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Abstract
Prevalent matrix completion theories reply on an assumption that the locations of
the missing data are distributed uniformly and randomly (i.e., uniform sampling).
Nevertheless, the reason for observations being missing often depends on the unseen
observations themselves, and thus the missing data in practice usually occurs in a
nonuniform and deterministic fashion rather than randomly. To break through the
limits of random sampling, this paper introduces a new hypothesis called isomeric
condition, which is provably weaker than the assumption of uniform sampling and
arguably holds even when the missing data is placed irregularly. Equipped with
this new tool, we prove a series of theorems for missing data recovery and matrix
completion. In particular, we prove that the exact solutions that identify the target
matrix are included as critical points by the commonly used nonconvex programs.
Unlike the existing theories for nonconvex matrix completion, which are built
upon the same condition as convex programs, our theory shows that nonconvex
programs have the potential to work with a much weaker condition. Comparing to
the existing studies on nonuniform sampling, our setup is more general.

1 Introduction
Missing data is a common occurrence in modern applications such as computer vision and image
processing, reducing significantly the representativeness of data samples and therefore distorting
seriously the inferences about data. Given this pressing situation, it is crucial to study the problem
of recovering the unseen data from a sampling of observations. Since the data in reality is often
organized in matrix form, it is of considerable practical significance to study the well-known problem
of matrix completion [1] which is to fill in the missing entries of a partially observed matrix.
Problem 1.1 (Matrix Completion). Denote the (i, j)th entry of a matrix as [·]ij . Let L0 ∈ Rm×n be
an unknown matrix of interest. In particular, the rank of L0 is unknown either. Given a sampling of
the entries in L0 and a 2D index set Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} consisting of the locations
of the observed entries, i.e., given

{[L0]ij |(i, j) ∈ Ω} and Ω,

can we restore the missing entries whose indices are not included in Ω, in an exact and scalable
fashion? If so, under which conditions?

Due to its unique role in a broad range of applications, e.g., structure from motion and magnetic
resonance imaging, matrix completion has received extensive attentions in the literatures, e.g., [2–13].
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Figure 1: Left and Middle: Typical configurations for the locations of the observed entries. Right: A
real example from the Oxford motion database. The black areas correspond to the missing entries.

In general, given no presumption about the nature of matrix entries, it is virtually impossible to
restore L0 as the missing entries can be of arbitrary values. That is, some assumptions are necessary
for solving Problem 1.1. Based on the high-dimensional and massive essence of today’s data-driven
community, it is arguable that the target matrix L0 we wish to recover is often low rank [23]. Hence,
one may perform matrix completion by seeking a matrix with the lowest rank that also satisfies the
constraints given by the observed entries:

min
L

rank (L) , s.t. [L]ij = [L0]ij ,∀(i, j) ∈ Ω. (1)

Unfortunately, this idea is of little practical because the problem above is NP-hard and cannot be
solved in polynomial time [15]. To achieve practical matrix completion, Candès and Recht [4]
suggested to consider an alternative that minimizes instead the nuclear norm which is a convex
envelope of the rank function [12]. Namely,

min
L
‖L‖∗, s.t. [L]ij = [L0]ij ,∀(i, j) ∈ Ω, (2)

where ‖ · ‖∗ denotes the nuclear norm, i.e., the sum of the singular values of a matrix. Rather
surprisingly, it is proved in [4] that the missing entries, with high probability, can be exactly restored
by the convex program (2), as long as the target matrix L0 is low rank and incoherent and the set Ω of
locations corresponding to the observed entries is a set sampled uniformly at random. This pioneering
work provides people several useful tools to investigate matrix completion and many other related
problems. Those assumptions, including low-rankness, incoherence and uniform sampling, are now
standard and widely used in the literatures, e.g., [14, 17, 22, 24, 28, 33, 34, 36]. In particular, the
analyses in [17, 33, 36] show that, in terms of theoretical completeness, many nonconvex optimization
based methods are as powerful as the convex program (2). Unfortunately, these theories still depend
on the assumption of uniform sampling, and thus they cannot explain why there are many nonconvex
methods which often do better than the convex program (2) in practice.

