by induction on k. Recall that D̂i is the diagonal matrix
with 0’s and 1’s corresponding to the activation pattern of the perturbed network fw+ν(x). Let
Cδ = 2

√
ln(dh/δ) and 1E denote the indicator function, that is 1 if the event E is true, 0 else. We

also use fkw(x) to denote the network truncated to level k, in particular fkw(x) = Πk
i=1DkWkx.

Base case:

‖D̂1 −D1‖1 =
∑
i

1〈(W+ν)1,i,x〉∗〈W1,i,x〉<0 =
∑
i

1〈(w)1,i,x〉2<−〈(ν)1,i,x〉∗〈(w)1,i,x〉

≤
∑
i

1|〈(w)1,i,x〉|<|〈(ν)1,i,x〉|.

Since ν1 is a random Gaussian matrix, and ‖x‖ ≤ 1, for any i, |〈(ν)1,i, x〉| ≤ 2σ1

√
ln(dh/δ) =

σ1Cδ with probability greater than 1− δ
d . Hence, with probability ≥ 1− δ

d ,

‖D̂1 −D1‖1 ≤
∑
i

1|〈(w)1,i,x〉|≤σ1Cδ ≤ C2h1σ1Cδ.

This completes the base case for k = 1. D̂1 is a random variable that depends on ν1. Hence, in the
remainder of the proof, to avoid this dependence, we separately bound D̂1 −D using the expression
above and compute expectation only with respect to ν1. With probability ≥ 1− δ

d ,

E‖Err1‖F = E‖D̂1 ∗ (W + ν)1x−D1 ∗ (W + ν)1x‖F
≤ E‖(D̂1 −D1) ∗W1x‖F + E‖(D̂1 −D1) ∗ ν1x‖F
(i)

≤
√
C2h1σ1Cδσ1 +

√
C2h1σ1Cδσ1

= 2
√
C2h1σ1Cδσ1.

(i) follows because, each hidden node in E‖(D̂1 − D1) ∗W1x‖F has norm less than σ1Cδ (as it
changed its activation), number of such units is less than C2h1σ1Cδ .

k = 1 case does not capture all the intricacies and dependencies of higher layer networks. Hence we
also evaluate the bounds for k = 2.

‖D̂2 −D2‖1 ≤
∑
i

1〈(W+ν)2,i,f1
w+ν〉∗〈W2,i,f1

w〉≤0 ≤
∑
i

1|〈W2,i,f1
w〉|≤|〈ν2,i,f1

w+ν〉|+|〈W2,i,f1
w+ν−f1

w〉|
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Now, with probability ≥ 1− 2δ
d we get:

∣∣〈ν2,i, f
1
w+ν

〉∣∣+
∣∣〈W2,i, f

1
w+ν − f1

w

〉∣∣
≤ Cδσ2

(
‖f1

w‖F + 2
√
C2h1σ1Cδσ1

)
+ ‖W2,i‖2

√
C2h1σ1Cδσ1

≤ Cδσ2

(
‖f1

w‖F + 2
√
C2h1σ1Cδσ1

)
+ C3

‖D2W2‖F√
h2

2
√
C2h1σ1Cδσ1

(i)

≤ Cδσ2

(
‖f1

w‖F + 2

√
σ̂1√

hi + hi−1

σ̂1

)
+ 2σ̂1

C3‖fw(x)‖1/dF
µ

√
σ̂1√

hi + hi−1

= Cδσ2

(
‖f1

w‖F + β1σ̂1

)
+
C3‖fw(x)‖1/dF

µ
β1σ̂1

where, βi = 2
√

σ̂1√
hi+hi−1

. (i) follows from condition C1, which results in

Πd
i=2

µ‖DiWi‖F√
hi

µ‖D1W1x‖F√
h1

≤ ‖fw(x)‖F . Hence, if we consider the rebalanced network5 where all

layers have same values for µ‖DiWi‖F√
hi

, we get, µ‖DiWi‖F√
hi

≤ ‖fw(x)‖1/dF . Also the above equations

follow from setting, σi = σ̂i
C2Cδ
√
hi+hi−1

.

Hence, with probability ≥ 1− 2δ
d ,

‖D̂2 −D2‖1 ≤ C2 ∗ h2

(
Cδσ2

(
‖f1

w‖F + β1σ̂1

)
+
C3‖fw(x)‖1/dF

µ
β1σ̂1

)
.

Since, we choose σi to scale as some small number O(σ), in the above expression the first term
scales as O(σ) and the last two terms decay at least as O(σ3/2). Hence we do not include them in the
computation of Err.

E‖Err2‖F = E‖D̂2(W + ν)2 ∗ D̂1 ∗ (W + ν)1x−D2(W + ν)2 ∗D1 ∗ (W + ν)1x‖F
≤ E‖(D̂2 −D2)(W + ν)2 ∗ (D̂1 −D1) ∗ (W + ν)1x‖F + E‖D2(W + ν)2 ∗ (D̂1 −D1) ∗ (W + ν)1x‖F

+ E‖(D̂2 −D2)(W + ν)2 ∗D1 ∗ (W + ν)1x‖F .

