
Supplemental Material: Nonlinear random matrix theory for deep learning

1 Outline of proof of Theorem 1

1.1 Polygonal Graphs

Expanding out the powers of M in the equation for moments E
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Notice that this sum can be decomposed based on the pattern of unique i and µ indices, and, because
the elements of Y are i.i.d., the expected value of terms with the same index pattern is the same.
Therefore, we are faced with the task of identifying the frequency of each index pattern and the
corresponding expected values to leading order in n0 as n0 ! 1.

To facilitate this analysis, it is useful to introduce a diagrammatic representation of the terms in
eqn. (S1). For each term, i.e. each instantiation of indices i and µ in the sum, we will define a graph.

Consider first any term in which all indices are unique. In this case, we can identify each index with
a vertex and each factor Y

i

j

µ

j

with an edge, and the corresponding graph can be visualized as a
2k-sided polygon. There is a canonical planar embedding of such a cycle.

More generally, certain indices may be equal in the term. In this case, we can think of the term as
corresponding to a polygonal cycle where certain vertices have been identified. The graph now looks
like a union of cycles, each joined to another at a common vertex.

Finally, we define admissible index identifications as those for which no i index is identified with
a µ index and for which no pairings are crossing (with respect to the canonical embedding). The
admissible graphs for k = 3 are shown in Figure S1, and for k = 4 in Figure S2.
Proposition 1. Every admissible graph is a connected outer-planar graph in which all blocks are

simple even cycles.

The proof follows from a simple inductive argument. We will show that these admissible graphs
determine the asymptotic (in n0) value of the expectation.

1.2 Calculation of Moments

Let E
G

denote the expected value of a term in eqn. (S1) corresponding to a graph G. We begin
with the case where G is a 2k-cycle. Each 2k-cycle represents a multi-dimensional integral over the
elements of W and X . Here we establish a correspondence between these integrals and a lower-
dimensional integral whose structure is defined by the adjacency matrix of the graph. For a given
2k-cycle, the expectation we wish to compute is,
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and i1 6= i2 6= ... 6= i
k

6= µ1 6= µ2 6= ... 6= µ
k

. Next we introduce auxilliary integrals over z, which
we can do by adding delta function contraints enforcing Z = WX . To this end, let Z denote the set
of unique Y

iµ

in eqn. (S2). Let Z 2 Rn0⇥d be the matrix whose entries are,
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For each y 2 Z we introduce an auxilliary integral,
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Next we use a Fourier representation of the Dirac delta function,
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for each of the delta functions in eqn. (S5). As above, we define a matrix ⇤ 2 Rn1⇥d whose entries
are,
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Then we can write,
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Note that the integral is bounded so we can use Fubini-Tonelli Theorem to switch integrals and
perform the X and W integrals before � and z integrals. We first perform the X integrals,
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Next we perform the W integrals,
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where w
j

2 Rn1 is the jth column of W and I
n1 is the n1 ⇥ n1 identity matrix. Compiling the

results up until now gives,
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where we have introduced the abbreviation,
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) (S14)
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to ease the notation. So far, we have not utilized the fact that n0, n1, and d are large. To proceed,
we will use this fact to perform the � integrals in the saddle point approximation, also known as the
method of steepest descent. To this end, we write
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and observe that the � integrals will be dominated by contributions near where the coefficient of
n0 is minimized. It is straightforward to see that the minimizer is ⇤ = 0, at which point the phase
factor tr⇤Z vanishes. Because the phase factor vanishes at the minimzer, we do not need to worry
about the complexity of the integrand, and the approximation becomes equivalent to what is known
as Laplace’s method. The leading contributions to the integral come from the first non-vanishing
terms in the expansion around the minimizer ⇤ = 0. To perform this expansion, we use the following
identity, valid for small X ,
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Using this expansion, we have,
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where we have changed integration variables to ˜�
ij

=

�

w

�

xp
n0
�
ij

and

D˜� =

Y

�̃

↵�

2⇤̃

d˜�
↵�

2⇡�
w

�
x

/
p
n0

. (S18)

To extract the asymptotic contribution of this integral, we need to understand traces of ˜⇤˜

⇤

T . To this
end, we make the following observation.
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where A is the weighted adjacency matrix defined by the undirected bigraph with vertex set V =

(I, U), where
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and edges,
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The proof follows by defining an adjacency matrix:
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where the I vertices are ordered before U vertices, and observe that the weights agree. Therefore,
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Observe that the traces agree as required.