The missing data in practice, however, often occurs in a nonuniform and deterministic fashion instead
of randomly. This is because the reason for an observation being missing usually depends on the
unseen observations themselves. For example, in structure from motion and magnetic resonance
imaging, typically the locations of the observed entries are concentrated around the main diagonal of
a matrix4, as shown in Figure 1. Moreover, as pointed out by [19, 21, 23], the incoherence condition
is indeed not so consistent with the mixture structure of multiple subspaces, which is also a ubiquitous
phenomenon in practice. There has been sparse research in the direction of nonuniform sampling,
e.g., [18, 25–27, 31]. In particular, Negahban and Wainwright [26] studied the case of weighted
entrywise sampling, which is more general than the setup of uniform sampling but still a special
form of random sampling. Király et al. [18] considered deterministic sampling and is most related to
this work. However, they had only established conditions to decide whether a particular entry of the
matrix can be restored. In other words, the setup of [18] may not handle well the dependence among
the missing entries. In summary, matrix completion still starves for practical theories and methods,
although has attained considerable improvements in these years.

To break through the limits of the setup of random sampling, in this paper we introduce a new
hypothesis called isomeric condition, which is a mixed concept that combines together the rank and
coherence of L0 with the locations and amount of the observed entries. In general, isomerism (noun

4This statement means that the observed entries are concentrated around the main diagonal after a permutation
of the sampling pattern Ω.

2



of isomeric) is a very mild hypothesis and only a little bit more strict than the well-known oracle
assumption; that is, the number of observed entries in each row and column of L0 is not smaller than
the rank of L0. It is arguable that the isomeric condition can hold even when the missing entries have
irregular locations. In particular, it is provable that the widely used assumption of uniform sampling
is sufficient to ensure isomerism, not necessary. Equipped with this new tool, isomerism, we prove a
set of theorems pertaining to missing data recovery [35] and matrix completion. For example, we
prove that, under the condition of isomerism, the exact solutions that identify the target matrix are
included as critical points by the commonly used bilinear programs. This result helps to explain the
widely observed phenomenon that there are many nonconvex methods performing better than the
convex program (2) on real-world matrix completion tasks. In summary, the contributions of this
paper mainly include:

� We invent a new hypothesis called isomeric condition, which provably holds given the
standard assumptions of uniform sampling, low-rankness and incoherence. In addition,
we also exemplify that the isomeric condition can hold even if the target matrix L0 is not
incoherent and the missing entries are placed irregularly. Comparing to the existing studies
about nonuniform sampling, our setup is more general.

� Equipped with the isomeric condition, we prove that the exact solutions that identify L0

are included as critical points by the commonly used bilinear programs. Comparing to the
existing theories for nonconvex matrix completion, our theory is built upon a much weaker
assumption and can therefore partially reveal the superiorities of nonconvex programs over
the convex methods based on (2).

� We prove that the isomeric condition is sufficient and necessary for the column and row
projectors of L0 to be invertible given the sampling pattern Ω. This result implies that
the isomeric condition is necessary for ensuring that the minimal rank solution to (1) can
identify the target L0.

The rest of this paper is organized as follows. Section 2 summarizes the mathematical notations used
in the paper. Section 3 introduces the proposed isomeric condition, along with some theorems for
matrix completion. Section 4 shows some empirical results and Section 5 concludes this paper. The
detailed proofs to all the proposed theorems are presented in the Supplementary Materials.

2 Notations
Capital and lowercase letters are used to represent matrices and vectors, respectively, except that the
lowercase letters, i, j, k,m, n, l, p, q, r, s and t, are used to denote some integers, e.g., the location of
an observation, the rank of a matrix, etc. For a matrixM , [M ]ij is its (i, j)th entry, [M ]i,: is its ith row
and [M ]:,j is its jth column. Let ω1 and ω2 be two 1D index sets; namely, ω1 = {i1, i2, · · · , ik} and
ω2 = {j1, j2, · · · , js}. Then [M ]ω1,: denotes the submatrix ofM obtained by selecting the rows with
indices i1, i2, · · · , ik, [M ]:,ω2 is the submatrix constructed by choosing the columns j1, j2, · · · , js,
and similarly for [M ]ω1,ω2 . For a 2D index set Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}, we imagine it
as a sparse matrix and, accordingly, define its “rows”, “columns” and “transpose” as follows: The
ith row Ωi = {j1|(i1, j1) ∈ Ω, i1 = i}, the jth column Ωj = {i1|(i1, j1) ∈ Ω, j1 = j} and the
transpose ΩT = {(j1, i1)|(i1, j1) ∈ Ω}.
The special symbol (·)+ is reserved to denote the Moore-Penrose pseudo-inverse of a matrix. More
precisely, for a matrix M with Singular Value Decomposition (SVD)5 M = UMΣMV

