
Query Complexity of Clustering with Side
Information (Supplementary Material)

Arya Mazumdar and Barna Saha

A Upper Bound (Algorithm): Proof of Theorem 1 (Monte Carlo)

In this section, we first prove the correctness of the Monte Carlo algorithm, and in the subsequent
section give the Las Vegas algorithm along with its proof.

One of the important tools that will be used in this section is Sanov’s theorem from the large-deviation
theory.

Lemma 2 (Sanov’s theorem). Let X1, . . . , Xn are iid random variables with a finite sample space X
and distribution P . Let Pn denote their joint distribution. Let E be a set of probability distributions
on X . The empirical distribution P̃n gives probability P̃n(A) = 1

n

∑n
i=1 1Xi∈A to any event A.

Then,
Pn({x1, . . . , xn} : P̃n ∈ E) ≤ (n+ 1)|X | exp(−n min

P∗∈E
D(P ∗‖P)).

A continuous version of Sanov’s theorem is also possible, especially when the set E is convex (as
a matter of fact the polynomial term in front of the right hand side can be omitted in cerain cases),
but we omit here for clarity. The Sanov’s theorem states, if we have an empirical distribution Pn
and a set of all distributions satisfying certain property E, then the probability Pn ∈ E decreases
exponentially with the minimum KL divergence of Pn with any distribution in E. Note that, the KL
divergence in the exponent of the Sanov’s theorem naturally indicates an upper bound in terms of KL
divergence. However, a major difficulty in dealing with KL divergence is that it is not a distance and
does not satisfy triangle inequality. We overcome that by dealing with Hellinger distance instead.

The first step for the algorithm is to compute an approximation of f+ and f−, say p+ and p−
respectively by querying a few items. It is quite possible that p+ and p− are crude approximations of
f+ and f− and working with them will lead to erroneous clustering. Interestingly, we show that by
an iterative update and estimate process, we can obtain a p+ and p− which are close to f+ and f−.
Then we try to assign an element to a cluster by computing the empirical distribution from the side
information matrix. There will be a grey region where we cannot be confident to either include or
discard a vertex. We show that since the range of that region is small, the number of elements that
will fall in the grey region is negligible, and we can query for them to resolve their true memberships.

A.1 Monte Carlo Algorithm

We now design an algorithm that is completely parameter free, that is it has no knowledge of k, f+,
or f− and recovers all the clusters accurately with high probability4. The query complexity of the
algorithm matches the worst case bound within an O(log n) factor. Note that, as a side information,
we are given the noisy similarity matrix W .

Assume that f+, f− are discrete distributions over q points a1, a2, . . . , aq; that is wi,j takes value
in the set {a1, a2, . . . , aq}. We will treat q as a constant for simplicity of expression, otherwise all
query complexity results scale by a factor of q. The algorithm uses a subroutine called Membership
that takes as input an element v ∈ V and a subset of elements C ⊆ V \ {v}.
Compute the ‘inter’ distribution pv,C for i = 1, . . . , q, pv,C(i) = 1

|C| · |{u ∈ C : wu,v = ai}|.

Also compute the ‘intra’ distribution pC for i = 1, . . . , q, pC(i) = 1
|C|(|C|−1) · |{(u, v) ∈ C × C : u 6=

v, wu,v = ai}|. Then define Membership(v, C) = −H(pv,C‖pC). Note that, since the membership is
always negative, a higher membership implies that the ‘inter’ and ‘intra’ distributions are closer in
terms of the Hellinger distance.

The algorithm has several phases.

4the algorithm works even with different fi,is

13

Phase 1. Initialization. We initialize the algorithm by selecting any vertex v and creating a singleton
cluster {v}. We then keep selecting new vertices randomly and uniformly that have not yet been
clustered, and query the oracle with it by choosing exactly one vertex from each of the clusters formed
so far. If the oracle returns +1 to any of these queries then we include the vertex in the corresponding
cluster, else we create a new singleton cluster with it. We continue this process until at least one
cluster has grown to a size of dC log ne, where C is an appropriately chosen constant5 that depends
on q.

Observation 3. The number of queries made in Phase 1 is at most O(k2 log n).

Proof. We stop the process as soon as a cluster has grown to size of dC log ne. Therefore, we may
have clustered at most k ∗ dC log ne vertices at this stage, each of which may have required k queries
to the oracle, one for every cluster.