Now suppose that the middle exponential factor appearing in eqn. (S17) is truncated to finite order,
m,
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Since we are expanding for small ˜⇤, we can expand the exponential into a polynomial of order 2m.
Any term in this polynomial that does not contain at least one factor ˜�

iµ

for each Y
iµ

2 Z will vanish.
To see this, denote (any one of) the missing ˜�
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as ˜� and the corresponding z
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as z. Then,

Z
dz

Z
d˜�

2⇡�
w

�
x

/
p
n0

e�
n0
2 �̃

2

e�i

p
n0

�

w

�

x

�̃zf(z) =

Z
dz

e
� z

2

2�2
w

�

2
x

p
2⇡�2

w

�2
x

f(z)

=

Z
dzp
2⇡

e�
z

2

2 f(�
w

�
x

z)

= 0 ,

(S26)

The last line follows from eqn. (2).

The leading contribution to eqn. (S17) comes from the terms in the expansion of eqn. (S25)
that have the fewest factors of ˜�, while still retaining one factor ˜�

iµ

for each Y
iµ

. Since ˜�! 0, as
n0 ! 1 (the minimizer is ˜

⇤ = 0), it follows that if there is a a term with exactly one factor of ˜�
iµ

for each Y
iµ

, it will give the leading contribution. We now argue that there is always such a term, and
we compute its coefficient.

Using eqn. (S19), traces of tr(

˜

⇤

˜

⇤

T

) are equivalent to traces of A2, where A is the adja-
cency matrix of the graph defined above. It is well known that the (u, v) entry of the Ak is the
sum over weighted walks of length k, starting at vertex u and ending at vertex v. If there is a
cycle of length k in the graph, then the diagonal elements of Ak contain two terms with exactly
one factor of ˜� for each edge in the cycle. (There are two terms arising from the clockwise and
counter-clockwise walks around the cycle). Therefore, if there is a cycle of length 2k, the expression
1/2 trA2k contains a term with one factor of ˜� for each edge in the cycle, with coefficient equal to 2k.

So, finally, we can write for k > 1,
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where in the second to last line we have integrated by parts and we have defined,
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We also note that if k = 1, there is no need to expand beyond first order because those integrals will
not vanish (as they did in eqn. (S26)). So in this case,

E2 ⇡
Z

D˜�Dz e�
n0
2 tr ⇤̃⇤̃T

e�i

p
n0

�

w

�

x

tr ⇤̃ZF (z)

=

"Z
d˜�

2⇡�
w

�
x

/
p
n0

dz e�
n0
2 �̃

2

e�i

p
n0

�

w

�

x

�̃z f(z)

#2k

=

2

4
Z

dz
e
� z

2

2�2
w

�

2
x

p
2⇡n0�2

w

�2
x

f(z)

3

5
2k

=

Z
dz

e�z

2
/2

p
2⇡

f(�
w

�
x

z)2

⌘ ⌘ .

(S29)

The quantities ⌘ and ⇣ are important and will be used to obtain an expression for G.

The above was the simplest case, a 2k cycle. For any admissible graph G, we can view it as a tree
over blocks, each block being a (even) cycle. If G has 2k edges then one can write the integral above
as a product of integrals over cyclic blocks. In this case, each block contributes a factor of n0 to the
integral, and if there are c cyclic blocks, with k1 blocks of size 1 and k0 blocks of size greater than 1,
the resulting expression for the integral has value nk0�k

0 ⇣k0⌘k1 . Since k = k0 = 1 for a 2-cycle, we
have the following proposition.