T
M , its pseudo-

inverse is given by M+ = VMΣ−1
M UT

M . For convenience, we adopt the conventions of using
span{M} to denote the linear space spanned by the columns of a matrix M , using y ∈ span{M} to
denote that a vector y belongs to the space span{M}, and using Y ∈ span{M} to denote that all the
column vectors of a matrix Y belong to span{M}.
Capital letters U , V , Ω and their variants (complements, subscripts, etc.) are reserved for left singular
vectors, right singular vectors and index set, respectively. For convenience, we shall abuse the
notation U (resp. V ) to denote the linear space spanned by the columns of U (resp. V ), i.e., the
column space (resp. row space). The orthogonal projection onto the column space U , is denoted by
PU and given by PU (M) = UUTM , and similarly for the row space PV (M) = MV V T . The same

5In this paper, SVD always refers to skinny SVD. For a rank-r matrix M ∈ Rm×n, its SVD is of the form
UMΣMV T

M , where UM ∈ Rm×r,ΣM ∈ Rr×r and VM ∈ Rn×r .
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notation is also used to represent a subspace of matrices (i.e., the image of an operator), e.g., we say
that M ∈ PU for any matrix M which satisfies PU (M) = M . We shall also abuse the notation Ω
to denote the linear space of matrices supported on Ω. Then the symbol PΩ denotes the orthogonal
projection onto Ω, namely,

[PΩ(M)]ij =

{
[M ]ij , if (i, j) ∈ Ω,

0, otherwise.

Similarly, the symbol P⊥Ω denotes the orthogonal projection onto the complement space of Ω. That
is, PΩ + P⊥Ω = I, where I is the identity operator.

Three types of matrix norms are used in this paper, and they are all functions of the singular values:
1) The operator norm or 2-norm (i.e., largest singular value) denoted by ‖M‖, 2) the Frobenius norm
(i.e., square root of the sum of squared singular values) denoted by ‖M‖F and 3) the nuclear norm
or trace norm (i.e., sum of singular values) denoted by ‖M‖∗. The only used vector norm is the `2
norm, which is denoted by ‖ · ‖2. The symbol | · | is reserved for the cardinality of an index set.

3 Isomeric Condition and Matrix Completion
This section introduces the proposed isomeric condition and a set of theorems for matrix completion.
But most of the detailed proofs are deferred until the Supplementary Materials.

3.1 Isomeric Condition
In general cases, as aforementioned, matrix completion is an ill-posed problem. Thus, some assump-
tions are necessary for studying Problem 1.1. To eliminate the disadvantages of the setup of random
sampling, we define and investigate a so-called isomeric condition.

3.1.1 Definitions
For the ease of understanding, we shall begin with a concept called k-isomerism (or k-isomeric in
adjective form), which could be regarded as an extension of low-rankness.
Definition 3.1 (k-isomeric). A matrix M ∈ Rm×l is called k-isomeric if and only if any k rows of
M can linearly represent all rows in M . That is,

rank ([M ]ω,:) = rank (M) ,∀ω ⊆ {1, 2, · · · ,m}, |ω| = k,

where | · | is the cardinality of an index set.

In general, k-isomerism is somewhat similar to Spark [37] which defines the smallest linearly
dependent subset of the rows of a matrix. For a matrix M to be k-isomeric, it is necessary that
rank (M) ≤ k, not sufficient. In fact, k-isomerism is also somehow related to the concept of
coherence [4, 21]. When the coherence of a matrix M ∈ Rm×l is not too high, the rows of M will
sufficiently spread, and thus M could be k-isomeric with a small k, e.g., k = rank (M). Whenever
the coherence of M is very high, one may need a large k to satisfy the k-isomeric property. For
example, consider an extreme case where M is a rank-1 matrix with one row being 1 and everywhere
else being 0. In this case, we need k = m to ensure that M is k-isomeric.