Phase 2. Iterative Update. Let C1, C2, ...Clx be the set of clusters formed after the xth iteration for
some lx ≤ k, where we consider Phase 1 as the 0-th iteration. We estimate

p+,x =
1∑lx

i=1

(|Ci|
2

) · |{u, v ∈ Ci : wu,v = ai}|, and

p−,x =
1∑lx

i=1

∑
j<i |Ci||Cj |

· |{u ∈ Ci, v ∈ Cj , i < j, i, j ∈ [1, lx] : wu,v = ai}|

Define

ME
x =

C log n

H(p+,x‖p−,x)2
.

If there is no cluster of size at least ME
x formed so far, we select a new vertex yet to be clustered and

query it exactly once with the existing clusters (that is by selecting one arbitrary point from every
cluster and querying the oracle with the new vertex and the selected one), and include it in an existing
cluster or create a new cluster with it based on the query answer. We then set x = x+ 1 and move to
the next iteration to get updated estimates of p+,x, p−,x,ME

x and lx.

Else if there is a cluster of size at least ME
x , we stop and move to the next phase.

Phase 3. Processing the grown clusters. Once Phase 2 has converged, let p+, p−,H(p+‖p−),ME

and l be the final estimates. For every cluster C of size |C| ≥ME , we call it grown and we do the
following.

(3A.) For every unclustered vertex v, if Membership(v, C) ≥ −(4H(p+‖p−)
C − 2H(p+‖p−)2

C
√
logn

), then we
include v in C without querying.

(3B.) We create a new list Waiting(C), initially empty. If

−(
4H(p+‖p−)

C
− 2H(p+‖p−)2

C
√

log n
) > Membership(v, C) ≥ −(

4H(p+‖p−)

C
+

2H(p+‖p−)2

C
√

log n
),

then we include v in Waiting(C). For every vertex in Waiting(C), we query the oracle with it by
choosing exactly one vertex from each of the clusters formed so far starting with C. If oracle returns
answer “yes” to any of these queries then we include the vertex in that cluster, else we create a new
singleton cluster with it. We continue this until Waiting(C) is exhausted.

We then call C completely grown, remove it from further consideration, and move to the next grown
cluster. if there is no other grown cluster, then we move back to Phase 2.

A.2 Analysis

There are two parts to the analysis, showing the clusters are correct with high probability and
determining the query complexity.

5the precise value of C can be deduced from the proof given q

14

Lemma 3. With probability at least 1− 6
n3 all of the following holds for an appropriately chosen

constant B

(a)H(p+‖f+) ≤ 2H(p+‖p−)2

B
√
logn

(b)H(p−‖f−) ≤ 2H(p+‖p−)2

B
√
logn

(c)H(p+‖p−)
(

1 + 4H(p+‖p−)
B
√
logn

)
≥ H(f+‖f−) ≥ H(p+‖p−)

(
1− 4H(p+‖p−)

B
√
logn

)
Proof. Let C be a cluster which according to the updated estimates of p+ and p− has crossed the
updated ME threshold. Since |C| ≥ME , p+ is estimated based on at least

(
ME

2

)
edges. We assume

the largest cluster size in the input instance is at most n2
6. Suppose the total number of vertices

selected in Phase 1 and Phase 2 before C grew to ME is strictly less than 3ME

2 . Then the expected
number of vertices selected from C is at most 3ME

4 . Then, by the Chernoff bound, the probability

that the number of vertices selected from C is ME is at most e−
ME

36 . Taking C ≥ 118, we get with
probability at least 1− 1

n3 , the number of vertices chosen from outside C is at least M
E

2 . Thus, p− is

estimated based on at least (ME)2

2 edges.

Here, we use the following version of the Chrenoff bound7.

Lemma 4 (The Chernoff Bound). LetX1, X2,, Xn be independent random variable taking values
in {0, 1} with E[Xi] = pi. Let X =

∑n
i=1Xi, and µ = E[X]. Then the following holds

1. For 0 < δ ≤ 1, Pr[X ≤ (1− δ)µ] ≤ e−µδ2/2

2. For 0 < δ ≤ 1, Pr[X ≥ (1 + δ)µ] ≤ e−µδ2/3

(a) Let M =
(
ME

2

)
≥ (ME)2

3 . Now, select δ =
√

C′ logn
M , where C ′ is a constant that ensures

n2C
′ ≥ n

8
√
C′

27
√

3
−6 ≥ (M + 1)q ≈ (ME + 1)2q , also C ′ ≥ 3.