Proposition 2. Given an admissible graph G with c cyclic blocks, b blocks of size 1, and 2k edges,

E
G

grows as nc�k

0 · ⌘b⇣c�b

.

1.2.1 Non-Admissible Graphs

Finally, we note that the terms contributing to the admissible graphs determine the asymptotic value
of the expectation. The number of terms (and therefore graphs) with k indices and c identifications is
⇥(n2k�c

0 ). Although the fraction of non-admissible graphs with c identifications is far larger than
that of admissible graphs as a function of k, the leading term for the integrals corresponding to latter
grow as nc�k

0 , while the leading terms for the former grow at most as nc�1�k

0 . The underlying reason
for this subleading scaling is that any partition of a non-admissible graph into c blocks, where no
two blocks have an edge in-between, requires c index identifications in the original 2k-polygon, as
opposed to c � 1 identifications for an admissible graph. Therefore, we may restrict our attention
only to admissible graphs in order to complete the asymptotic evaluation of G.

1.3 Generating function
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same quantity modulo permutations of the vertices. Then, combining the definition of G(z) (eqn. (7))
and Proposition 2, we have,
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where we have defined,
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Let P (t) =
P

k

P (k)tk be a generating function. Let 2k refer to the size of the cycle containing
vertex 1. Summing over all possible values of k yields the following recurrence relation,
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Note that if vertex 1 is inside a bubble, we get a factor of ⌘ instead of ⇣, which is why that term
is treated separately. The auxilliary generating functions P

�

and P
 

correspond to the generating
functions of graphs with an extra factor � or  respectively, i.e.

P
�

= 1 + (P � 1)� P
 

= 1 + (P � 1) , (S33)

which arises from making a i-type or µ-type vertex identifications. Accounting for the relation
between G and P in eqn. (S30) yields,
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. (S34)

Hence, we have completed our outline of the proof of Theorem 1.

2 Example Graphs
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Figure S1: Admissible graphs for k = 3
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Figure S2: Admissible topologies for k = 4

3 Hermite expansion

Any function with finite Gaussian moments can be expanded in a basis of Hermite polynomials.
Defining
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we can write,
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for some constants f
n

. Owing the orthogonality of the Hermite polynomials, this representation is
useful for evaluating Gaussian integrals. In paticular, the condition that f be centered is equivalent
the vanishing of f0,
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The constants ⌘ and ⇣ are also easily expressed in terms of the coefficients,
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and,
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(S39)

which together imply that ⌘ � ⇣. Equality holds when f
i>1 = 0, in which case,

f(x) = f1H1(x) = f1x (S40)
i.e. when f is a linear function.

The Hermite representation also suggests a convenient way to randomly sample functions
with specified values of ⌘ and ⇣. First choose f1 =

p
⇣, and then enforce the constraint,

⌘ � 1 =

NX

n=2

f2
n

, (S41)

where we have truncated the representation to some finite order N . Random values of f
n

satisfying
this relation are simple to obtain since they all live on the sphere of radius

p
⌘ � 1.
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4 Equations for Stieltjes transform

From eqn. (11), straightforward algebra shows that G satisfies,
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The total derivative of this equation with respect to z is,
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To eliminate G from eqs. (S43) and (S45), we compute the resultant of the two polynomials, which
produces a quartic polynomial in G0. Using eqns. (21) and (22) to change variables to Etrain, we can
derive the following equation satisfied by Etrain,
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where the c
i,j

are given below. Notice that ⌘ = ⇣ is a degenerate case since a4 = b3 = 0 and the
resultant must be computed separately. We find,

3X

i=0

4X

j=0

d
i,j

�jEi

train|⌘=⇣ = 0 , (S47)

where the d
i,j

are given below. By inspection we find that

c
i,j

(�⌘,�⇣) = �8�jc
i,j

(⌘, ⇣) and d
i,j

(�⇣) = �4�jd
i,j

(⇣) , (S48)

which establishes the homogeneity of Etrain in �, ⌘, and ⇣. From the coefficients c
i,0 we can read off

the quartic equation satisfied by Etrain when � = 0 and ⌘ 6= ⇣. It has two double roots at,

Etrain|�=0 = 0 and Etrain|�=0 = 1� �/ . (S49)

In accordance with the condition that G ! 1/z as z ! 1, the first root is chosen if  < � and the
second root chosen otherwise.