While Definition 3.1 involves all 1D index sets of cardinality k, we often need the isomeric property
to be associated with a certain 2D index set Ω. To this end, we define below a concept called
Ω-isomerism (or Ω-isomeric in adjective form).
Definition 3.2 (Ω-isomeric). Let M ∈ Rm×l and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Suppose
that Ωj 6= ∅ (empty set), ∀1 ≤ j ≤ n. Then the matrix M is called Ω-isomeric if and only if

rank
(
[M ]Ωj ,:

)
= rank (M) ,∀j = 1, 2, · · · , n.

Note here that only the number of rows in M is required to coincide with the row indices included in
Ω, and thereby l 6= n is allowable.

Generally, Ω-isomerism is less strict than k-isomerism. Provided that |Ωj | ≥ k, ∀1 ≤ j ≤ n, a matrix
M is k-isomeric ensures that M is Ω-isomeric as well, but not vice versa. For the extreme example
where M is nonzero at only one row, interestingly, M can be Ω-isomeric as long as the locations of
the nonzero elements are included in Ω.

With the notation of ΩT = {(j1, i1)|(i1, j1) ∈ Ω}, the isomeric property could be also defined on
the column vectors of a matrix, as shown in the following definition.
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Definition 3.3 (Ω/ΩT -isomeric). LetM ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m}×{1, 2, · · · , n}. Suppose
Ωi 6= ∅ and Ωj 6= ∅, ∀i = 1, · · · ,m, j = 1, · · · , n. Then the matrix M is called Ω/ΩT -isomeric if
and only if M is Ω-isomeric and MT is ΩT -isomeric as well.

To solve Problem 1.1 without the imperfect assumption of missing at random, as will be shown later,
we need to assume that L0 is Ω/ΩT -isomeric. This condition has excluded the unidentifiable cases
where any rows or columns of L0 are wholly missing. In fact, whenever L0 is Ω/ΩT -isomeric, the
number of observed entries in each row and column of L0 has to be greater than or equal to the rank
of L0; this is consistent with the results in [20]. Moreover, Ω/ΩT -isomerism has actually well treated
the cases where L0 is of high coherence. For example, consider an extreme case where L0 is 1 at only
one element and 0 everywhere else. In this case, L0 cannot be Ω/ΩT -isomeric unless the nonzero
element is observed. So, generally, it is possible to restore the missing entries of a highly coherent
matrix, as long as the Ω/ΩT -isomeric condition is obeyed.

3.1.2 Basic Properties
While its definitions are associated with a certain matrix, the isomeric condition is actually character-
izing some properties of a space, as shown in the lemma below.
Lemma 3.1. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Denote the SVD of L0 as
U0Σ0V

T
0 . Then we have:

1. L0 is Ω-isomeric if and only if U0 is Ω-isomeric.

2. LT
0 is ΩT -isomeric if and only if V0 is ΩT -isomeric.

Proof. It could be manipulated that

[L0]Ωj ,: = ([U0]Ωj ,:)Σ0V
T
0 ,∀j = 1, · · · , n.

Since Σ0V
T
0 is row-wisely full rank, we have

rank
(
[L0]Ωj ,:

)
= rank

(
[U0]Ωj ,:

)
,∀j = 1, · · · , n.

As a result, L0 is Ω-isomeric is equivalent to U0 is Ω-isomeric. In a similar way, the second claim is
proved as well.

It is easy to see that the above lemma is still valid even when the condition of Ω-isomerism is replaced
by k-isomerism. Thus, hereafter, we may say that a space is isomeric (k-isomeric, Ω-isomeric or
ΩT -isomeric) as long as its basis matrix is isomeric. In addition, the isomeric property is subspace
successive, as shown in the next lemma.
Lemma 3.2. Let Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n} and U0 ∈ Rm×r be the basis matrix of a
Euclidean subspace embedded in Rm. Suppose that U is a subspace of U0, i.e., U = U0U

T
0 U . If U0

is Ω-isomeric then U is Ω-isomeric as well.

Proof. By U = U0U
T
0 U and U0 is Ω-isomeric,

rank
(
[U ]Ωj ,:

)
= rank

(
([U0]Ωj ,:)U

T
0 U
)

= rank
(
UT

0 U
)

= rank
(
U0U

T
0 U
)

= rank (U) ,∀1 ≤ j ≤ n.

The above lemma states that, in one word, the subspace of an isomeric space is isomeric.