Pr
(
H(p+‖f+) ≥ δ

)
= f+

(
{p+ : H(p+‖f+) ≥ δ

)
= (M + 1)q exp(−M min

p:H(p‖f+)≥δ
D(p‖f+)),

Here in the last step we have used Sanov’s theorem (see, Lemma 2). Using the relationship between
KL-divergence and Hellinger distance, we get

D(p‖f+) ≥ 2H2(p‖f+) ≥ 2δ2

where in the last step we used the optimization condition under the Sanov’s theorem. Setting

δ =
√

C′ logn
M , M ≥ (ME)2

3 = C2 log2 n
3H(p+‖p−)4 , we get δ =

√
3C′H(p+‖p−)2

C
√
logn

. Let us take B′ = C√
3C′

,

and B =
√

C
C′ , we have B ≤ B′ and we get

Pr
(
H(p+‖f+) ≥ 2H(p+‖p−)2

B′
√

log n

)
≤ 1

n3

Hence,

Pr
(
H(p+‖f+) ≥ 2H(p+‖p−)2

B
√

log n

)
≤ 1

n3

6We could have also assumed the largest cluster size is at most n(1− ε) for some constant ε > 0 and adjust
the constants appropriately.

7note that the version of the Chernoff bound also holds for sampling without replacement, which is the case
here [27].

15

(b) Following a similar argument as above, we get

Pr
(
H(p−‖f−) ≥ 2H(p+‖p−)2

B
√

log n

)
≤ 1

n3

(c) Now

H(f+‖f−) ≥ H(p+‖p−)−H(p+‖f+)−H(p−‖f−) by applying triangle inequality

≥ H(p+‖p−)− 4H(p+‖p−)2

B
√

log n
from (a) and (b) with probability at least 1− 2

n3

= H(p+‖p−)
(

1− 4H(p+‖p−)

B
√

log n

)
Similarly,

H(p+‖p−) ≥ H(f+‖f−)−H(p+‖f+)−H(p−‖f−) by triangle inequality

≥ H(f+‖f−)− 4H(p+‖p−)2

B
√

log n
from (a) and (b) with probability at least 1− 2

n3

Hence, by union bound all of (a), (b) and (c) hold with probability at least 1− 6
n3 .

Lemma 5. Let C be a cluster considered in Phase 3 of size at least ME then the following holds
with probability at least 1− on(1).

(a) If Membership(v, C) > −(H(p+‖p−)
B − 2H(p+‖p−)2

B
√
logn

) then v is in C

(b) If v ∈ C then Membership(v, C) ≥ −(H(p+‖p−)
B + 2H(p+‖p−)2

B
√
logn

)

Proof. Suppose v ∈ C. Then for any δ > 0, we have

Pr
(
H(pv,C‖f+) > δ | v ∈ C

)
= f+

(
H(pv,C‖f+) > δ

)
≤ (ME + 1)q exp(−ME min

p:H(p‖f+)≥δ
D(p‖f+)) (by Sanov’s theorem)

≤ (ME + 1)q exp(−ME min
p:H(p‖f+)≥δ

2H2(p‖f+))

(noting the relationship between KL-divergence and Hellinger distance)

≤ (ME + 1)q exp(−2MEδ2)

Setting MEδ2 = C ′ log n, we get δ =
√

C′ logn
ME =

√
C′

C H(p+‖p−) = H(p+‖p−)
B (by noting the

value of B), we get

Pr
(
H(pv,C‖f+) >

H(p+‖p−)

B
| v ∈ C

)
≤ 1

n3
(by noting the value of C ′)

Similarly,

Pr
(
H(pv,C‖f−) >

H(p+‖p−)

B
| v 6∈ C

)
≤ 1

n3

Therefore, with at least 1− 2
n2 probability (by applying union bound over all v the following hold.

(i) If v ∈ C thenH(pv,C‖f+) < H(p+‖p−)
B and (ii) If v 6∈ C thenH(pv,C‖f−) < H(p+‖p−)

B .

