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A. Derivation of Sequence Variational Lower Bound

The variational lower bound for the marginal probability of a sequenceX can be derived as follows:
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and let µ2,j , µ̃2,j , µ̂z2,j and σ̂z2,j denote the j-th element of these vectors. We have:
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The KL-divergence in Eq. 2 can also be computed analytically and rewritten as follows:
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By replacing Eq. 1 and 2 with Eq. 3 and 4 respectively, we rewrite the variational lower bound for a
sequenceX as follows:
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where the conditional segment variational lower bound, L(θ, φ;x(n)|µ̃2), is defined as:
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B. Derivation of the Inferred S-Vector

As described in Section 2.2, inference of the s-vector µ2 of an unseen utterance X̃ = {x̃(n)}Ñn=1
is cast as an approximated maximum a posterior estimation problem, which uses the conditional
segment variational lower bound, L(θ, φ; x̃(n)|µ2), to approximate the conditional likelihood of a
segment, log pθ(x̃

(n)|µ2). Let J be the dimensionality of z2. Let µ̂(n)
z2 denote the variational mean

of z2 evaluated at x(n), and let µ2,j and µ̂(n)
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denote the j-th element of these vectors. The optimal
µ∗2 can be derived as follows:
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C. FHVAE Model and Training Configurations

For the Seq2Seq-FHVAE model, each LSTM network consists of one layer with 256 hidden units,
while each MLP network is one layer with the output dimension equal to the variable whose mean
or log variance the MLP parameterizes, and variances σ2

z1 = σ2
µ2

= 1, σ2
z2 = 0.25. We experiment

with various dimensions for the latent variable z1 and z2. All models were trained with stochastic
gradient descent using a mini-batch size of 256 to minimize the negative discriminative segment
variational lower bound plus an L2-regularization with weight 10−4. The Adam [4] optimizer is used
with β1 = 0.95, β2 = 0.999, ε = 10−8, and initial learning rate of 10−3. Training continues for 500
epochs unless the segment variational lower bound on the development set does not improve for 50
epochs. The µ2 for the sequences in the development set and the test set is estimated using the closed
form solution in Section 2.2.

D. Comparison of Seq2Seq-FHVAE and Alternative Architectures

Here we study the performance of our proposed architecture by replacing the LSTM module with
three baseline architectures: a fully-connected feed-forward network (FC), a vanilla recurrent neural
network (RNN), and a gated recurrent neural network (GRU) [1]. All the models have one hidden
layer with 16 dimensions for both z1 and z2, and are trained with α = 0. For the FC model, the
entire segment is flattened and feed to the fully-connected layers; therefore the temporal structure is
simply ignored.

Table 1 shows the segment variational lower bound on the TIMIT test set. We can see that the
recurrent models (RNN, GRU, LSTM) outperform the feed-forward model using fewer parameters,
which demonstrates the importance of considering the temporal structure within a segment. Figure
1 shows the reconstruction results using the FC model and the LSTM model. The LSTM model
reconstructs sharper images that preserves more speech detail, and, in particular, presents superior
high frequency harmonic structure that does the FC model, as highlighted in the red boxes.
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Table 1: TIMIT test set segment variational lower bound results on different model architectures.

Models #Hidden Units #Params L(θ, φ;x(n))

FC 512 3.3M -348.63
RNN 256 0.3M -261.19
GRU 256 0.8M -158.42
LSTM 256 1.1M -143.80

Figure 1: Three examples from different speakers. Within each example, from left to right are 1) the
original segment, 2) FC reconstructed segment, and 3) LSTM reconstructed segment. The leftmost
images show expanded views of the higher frequency harmonic structure (horizontal dark bands) of
the spectrogram suggesting that the LSTM reconstruction is superior to the FC model.

E. Transformation of Speaker and Noise Conditions

Figure 2 shows the zoomed-in version of the left part in Figure 4, from which we can observe
the harmonic patterns more clearly. In Figure 3, we illustrate the results of the same experiments,
but use the model trained on the Aurora-4 corpus instead. In particular, we sample two speakers,
441 and 443, from the test set and choose four noise conditions: clean, car, babble, and restaurant,
without the microphone channel effect. Furthermore, since the noise is artificially added to each
clean utterance in the test set, we can actually choose the corresponding segment in different noise
conditions for a given speaker. Same eight examples are used in both block ‘A’ and block ‘B’, which
results in 64 combinations of latent segment variables and latent sequence variables in total. It can
be observed that the latent sequence variables capture not only the speaker information, but also
the noise information, which are both sequence-level attributes. Therefore, when modifying the
latent sequence variables, we can not only transform speaker identities, but also carry out denoising
or noise corruption. Moreover, the disentanglement is evident for both the model trained without
discriminative training (α = 0) and the model trained with discriminative training (α = 10).