3.1.3 Important Properties
As aforementioned, the isometric condition is actually necessary for ensuring that the minimal rank
solution to (1) can identify L0. To see why, let’s assume that U0 ∩ Ω⊥ 6= {0}, where we denote by
U0Σ0V

T
0 the SVD of L0. Then one could construct a nonzero perturbation, denoted as ∆ ∈ U0∩Ω⊥,

and accordingly, obtain a feasible solution L̃0 = L0 + ∆ to the problem in (1). Since ∆ ∈ U0, we
have rank(L̃0) ≤ rank (L0). Even more, it is entirely possible that rank(L̃0) < rank (L0). Such
a case is unidentifiable in nature, as the global optimum to problem (1) cannot identify L0. Thus,
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to ensure that the global minimum to (1) can identify L0, it is essentially necessary to show that
U0 ∩ Ω⊥ = {0} (resp. V0 ∩ Ω⊥ = {0}), which is equivalent to the operator PU0PΩPU0 (resp.
PV0PΩPV0 ) is invertible (see Lemma 6.8 of the Supplementary Materials). Interestingly, the isomeric
condition is indeed a sufficient and necessary condition for the operators PU0

PΩPU0
and PV0

PΩPV0

to be invertible, as shown in the following theorem.
Theorem 3.1. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Let the SVD of L0 be
U0Σ0V

T
0 . Denote PU0

(·) = U0U
T
0 (·) and PV0

(·) = (·)V0V
T
0 . Then we have the following:

1. The linear operator PU0
PΩPU0

is invertible if and only if U0 is Ω-isomeric.

2. The linear operator PV0
PΩPV0

is invertible if and only if V0 is ΩT -isomeric.

The necessity stated above implies that the isomeric condition is actually a very mild hypothesis. In
general, there are numerous reasons for the target matrix L0 to be isomeric. Particularly, the widely
used assumptions of low-rankness, incoherence and uniform sampling are indeed sufficient (but not
necessary) to ensure isomerism, as shown in the following theorem.
Theorem 3.2. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Denote n1 = max(m,n)
and n2 = min(m,n). Suppose that L0 is incoherent and Ω is a 2D index set sampled uniformly
at random, namely Pr((i, j) ∈ Ω) = ρ0 and Pr((i, j) /∈ Ω) = 1 − ρ0. For any δ > 0, if ρ0 > δ
is obeyed and rank (L0) < δn2/(c log n1) holds for some numerical constant c then, with high
probability at least 1− n−10

1 , L0 is Ω/ΩT -isomeric.

It is worth noting that the isomeric condition can be obeyed in numerous circumstances other than
the case of uniform sampling plus incoherence. For example,

Ω = {(1, 1), (1, 2), (1, 3), (2, 1), (3, 1)} and L0 =

[
1 0 0
0 0 0
0 0 0

]
,

where L0 is a 3×3 matrix with 1 at (1, 1) and 0 everywhere else. In this example, L0 is not incoherent
and the sampling is not uniform either, but it could be verified that L0 is Ω/ΩT -isomeric.

3.2 Results
In this subsection, we shall show how the isomeric condition can take effect in the context of
nonuniform sampling, establishing some theorems pertaining to missing data recovery [35] as well
as matrix completion.

3.2.1 Missing Data Recovery
Before exploring the matrix completion problem, for the ease of understanding, we would like
to consider a missing data recovery problem studied by Zhang [35], which could be described as
follows: Let y0 ∈ Rm be a data vector drawn form some low-dimensional subspace, denoted as
y0 ∈ S0 ⊂ Rm. Suppose that y0 contains some available observations in yb ∈ Rk and some missing
entries in yu ∈ Rm−k. Namely, after a permutation,

y0 =

[
yb
yu

]
, yb ∈ Rk, yu ∈ Rm−k. (3)

Given the observations in yb, we seek to restore the unseen entries in yu. To do this, we consider the
prevalent idea that represents a data vector as a linear combination of the bases in a given dictionary:

y0 = Ax0, (4)

where A ∈ Rm×p is a dictionary constructed in advance and x0 ∈ Rp is the representation of y0.
Utilizing the same permutation used in (3), we can partition the rows of A into two parts according to
the indices of the observed and missing entries, respectively:

A =

[
Ab

Au

]
, Ab ∈ Rk×p, Au ∈ R(m−k)×p. (5)