(a) We have Membership(v, C) > −(H(p+‖p−)
B − 2H(p+‖p−)2

B
√
logn

), that isH(pv,C‖p+) < H(p+‖p−)
B −

2H(p+‖p−)2

B
√
logn

. Suppose if possible v 6∈ C. Then, we have

H(pv,C‖f+) ≤ H(pv,C‖p+) +H(p+‖f+) by triangle inequality

16

<
H(p+‖p−)

B
− 2H(p+‖p−)2

B
√

log n
+H(p+‖f+) applying condition on Membership(v, C)

≤ H(p+‖p−)

B
from Lemma 3 (a) with probability at least 1− 1

n3

Then we have,

H(pv,C‖f−) ≥ H(f+‖f−)−H(pv,C‖f+) by triangle inequality

≥ H(p+‖p−)− 4H(p+‖p−)2

B
√

log n
−H(pv,C‖f+) from Lemma 3 (c) with probability at least 1− 2

n3

≥
(

1− 1

B

)
H(p+‖p−)− 4H(p+‖p−)2

B
√

log n
with probability at least 1− 3

n3

≥
(

1− 1

B
− 4

B
√

log n

)
H(p+‖p−) sinceH(p+‖p−) ≤ 1

>
H(p+‖p−)

B
by taking B > 6, or C ≥ 36C ′

This contradicts that v 6∈ C.

(b) Now assume v ∈ C but Membership(v, C) ≥ −(H(p+‖p−)
B + 2H(p+‖p−)2

B
√
logn

), that isH(pv,C‖p+) ≥
H(p+‖p−)

B + 2H(p+‖p−)2

B
√
logn

. We have

H(pvC‖f+) ≥ H(pvC‖p+)−H(f+‖p+)

≥ H(p+‖p−)

B
+

2H(p+‖p−)2

B
√

log n
−H(f+‖p+) applying condition on Membership(v, C)

≥ H(p+‖p−)

B
from Lemma 3 (a) with probability at least 1− 1

n3

This contradicts the fact that v ∈ C.

Corollary 1. Let C be a cluster considered in Phase 3 of size at least ME then the following hold
with probability at least 1− 2

n2 .

(a) Vertices that are included in C in Phase (3A) truly belong to C.

(b) Vertices that are not in Waiting(C) can not be in C.

Proof. Follows from Lemma 5 (a) and (b) respectively.

Lemma 6. Let C be a cluster considered in Phase 3 of size at least ME and Ĉ denotes the true
cluster with C ⊆ Ĉ. Then after Phase (3A), |Ĉ \ C| = o(1) with probability at least 1− 1

n2 .

Proof. We have from Lemma 5 that for v to belong to Ĉ, it must satisfy Membership(v, C) ≥
−(H(p+‖p−)

B + 2H(p+‖p−)2

B
√
logn

). On the otherhand, if v has Membership(v, C) > −(H(p+‖p−)
B −

2H(p+‖p−)2

B
√
logn

) then v has already been included in C. Therefore, the grey region of Membership(v, C)
values for which we cannot decide on whether or not to include v to C is when Membership(v, C) ∈
−H(p+‖p−)

B ± 2H(p+‖p−)2

B
√
logn

, that isH(pv,C‖p+) ∈ H(p+‖p−)
B ± 2H(p+‖p−)2

B
√
logn

.

Now,

Pr
(
H(pv,C‖p+) ∈ H(p+‖p−)

B
± 2H(p+‖p−)2

B
√

log n

)
≤ Pr

(
H(pv,C‖p+) ≥ H(p+‖p−)

B
− 2H(p+‖p−)2

B
√

log n

)
≤ (ME + 1)q exp

(
−ME min

p:H(p‖p+)≥H(p+‖p−)

B − 2H(p+‖p−)2

B
√

logn

D(p‖f+)
)

by Sanov’s theorem

17

Now,

D(p‖f+) ≥ 2H(p‖f+)2 ≥ 2
(
H(p‖p+)−H(p+‖f+)

)2
by triangle inequality

≥ 2
(H(p+‖p−)

B
− 2H(p+‖p−)2

B
√

log n
−H(p+‖f+)

)2
from the optimization condition

≥ 2
(H(p+‖p−)

B
− 4H(p+‖p−)2

B
√

log n

)2
from Lemma 3 (a) with probability at least 1− 1

n3

=
2H2(p+‖p−)

B2

(
1− 4H(p+‖p−)

B

)2
≥ 2H2(p+‖p−)

B2

(
1− 4

B

)2
≥ 2H2(p+‖p−)

27B
by inserting the minimum value for

1

B

(
1− 4

B

)2
Now ME ≥ C logn

H(p+‖p−)2 . Hence,

Pr
(
H(pv,C‖p+) ∈ H(p+‖p−)

B
± 2H(p+‖p−)2

B
√

log n

)
≤ (ME + 1)q exp(− 2C

27B
log n) +

1

n3
= (ME + 1)q exp(−4

√
C ′

27
√

3
log n) +

1

n3
≤ 2

n3

Hence the expected number of vertices v ∈ C in the grey region is ≤ 2
n2 . Thus by simple Markov

inequality, after Phase (3A), the probability that |Ĉ \ C| ≥ 4 is at most 1
2n2 . Hence, with probability

at least 1− 1
2n2 , the size is bounded by 4.