In addition to transforming a single segment, one may also be interested in transforming a target
sequence Xtar to be of a different speaker or a different noise condition of a reference sequence
Xref . Mathematically, it means mapping the distribution of the latent sequence variable from that of
Xtar to that ofXref . Since the distributions are both Gaussian with the same covariance matrices,
centered at their own s-vectors, µ2,tar and µ2,ref , a simple solution is to shift the latent sequence
variable by the s-vector difference ∆µ2 = µ2,ref−µ2,tar. Therefore, we transform a target utterance
given a reference utterance by shifting the z2 of each segment from the target utterance by ∆µ2, and
then decode-and-concatenate each segment using the unmodified z1 and the modified z2. Figure 4,
5, 6, and 7 shows examples of modifying entire utterances, which achieves voice conversion and
denoising respectively.

F. More Details about the Speaker Verification Experiments

Verification performance is reported in terms of equal error rate (EER), where the false rejection
rate equals the false acceptance rate. For our baseline system, we use the i-vectors [2] provided
by Kaldi [5], which are extracted using Mel-frequency cepstral coefficients (MFCCs), plus delta
and delta-delta after voice activity detection (VAD). A full-covariance gender-independent UBM
with 2048 mixtures was trained on the training set and the i-vector dimensionality is tuned on the
development set. The verification pairs were created from the test set as target/non-target. There are
in total 24 speakers and 18,336 pairs for testing. For all the Seq2Seq-FHVAE model, z1 and z2 have
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Figure 2: Examples generated by varying different latent variables of a FHVAE model trained with
α = 10 on TIMIT dataset. The green block ‘A’ contains four reconstructed examples. The red block
‘B’ contains ten original examples on the first row and the corresponding reconstructed examples
on the second row. The entry on the i-th row and the j-th column in the blue block ‘C’ is the
reconstructed example using the latent segment variable z1 of the i-th row from the block ‘A’ and the
latent sequence variable z2 of the j-th column from the block ‘B.’

the same dimension, and we use the closed form solution of the inferred s-vector as mentioned in
Section 2.2 to represent each utterance for verification.

G. More Details about the Domain Invariant ASR Experiments

The Gaussian mixture model-hidden Markov models (GMM-HMM) systems are built first to generate
the senone (tied triphone HMM state) alignments for the later neural network acoustic model training,
which replaces the GMM acoustic model. In both tasks (TIMIT and Aurora-4), the GMM-HMM
system is built with Kaldi [5] using standard recipes. We use the LSTM [3] for the acoustic model in
our hybrid DNN-HMM system, which are implemented using the CNTK [7] toolkit. Our training
recipe follows [8]. The baseline uses 80-dimensional FBank features as input. The model has 3
LSTM-projection layers [6], where each layer has 1024 cells and the output is projected to a 512
dimensional space. The truncated BPTT is used to train the LSTM that unrolls 20 frames; 40
utterances are processed in parallel to form a mini-batch. For the Seq2Seq-FHVAE model, we use the
same configuration as the one that achieved the best result on the speaker verification task: both z1
and z2 are 32 dimensional, and the weight α = 10 for discriminative training. For the VAE model,
the dimension of the latent variable z is 64, and the number of hidden units of the LSTM encoder is
512. We doubled both the latent variable dimension and the number of hidden units for the encoder
compared to the FHVAE model because the VAE model only has one set of latent variables and
one encoder. Therefore, both the FHVAE and VAE models would have a comparable number of
parameters as well as latent space dimensionalities.
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Figure 3: Examples generated by varying z1 and z2 of two FHVAE models trained with α = 0 and
α = 10 respectively on Aurora-4 dataset. The green block ‘A’ and the red block ‘B’ contains the
same eight examples from the test set. In block ‘B,‘ original examples are shown on the first row
and the corresponding reconstructed examples are shown on the second row. The entry on the i-th
row and the j-th column in the blue block ‘C’ is the reconstructed example using the latent segment
variable z1 of the i-th row from the block ‘A’ and the latent sequence variable z2 of the j-th column
from the block ‘B.’