We will bound now the first term in the above expression. With probability ≥ 1− 2δ
d ,

E‖(D̂2 −D2)(W + ν)2 ∗ (D̂1 −D1) ∗ (W + ν)1x‖F
≤ E‖(D̂2 −D2)W2 ∗ (D̂1 −D1) ∗W1x‖F + E‖(D̂2 −D2)W2 ∗ (D̂1 −D1) ∗ ν1x‖F

+ E‖(D̂2 −D2)ν2 ∗ (D̂1 −D1) ∗W1x‖F + E‖(D̂2 −D2)ν2 ∗ (D̂1 −D1) ∗ ν1x‖F

≤ 2
√
C2 ∗ h2Cδσ2‖f1

W ‖FCδσ2‖f1
W ‖F

√
C2 ∗ h1 ∗ Cδσ1Cδσ1

+ 2
√
C2 ∗ h2Cδσ2‖f1

W ‖FCδσ2

√
h1

√
C2 ∗ h1 ∗ Cδσ1Cδσ1 +O(σ2)

≤ 4‖f2
w‖F

C2
δσ2σ1

√
h1

µ‖D2W2‖F
Π2
i=1

√
C2hiCδσi.

Induction step:

Now we assume the statement for all i ≤ k and prove it for
k + 1. ‖D̂k − Dk‖1 ≤ O

(
C2hkCδσk‖fk−1

w ‖F
)

and E‖Errk‖F ≤
5The parameters of ReLu networks can be scaled between layers without changing the function
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O

(
Πk
i=1

(
1 +

σi
√
hi
√
hi−1C2C3

µ2‖Wi‖F

)(
Πk
i=1(1 +

σi
√
hi
√
hi−1CδC2

µ2‖Wi‖F )− 1

)
‖fkw‖F

)
. Now we

prove the statement for k + 1.

‖D̂k+1 −Dk+1‖1 =
∑
i

1〈(W+ν)k+1,i,Πki=1D̂i(W+ν)i∗x〉∗〈W2,i,D1W1x〉≤0

≤
∑
i

1|〈Wk+1,i,Πki=1D̂i(W+ν)i∗x〉|≤|〈νk+1,i,Πki=1D̂i(W+ν)i∗x〉|

=
∑
i

1|〈Wk+1,i,fkw+ν〉|≤|〈νk+1,i,fkw+ν〉|

≤
∑
i

1|〈Wk+1,i,fkW 〉|≤|〈νk+1,i,fkw〉|+|〈νk+1,i,fkw+ν−fkw〉|+|〈Wk+1,i,fkw+ν−fkw〉|

Hence, with probability ≥ 1− kδ
d ,

‖D̂k+1 −Dk+1‖1 ≤ C2hk+1

[
Cδσk+1(‖fkw‖F + ‖fkw+ν − fkw‖F ) + ‖Wk+1,i‖‖fkw+ν − fkw‖F

]
≤ C2hk+1Cδσk+1‖fkw‖F + C2hk+1Cδσk+1‖fkw+ν − fkw‖F + C2hk+1‖Wk+1,i‖‖fkw+ν − fkw‖F .

Now we will show that the last two terms in the above expression scale as O(σ2). For that, first

notice that ‖fkw+ν − fkw‖F ≤
(

Πk
i=1

(
1 +

σi
√
hihi−1

µ2‖DiWi‖F

)
− 1

)
‖fw(x)‖F + Errk, from lemma 1.

Note that the second term in the above expression clearly scale as O(σ2).

Hence,

‖D̂k+1 −Dk+1‖1 ≤ O
(
C2hk+1Cδσk+1‖fkw‖F

)
.

‖Errk+1‖ = ‖fk+1
w+ν − f̃k+1

w+ν‖F
= ‖D̂k+1(W + ν)k+1Πk+1

i=1 D̂i(W + ν)ix−Dk+1(W + ν)k+1Πk+1
i=1Di(W + ν)ix‖F

≤ ‖(D̂k+1 −Dk+1)(W + ν)k+1Πk+1
i=1Di(W + ν)ix‖F + ‖D̂k+1(W + ν)k+1Errk‖F

≤ ‖(D̂k+1 −Dk+1)(W + ν)k+1Πk+1
i=1Di(W + ν)ix‖F + ‖(D̂k+1 −Dk+1)(W + ν)k+1Errk‖F

+ ‖Dk+1(W + ν)k+1Errk‖F

Substituting the bounds for D̂k+1 −Dk+1 and Errk gives us, with probability ≥ 1− kδ
d .

E‖Errk+1‖ ≤
√
C2hk+1Cδσk+1‖fkw‖FCδσk+1‖fkW ‖FE‖Πk+1

i=1Di(W + ν)ix‖F

+ E‖Errk‖F
(√

C2hk+1Cδσk+1‖fkw‖FCδσk+1‖fkw‖F + ‖Dk+1Wk+1‖F + σk+1

√
hk+1

)
Now we bound the above terms following the same approach as in proof of Lemma 1, by considering
all possible replacements of Wi with νi. That gives us the result.

Lemma 3. Let A ,B be n1 × n2 and n3 × n4 matrices and ν be a n2 × n3 entrywise random
Gaussian matrix with νij ∼ N (0, σ). Then,

E [‖A ∗ ν ∗B‖F ] ≤ σ‖A‖F ‖B‖F .
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Proof. By Jensen’s inequality,

E [‖A ∗ ν ∗B‖F ]
2 ≤ E

[
‖A ∗ ν ∗B‖2F

]
= E


∑

ij

∑
kl

AikνklBlj

2


=
∑
ij

∑
kl

A2
ikE

[
ν2
kl

]
B2
lj

= σ2‖A‖2F ‖B‖2F .
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