Lemma 7. The algorithm asks at most O(k2 logn
H(f+‖f−)2) queries over the three phases with probability

1− on(1).

Proof. In Phase 1, as seen from Observation 3, the number of queries is O(k2 log n) ≤
O(k2 logn
H(f+‖f−)2), as 0 ≤ H(f+‖f−)2 ≤ 1.

In Phase 2, from Lemma 3, at any time when we have a grown cluster

H(p+‖p−) ≥ H(f+‖f−)−H(p+‖f+)−H(p−‖f−) by triangle inequality

≥ H(f+‖f−)− 4H(p+‖p−)2

B
√

log n
from Lemma 3

Therefore,

H(p+‖p−) ≥ H(f+‖f−)

1 + 4H(p+‖p−)
B
√
logn

≥ H(f+‖f−)

2

This also shows whenever one cluster has grown to a size of 4C logn
H2(f+‖f−) , then ME must cross the

threshold based on the newest estimate of p+ and p−. Hence, Phase 2 never grows a cluster beyond a
size of O(logn

H2(f+‖f−)) with probability 1− 1
n3 . Hence, in Phase 2, the total number of queries can be

at most O
(

k2 logn
H2(f+‖f−)

)
.

In Phase 3, the total number of queries made is at most O(k2) with probability at least 1− 1
2n due to

Lemma 6, and applying union bound over all the clusters.

Thus, we get the overall query complexity is O(k2 logn
H(f+‖f−)2) with probability 1− on(1), where on(1)

denotes a function of n that goes to 0 with n.

Putting together all the lemmas, we arrive at the statement of Theorem 1.

18

B A Las Vegas Algorithm for Query-Cluster with an Oracle

While our lower bound results assume knowledge of k, f+ and f−, our algorithms, both Las Vegas
and Monte Carlo versions, do not require any knowledge of these. In this section, we design a Las
Vegas algorithm for clustering with oracle.

We do not know k, f+, f−, µ+, or µ−, and our goal is to design an algorithm with optimum query
complexity for exact reconstruction of the clusters with probability 1. We are provided with the side
information matrix W = (wi,j) as an input.

Recall that, our algorithm uses a subroutine called Membership that takes as input an element v ∈ V
and a subset of elements (cluster) C ⊆ V \ {v}. Assume that f+, f− are discrete distributions over q
points a1, a2, . . . , aq; that is wi,j takes value in the set {a1, a2, . . . , aq}. We defined the empirical
“inter” distribution pv,C for i = 1, . . . , q, pv,C(i) = 1

|C| · |{u ∈ C : wu,v = ai}|. Also compute
the “intra” distribution pC for i = 1, . . . , q, pC(i) = 1

|C|(|C|−1) · |{(u, v) ∈ C × C : u 6= v, wu,v =

ai}|. Then we use Membership(v, C) = −H2(pv,C‖pC) as affinity of vertex v to cluster C, where
H(pv,C‖pC) denotes the Hellinger divergence between distributions. Note that since the membership
is always negative, a higher membership implies that the ‘inter’ and ‘intra’ distributions are closer in
terms of Hellinger distance.

The algorithm works as follows. Let C1, C2, ..., Cl be the current clusters in nonincreasing order of
size. We find the minimum index j ∈ [1, l] such that there exists a vertex v not yet clustered, with the
highest average membership to Cj , that is Membership(v, Cj) ≥ Membership(v, Cj′), ∀j′ 6= j, and
j is the smallest index for which such a v exists. We first check if v ∈ Cj by querying v with any
current member of Cj . If not, then we group the clusters C1, C2, .., Cj−1 in at most dlog ne groups
such that clusters in group i has size in the range [|C1|2i−1 ,

|C1|
2i). For each group, we pick the cluster

which has the highest average membership with respect to v, and check by querying whether v
belongs to that cluster. Even after this, if the membership of v is not resolved, then we query v with
one member of each of the clusters that we have not checked with previously. If v is still not clustered,
then we create a new singleton cluster with v as its sole member.

The pseudocode of the algorithm is given in Figure 3 We now give a proof of the Las Vegas part of
Theorem 1 here using Algorithm 3. We crucially use the following lemma which proves a strong
concentration inequality adapting the Sanov’s Theorem (see Lemma 2) of information theory.