H. FHVAE Latent Space Traversal

In this section, we present a qualitative analysis of traversing a single latent sequence variable or
latent segment variable over the range [−3, 3], while keeping the remaining latent variables fixed.
Each row corresponds to a different seed (z1, z2) pair, inferred from some seed segment randomly
drawn from the test set. The leftmost column in each figure shows the seed segments for each row.
We use the same five seed segments for traversing each latent variable. The FHVAE model is trained
on TIMIT with α = 0, and a 200 dimensional log-magnitude spectrum is used for frame feature
representations.

Figures 8 and 9 show examples of traversing four different latent segment variables, z1, while keeping
the latent sequence variables fixed. It can be observed that these latent segment variables encode the
information of segment-level attributes in speech data, such as rising/falling F2, back vowel/front
vowel, vowel/fricative, and closure/non-closure.

In contrast, Figures 10 and 11 illustrate examples for traversing four different latent sequence variables,
z2, while keeping the latent segment variables fixed. It can be seen the spectral contour, temporal
position, and relative frequency-axis position of formants remain almost intact when traversing
these latent sequence variables. The attributes being changed when traversing these latent sequence
variables are more related to sequence-level attributes, such as harmonic patterns (F0), volume, offsets
of formant frequencies. The results again demonstrate the ability of our proposed FHVAE to not
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Figure 4: FHVAE (α = 0) decoding results of three combinations of latent segment variables z1 and
latent sequence variables z2 from two utterances in Aurora-4: a clean one (top-left) and a noisy one
(bottom-left). FHVAEs learn to encode local attributes, such as linguistic content, into z1, and encode
global attributes, such as noise level, into z2. Therefore, by replacing z2 of a noisy utterance with
z2 of a clean utterance, an FHVAE decodes a denoised utterance (middle-right) that preserves the
linguistic content. Reconstruction results of the clean and noisy utterances are also shown on the
right. Audio samples are available at https://youtu.be/naJZITvCfI4.

Figure 5: FHVAE (α = 0) decoding results of three combinations of latent segment variables z1 and
latent sequence variables z2 from one clean utterance (top-left) and one utterance with car noise
(bottom-left) in Aurora-4. By replacing z2 of a noisy utterance with z2 of a clean utterance, an
FHVAE decodes a denoised utterance (middle-right) that preserves the linguistic content. Audio
samples are available at https://youtu.be/pOP2DVZWRjM.

only learn disentangled representations, but also enable interpretation of the information captured by
different sets of latent variables.
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Figure 6: FHVAE (α = 0) decoding results of three combinations of latent segment variables z1
and latent sequence variables z2 from one male-speaker utterance (top-left) and one female-speaker
utterance (bottom-left) in Aurora-4. By replacing z2 of a male-speaker utterance with z2 of a female-
speaker utterance, an FHVAE decodes a voice-converted utterance (middle-right) that preserves the
linguistic content. Audio samples are available at https://youtu.be/VMX3IZYWYdg.

Figure 7: FHVAE (α = 0) decoding results of three combinations of latent segment variables z1
and latent sequence variables z2 from one female-speaker utterance (top-left) and one male-speaker
utterance (bottom-left) in Aurora-4. By replacing z2 of a female-speaker utterance with z2 of a
male-speaker utterance, an FHVAE decodes a voice-converted utterance (middle-right) that preserves
the linguistic content. Audio samples are available at https://youtu.be/Rurj2ByNRs8.
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Figure 8: Traversing two different latent segment variables with five seed segments from the TIMIT
test set using an FHVAE model trained on TIMIT with α = 0.
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Figure 9: Traversing another two different latent segment variables with five seed segments from the
TIMIT test set using an FHVAE model trained on TIMIT with α = 0.
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Figure 10: Traversing two different latent sequence variables with five seed segments from the TIMIT
test set using an FHVAE model trained on TIMIT with α = 0.
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Figure 11: Traversing another two different latent sequence variables with five seed segments from
the TIMIT test set using an FHVAE model trained on TIMIT with α = 0.
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