If ⌘ = ⇣, then the coefficients d
i,0 define a cubic equation for Etrain that has three distinct

roots,

Etrain|�=0,⌘=⇣ = 0 , Etrain|�=0,⌘=⇣ = 1� � , and Etrain|�=0,⌘=⇣ = 1� �/ . (S50)
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In this case, the first root is chosen when � > max( , 1), the second root is chosen when �, < 1,
and the third root chosen otherwise.

Finally we give the coefficients c
i,j

,

c0,0 = 0, c0,1 = 0, c0,2 = 0, c0,3 = 0,

c1,0 = 0, c1,1 = 0, c3,6 = 0, c4,6 = 0 ,

and,

c0,4 =  6�3
�
⇣2(4 � 1)� 2⇣⌘ � ⌘2 2

��
⇣2
�
( � 1) + �2 + 2 �

�
�

2⇣⌘ �� ⌘2 �2
�

c0,5 = 2⇣ 8�3
�
⇣2(� + �+ 1) + ⇣⌘

�
�  2

+  � 3 �+ �
�
+ ⌘2 �

�

c0,6 = � ⇣2( � 1) 9�3

c1,2 =  4�(��  )3
�
⇣2(4 � 1)� 2⇣⌘ � ⌘2 2

��
⇣2(4�� 1)� 2⇣⌘��

⌘2�2
��
⇣2( + �� 1)� ⌘2 �

�

c1,3 = � 2 5�(��  )
�
⇣5
�
� ( � 1) 2 � �3 +

�
� 32 2

+ 9 + 1

�
�2 +  (9 � 4)�

�
+

⇣4⌘
�
� ( � 1) 3

+ (4 � 1)�4 +
�
12 2 � 8 + 1

�
�3 + 2 

�
6 2

+ 17 � 2

�
�2 + 4 2

�
 2�

2 � 1

�
�
�
� ⇣3⌘2 �

�
( � 2) 2

+ �3 + (7 � 2)�2 +  (7 + 8)�
�
+

2⇣2⌘3 �
�
 3

+ (1� 4 )�3 � 4 3�
�
+ 3⇣⌘4 2�2

�
 2

+ �2
�
+

⌘5 3�3( + �)
�

c1,4 =  6
(��)(��  )

�
⇣4
�
� ( � 1) 2

+ (4 � 1)�3 +
�
� 16 2

+  + 1

�
�2 +  

�
4 2 �  �

9

�
�
�
+ 2⇣3⌘ �

�
( � 1) + �2 + (12 � 1)�

�
+ 2⇣2⌘2 �

�
3 2

+ (3� 9 )�2+
�
 � 8 2

�
�
�
+ 6⇣⌘3 2�2( + �) + ⌘4 3�3

�

c1,5 = 2⇣ 8�2
�
⇣2
�
( � 1) � �2 + 2 �+ �

�
+ 2⇣⌘

�
 2

+ (2 � 1)�2 �  2�
�
+

⌘2 �( � �)
�

c1,6 = ⇣2 9�2( + ( � 1)�)