In this way, the equation in (4) gives that

yb = Abx0 and yu = Aux0.
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As we now can see, the unseen data yu could be restored, as long as the representation x0 is retrieved
by only accessing the available observations in yb. In general cases, there are infinitely many
representations that satisfy y0 = Ax0, e.g., x0 = A+y0, where (·)+ is the pseudo-inverse of a matrix.
Since A+y0 is the representation of minimal `2 norm, we revisit the traditional `2 program:

min
x

1

2
‖x‖22 , s.t. yb = Abx, (6)

where ‖ · ‖2 is the `2 norm of a vector. Under some verifiable conditions, the above `2 program
is indeed consistently successful in a sense as in the following: For any y0 ∈ S0 with an arbitrary
partition y0 = [yb; yu] (i.e., arbitrarily missing), the desired representation x0 = A+y0 is the unique
minimizer to the problem in (6). That is, the unseen data yu is exactly recovered by firstly computing
the minimizer x∗ to problem (6) and then calculating yu = Aux

∗.
Theorem 3.3. Let y0 = [yb; yu] ∈ Rm be an authentic sample drawn from some low-dimensional
subspace S0 embedded in Rm, A ∈ Rm×p be a given dictionary and k be the number of available
observations in yb. Then the convex program (6) is consistently successful, provided that S0 ⊆
span{A} and the dictionary A is k-isomeric.

Unlike the theory in [35], the condition of which is unverifiable, our k-isomeric condition could be
verified in finite time. Notice, that the problem of missing data recovery is closely related to matrix
completion, which is actually to restore the missing entries in multiple data vectors simultaneously.
Hence, Theorem 3.3 can be naturally generalized to the case of matrix completion, as will be shown
in the next subsection.

3.2.2 Matrix Completion
The spirits of the `2 program (6) can be easily transferred to the case of matrix completion. Follow-
ing (6), one may consider Frobenius norm minimization for matrix completion:

min
X

1

2
‖X‖2F , s.t. PΩ(AX − L0) = 0, (7)

whereA ∈ Rm×p is a dictionary assumed to be given. As one can see, the problem in (7) is equivalent
to (6) if L0 is consisting of only one column vector. The same as (6), the convex program (7) can
also exactly recover the desired representation matrix A+L0, as shown in the theorem below. The
difference is that we here require Ω-isomerism instead of k-isomerism.
Theorem 3.4. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Suppose that A ∈ Rm×p

is a given dictionary. Provided that L0 ∈ span{A} and A is Ω-isomeric, the desired representation
X0 = A+L0 is the unique minimizer to the problem in (7).

Theorem 3.4 tells us that, in general, even when the locations of the missing entries are interrelated
and nonuniformly distributed, the target matrix L0 can be restored as long as we have found a proper
dictionary A. This motivates us to consider the commonly used bilinear program that seeks both A
and X simultaneously:

min
A,X

1

2
‖A‖2F +

1

2
‖X‖2F , s.t. PΩ(AX − L0) = 0, (8)

where A ∈ Rm×p and X ∈ Rp×n. The problem above is bilinear and therefore nonconvex. So, it
would be hard to obtain a strong performance guarantee as done in the convex programs, e.g., [4, 21].
Interestingly, under a very mild condition, the problem in (8) is proved to include the exact solutions
that identify the target matrix L0 as the critical points.
Theorem 3.5. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Denote the rank and SVD
of L0 as r0 and U0Σ0V

T
0 , respectively. If L0 is Ω/ΩT -isomeric then the exact solution, denoted by

(A0, X0) and given by

A0 = U0Σ
1
2
0 Q

T , X0 = QΣ
1
2
0 V

T
0 ,∀Q ∈ Rp×r0 , QTQ = I,

is a critical point to the problem in (8).

To exhibit the power of program (8), however, the parameter p, which indicates the number of
columns in the dictionary matrix A, must be close to the true rank of the target matrix L0. This is
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Figure 2: Comparing the bilinear program (9) (p = m) with the convex method (2). The numbers
plotted on the above figures are the success rates within 20 random trials. The white and black points
mean “succeed” and “fail”, respectively. Here the success is in a sense that PSNR ≥ 40dB, where
PSNR standing for peak signal-to-noise ratio.

impractical in the cases where the rank of L0 is unknown. Notice, that the Ω-isomeric condition
imposed on A requires

rank (A) ≤ |Ωj |,∀j = 1, 2, · · · , n.