c2,0 = ⇣2 2
(⇣ � ⌘)2(��  )6

�
⇣2(4 � 1)� 2⇣⌘ � ⌘2 2

��
⇣2(4�� 1)�

2⇣⌘�� ⌘2�2
�

c2,1 = � 2⇣ 3
(⇣ � ⌘)(��  )4

�
⇣5
�
� 5 2

+  + (16 � 5)�2 +
�
16 2 � 6 + 1

�
�
�
+

⇣4⌘
�
� ( � 3) 2

+ (4 � 1)�3 +
�
� 40 2 � 7 + 3

�
�2 +  2

(4 � 7)�
�
+ ⇣3⌘2

�
2 3

+ (2�
9 )�3 + 34 2�2 � 9 3�

�
+ ⇣2⌘3 �

�
 2

+ (8 + 1)�2 + 2 (4 � 3)�
�
�

3⇣⌘4 2�2( + �)� 2⌘5 3�3
�

c2,2 =  4
�
� (��  )2

��
⇣6
�
�  2

�
 2 � 8 + 1

�
+ (4 � 1)�4 +

�
� 148 2

+ 22 + 8

�
�3�

�
148 3 � 118 2

+ 21 + 1

�
�2 +  

�
4 3

+ 22 2 � 21 + 3

�
�
�
� 2⇣5⌘

�
� 3( � 1) 3

+ (11 �
3)�4 +

�
� 147 2

+ 24 + 3

�
�3 +  

�
� 147 2

+ 66 � 8

�
�2 +  2

�
11 2

+ 24 � 8

�
�
�
+

⇣4⌘2
�
� 6 4

+

�
66 2

+ 9 � 6

�
�4 +  

�
28 2 � 199 + 27

�
�3 +  2

�
66 2 � 199 + 29

�
�2+

9 3
( + 3)�

�
+ 2⇣3⌘3 �

�
5 3

+ (5� 44 )�3 + (21� 20 ) �2 + (21� 44 ) 2�
�
+

⇣2⌘4 2�2
�
24 2

+ (24� 13 )�2 + (23� 13 ) �
�
+ 10⇣⌘5 3�3( + �)+

⌘6 4�4
�
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c2,3 = 2 5
�
⇣5
�
� ( � 1) 4

+ (3 � 1)�5 +
�
� 36 2

+ 19 + 1

�
�4 +  

�
98 2 � 26 � 7

�
�3�

2 2
�
18 2

+ 13 � 7

�
�2 +  3

�
3 2

+ 19 � 7

�
�
�
+ ⇣4⌘

�
2 5

+

�
� 40 2

+ 5 + 2

�
�5+

 
�
24 2

+ 54 � 19

�
�4 + 2 2

�
12 2 � 67 + 10

�
�3 + 2 3

�
� 20 2

+ 27 + 10

�
�2 +  4

(5 �
19)�

�
+ ⇣3⌘2 �

�
� 11 4

+ (50 � 11)�4 � 2 (21 + 1)�3 � 6 2
(7 � 5)�2 + 2 3

(25 �
1)�

�
+ 2⇣2⌘3 2�2

�
� 7 3

+ (5 � 7)�3 � 2( � 3) �2 +  2
(5 + 6)�

�
+

⇣⌘4 3�3
�
� 5 2 � 5�2 + 4 �

�
� ⌘5 4�4( + �)

�

c2,4 =  6
�
⇣4
�
 4

+

�
� 31 2

+ 7 + 1

�
�4 +  

�
70 2 � 6 � 13

�
�3 +  2

�
� 31 2 � 6 +

31

�
�2 +  3

(7 � 13)�
�
+ 2⇣3⌘ �

�
� 8 3

+ (17 � 8)�3 + 3(3� 16 ) �2 +  2
(17 +

9)�
�
+ ⇣2⌘2 2�2

�
� 14 2

+ (17 � 14)�2 +  (17 + 14)�
�
� 6⇣⌘3 3�3( + �)�

⌘4 4�4
�

c2,5 = � 2⇣ 8�
�
⇣2
�
2 2

+ ( + 2)�2 + ( � 5) �
�
+ ⇣⌘ �(2 + (2� 3 )�)+

⌘2 2�2
�

c2,6 = � ⇣2 10�2

c3,0 = 2⇣2 3
(⇣ � ⌘)2(��  )5

�
⇣2(4 � 1)� 2⇣⌘ � ⌘2 2

��
⇣2(4�� 1)�

2⇣⌘�� ⌘2�2
�

c3,1 = � 4⇣ 4
(⇣ � ⌘)(��  )3

�
⇣5
�
� 5 2

+  + (16 � 5)�2 +
�
16 2 � 6 + 1

�
�
�
+

⇣4⌘
�
� ( � 3) 2

+ (4 � 1)�3 +
�
� 40 2 � 7 + 3

�
�2 +  2

(4 � 7)�
�
+ ⇣3⌘2

�
2 3

+ (2�
9 )�3 + 34 2�2 � 9 3�

�
+ ⇣2⌘3 �

�
 2

+ (8 + 1)�2 + 2 (4 � 3)�
�
�

3⇣⌘4 2�2( + �)� 2⌘5 3�3
�

c3,2 = � 2⇣ 5
(��  )

�
⇣5
�
�  2

�
 2 � 8 + 1

�
+ (4 � 1)�4 +

�
� 132 2

+ 18 + 8

�
�3�

�
132 3 � 94 2

+ 16 + 1

�
�2 + 2 

�
2 3

+ 9 2 � 8 + 1

�
�
�
� 2⇣4⌘

�
� 3( � 1) 3

+ (11 �
3)�4 +

�
� 139 2

+ 23 + 3

�
�3 +  

�
� 139 2

+ 56 � 7

�
�2 +  2

�
11 2

+ 23 � 7

�
�
�
+

2⇣3⌘2
�
� 3 4

+

�
31 2

+ 5 � 3

�
�4 +  

�
2 2 � 93 + 13

�
�3 +  2

�
31 2 � 93 + 12

�
�2+

 3
(5 + 13)�

�
+ 2⇣2⌘3 �

�
5 3

+ (5� 43 )�3 + (19� 10 ) �2 + (19� 43 ) 2�
�
+

⇣⌘4 2�2
�
23 2

+ (23� 8 )�2 + 2(9� 4 ) �
�
+ 8⌘5 3�3( + �)

�

c3,3 = 4⇣ 6
(��  )

�
⇣4
�
� ( � 1) 2

+ (3 � 1)�3 +
�
� 30 2

+ 16 + 1

�
�2 +  

�
3 2

+ 16 �
4

�
�
�
+ 2⇣3⌘

�
 3

+

�
� 18 2

+ 2 + 1

�
�3 +  

�
� 18 2

+ 27 � 7

�
�2 +  2

(2 � 7)�
�
+

⇣2⌘2 �
�
� 11 2

+ (49 � 11)�2 +  (49 � 22)�
�
+ 2⇣⌘3 2�2(( � 6)�� 6 )�

2⌘4 3�3
�

c3,4 = � 2⇣2 7
(��  )

�
⇣2
�
�  2

+

�
27 2 � 6 � 1

�
�2 + 2(5� 3 ) �

�
�

4⇣⌘ �((9 � 4)�� 4 ) + 8⌘2 2�2
�

c3,5 = 8⇣3 9�( � �)
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c4,0 = ⇣2 4
(⇣ � ⌘)2(��  )4