This, together with the condition of L0 ∈ span{A}, essentially need us to solve a low rank matrix
recovery problem [14]. Hence, we suggest to combine the formulation (7) with the popular idea of
nuclear norm minimization, resulting in a bilinear program that jointly estimates both the dictionary
matrix A and the representation matrix X by

min
A,X
‖A‖∗ +

1

2
‖X‖2F , s.t. PΩ(AX − L0) = 0, (9)

which, by coincidence, has been mentioned in a paper about optimization [32]. Similar to (8), the
program in (9) has the following theorem to guarantee its performance.
Theorem 3.6. Let L0 ∈ Rm×n and Ω ⊆ {1, 2, · · · ,m} × {1, 2, · · · , n}. Denote the rank and SVD
of L0 as r0 and U0Σ0V

T
0 , respectively. If L0 is Ω/ΩT -isomeric then the exact solution, denoted by

(A0, X0) and given by

A0 = U0Σ
2
3
0 Q

T , X0 = QΣ
1
3
0 V

T
0 ,∀Q ∈ Rp×r0 , QTQ = I,

is a critical point to the problem in (9).

Unlike (8), which possesses superior performance only if p is close to rank (L0) and the initial
solution is chosen carefully, the bilinear program in (9) can work well by simply choosing p = m
and using A = I as the initial solution. To see why, one essentially needs to figure out the conditions
under which a specific optimization procedure can produce an optimal solution that meets an exact
solution. This requires extensive justifications and we leave it as future work.

4 Simulations
To verify the superiorities of the nonconvex matrix completion methods over the convex program (2),
we would like to experiment with randomly generated matrices. We generate a collection of m× n
(m = n = 100) target matrices according to the model of L0 = BC, where B ∈ Rm×r0 and
C ∈ Rr0×n are N (0, 1) matrices. The rank of L0, i.e., r0, is configured as r0 = 1, 5, 10, · · · , 90, 95.
Regarding the index set Ω consisting of the locations of the observed entries, we consider t-
wo settings: One is to create Ω by using a Bernoulli model to randomly sample a subset from
{1, · · · ,m} × {1, · · · , n} (referred to as “uniform”), the other is as in Figure 1 that makes the
locations of the observed entries be concentrated around the main diagonal of a matrix (referred to as
“nonuniform”). The observation fraction is set to be |Ω|/(mn) = 0.01, 0.05, · · · , 0.9, 0.95. For each
pair of (r0, |Ω|/(mn)), we run 20 trials, resulting in 8000 simulations in total.

When p = m and the identity matrix is used to initialize the dictionary A, we have empirically found
that program (8) has the same performance as (2). This is not strange, because it has been proven
in [16] that ‖L‖∗ = minA,X

1
2 (‖A‖2F + ‖X‖2F ), s.t. L = AX . Figure 2 compares the bilinear

8



program (9) to the convex method (2). It can be seen that (9) works distinctly better than (2). Namely,
while handling the nonuniformly missing data, the number of matrices successfully restored by the
bilinear program (9) is 102% more than the convex program (2). Even for dealing with the missing
entries chosen uniformly at random, in terms of the number of successfully restored matrices, the
bilinear program (9) can still outperform the convex method (2) by 44%. These results illustrate that,
even in the cases where the rank of L0 is unknown, the bilinear program (9) can do much better than
the convex optimization based method (2).

5 Conclusion and Future Work
This work studied the problem of matrix completion with nonuniform sampling, a significant setting
not extensively studied before. To figure out the conditions under which exact recovery is possible,
we proposed a so-called isomeric condition, which provably holds when the standard assumptions
of low-rankness, incoherence and uniform sampling arise. In addition, we also exemplified that
the isomeric condition can be obeyed in the other cases beyond the setting of uniform sampling.
Even more, our theory implies that the isomeric condition is indeed necessary for making sure
that the minimal rank completion can identify the target matrix L0. Equipped with the isomeric
condition, finally, we mathematically proved that the widely used bilinear programs can include the
exact solutions that recover the target matrix L0 as the critical points; this guarantees the recovery
performance of bilinear programs to some extend.

However, there still remain several problems for future work. In particular, it is unknown under which
conditions a specific optimization procedure for (9) can produce an optimal solution that exactly
restores the target matrix L0. To do this, one needs to analyze the convergence property as well as
the recovery performance. Moreover, it is unknown either whether the isomeric condition suffices
for ensuring that the minimal rank completion can identify the target L0. These require extensive
justifications and we leave them as future work.
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