�
⇣2(4 � 1)� 2⇣⌘ � ⌘2 2

��
⇣2(4�� 1)�

2⇣⌘�� ⌘2�2
�

c4,1 = � 2⇣ 5
(⇣ � ⌘)(��  )2

�
⇣5
�
� 5 2

+  + (16 � 5)�2 +
�
16 2 � 6 + 1

�
�
�
+

⇣4⌘
�
� ( � 3) 2

+ (4 � 1)�3 +
�
� 40 2 � 7 + 3

�
�2 +  2

(4 � 7)�
�
+ ⇣3⌘2

�
2 3

+ (2�
9 )�3 + 34 2�2 � 9 3�

�
+ ⇣2⌘3 �

�
 2

+ (8 + 1)�2 + 2 (4 � 3)�
�
�

3⇣⌘4 2�2( + �)� 2⌘5 3�3
�

c4,2 = � ⇣ 6
�
⇣5
�
�  2

�
 2 � 8 + 1

�
+ (4 � 1)�4 +

�
� 132 2

+ 18 + 8

�
�3 �

�
132 3 � 94 2

+ 16 + 1

�
�2 + 2 

�
2 3

+ 9 2 � 8 + 1

�
�
�
� 2⇣4⌘

�
� 3( � 1) 3

+ (11 � 3)�4 +
�
� 139 2

+

23 + 3

�
�3 +  

�
� 139 2

+ 56 � 7

�
�2 +  2

�
11 2

+ 23 � 7

�
�
�
+ 2⇣3⌘2

�
� 3 4

+

�
31 2

+ 5 � 3

�
�4 +  

�
2 2 � 93 + 13

�
�3 +  2

�
31 2 � 93 + 12

�
�2 +  3

(5 + 13)�
�
+

2⇣2⌘3 �
�
5 3

+ (5� 43 )�3 + (19� 10 ) �2 + (19� 43 ) 2�
�
+

⇣⌘4 2�2
�
23 2

+ (23� 8 )�2 + 2(9� 4 ) �
�
+ 8⌘5 3�3( + �)

�

c4,3 = 2⇣ 7
�
⇣4
�
� ( � 1) 2

+ (3 � 1)�3 +
�
� 30 2

+ 16 + 1

�
�2 +  

�
3 2

+ 16 �
4

�
�
�
+ 2⇣3⌘

�
 3

+

�
� 18 2

+ 2 + 1

�
�3 +  

�
� 18 2

+ 27 � 7

�
�2 +  2

(2 � 7)�
�
+

⇣2⌘2 �
�
� 11 2

+ (49 � 11)�2 +  (49 � 22)�
�
+ 2⇣⌘3 2�2(( � 6)�� 6 )�

2⌘4 3�3
�

c4,4 = ⇣2 8
�
⇣2
�
 2

+

�
� 27 2

+ 6 + 1

�
�2 + 2 (3 � 5)�

�
+ 4⇣⌘ �((9 � 4)��

4 )� 8⌘2 2�2
�

c4,5 = � 4⇣3 10�

And the coefficients d
i,j

read,
d0,0 = 0, d0,1 = 0, d2,4 = 0, d3,4 = 0 ,

and,
d0,2 = � ⇣2( � 1)

2 2�2
�
�2 �  

�

d0,3 = 2⇣ 4�2( + 2�+ 1)

d0,4 =  5�2

d1,0 = ⇣4( � 1)

2
(�� 1)

3
(��  )3

d1,1 = 2⇣3 (�� 1)

�
�  3

( + 1) +

�
 2 � 4 + 1

�
�4 +

�
6 2

+  + 1

�
�3 �  

�
 3

+ 6 2
+

5

�
�2 +  2

�
4 2 �  + 5

�
�
�

d1,2 = ⇣2 2
�
 3

+

�
 2 � 11 + 1

�
�4 �

�
 3

+ 1

�
�3 + 2 

�
5 2

+ 6 + 5

�
�2�

11 2
( + 1)�

�

d1,3 = 2⇣ 4�
�
� 2 � 3�2 +  �+ �

�

d1,4 =  5
�
� �2

�

d2,0 = ⇣4( � 1)

2
(�� 1)

2
(��  )2(�2 +  �+ �)

d2,1 = 2⇣3 
�
� 2 3

( + 1) +

�
 3 � 3 2 � 3 + 1

�
�4 +

�
 4

+  3
+ 12 2

+  + 1

�
�3�

6 
�
 3

+  2
+  + 1

�
�2 +  2

�
9 2 � 2 + 9

�
�
�

d2,2 = ⇣2 2
�
� 2 3

+

�
 3 � 9 2 � 9 + 1

�
�3 � 12

�
 3

+  
�
�2 + 21 2

( + 1)�
�

d2,3 = � 4⇣ 4�(�2 +  �+ �)
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d3,0 = ⇣4( � 1)

2 (�� 1)

2
(��  )2

d3,1 = 2⇣3 2
�
 2

( + 1) +

�
 2 � 4 + 1

�
�3 +

�
 3

+ 2 2
+ 2 + 1

�
�2 + 2 

�
� 2 2

+  �
2

�
�
�

d3,2 = ⇣2 3
�
 2

+

�
 2 � 10 + 1

�
�2 � 10 ( + 1)�

�

d3,3 = � 4⇣ 5�
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