Lemma 8. Suppose, C, C′ ⊆ V , C ∩ C′ = ∅ and |C| ≥M, |C′| ≥M = 32 logn
H2(f+‖f−) . Then,

Pr
(
Membership(v, C′) ≥ Membership(v, C) | v ∈ C

)
≤ 2

n3
.

Proof. Let β = H(f+‖f−)
2 . If Membership(v, C′) ≥ Membership(v, C) then we must have,

H(pv,C′‖pC′) ≤ H(pv,C‖pC). This means either H(pv,C′‖pC′) ≤ β
2 or H(pv,C‖pC) ≥ β

2 . Now,
using triangle inequality,

Pr
(
H(pv,C′‖pC′) ≤

β

2

)
≤ Pr

(
H(pv,C′‖f+)−H(pC′‖f+) ≤ β

2

)
≤ Pr

(
H(pv,C′‖f+) ≤ β orH(pC′‖f+) ≥ β

2

)
≤ Pr

(
H(pv,C′‖f+) ≤ β

)
+ Pr

(
H(pC′‖f+) ≥ β

2

)
.

Similarly,

Pr
(
H(pv,C‖pC) ≥

β

2

)
≤ Pr

(
H(pv,C‖f+) +H(pC‖f+) ≥ β

2

)
≤ Pr

(
H(pv,C‖f+) ≥ β

4
orH(pC‖f+) ≥ β

4

)
≤ Pr

(
H(pv,C‖f+) ≥ β

4

)
+ Pr

(
H(pC‖f+) ≥ β

4

)
.

Now, using Sanov’s theorem (Lemma 2), we have,

Pr
(
H(pv,C′‖f+) ≤ β

)
≤ (M + 1)q exp(−M min

p:H(p‖f+)≤β
D(p‖f−)).

At the optimizing p of the exponent,

D(p‖f−) ≥ 2H2(p‖f−) relation between Hellinger and KL [38]

19

Figure 3: Pseudocode: Las Vegas Algorithm for Query-Cluster

Algorithm 1 Query-Cluster with Side Information. Input: {V,W} (Note: O is the perfect
oracle.

Û Initialization.
1: Pick an arbitrary element v and create a new cluster {v}. Set V = V \ v
2: while V ”= ÿ do

Û Let the number of current clusters be l Ø 1
3: Order the existing clusters in nonincreasing size.

Û Let |C1| Ø |C2| Ø . . . Ø |Cl| be the ordering (w.l.o.g).
4: for j = 1 to l do
5: If ÷v œ V such that j = maxiœ[1,l] Membership(v, Ci), then select v and Break;
6: end for
7: O(v, u) where u œ Cj
8: if O(v, u) == “ + 1” then
9: Include v in Cj . V = V \ v

10: else
Û logarithmic search for membership in the large groups. Note s Æ ÁlognË

11: Group C1, C2, ..., Cj≠1 into s consecutive classes H1, H2, ...,Hs such that the clusters
in group Hi have their current sizes in the range [|C1|

2i≠1 ,
|C1|
2i)

12: for i = 1 to s do
13: j = maxa:CaœHi Membership(v, Ca)
14: O(v, u) where u œ Cj .
15: if O(v, u) == “ + 1” then
16: Include v in Cj . V = V \ v. Break.
17: end if
18: end for

Û exhaustive search for membership in the remaining groups
19: if v œ V then
20: for i = 1 to l + 1 do
21: if i = l + 1 then Û v does not belong to any of the existing clusters
22: Create a new cluster {v}. Set V = V \ v
23: else
24: if @u œ Ci such that (u, v) has already been queried then
25: O(v, u)
26: if O(v, u) == “ + 1” then
27: Include v in Cj . V = V \ v. Break.
28: end if
29: end if
30: end if
31: end for
32: end if
33: end if
34: end while

17
20

≥ 2(H(f+‖f−)−H(p‖f+))2 from using triangle inequality

≥ 2(2β − β)2 from noting the value of β

=
H2(f+‖f−)

2
.

Again, using Sanov’s theorem (Lemma 2), we have,

Pr
(
H(pC′‖f+) ≥ β

2

)
≤ (M + 1)q exp(−M min

p:H(p‖f+)≥ β2
D(p‖f+)).

At the optimizing p of the exponent,

D(p‖f+) ≥ 2H2(p‖f+) relation between Hellinger and KL divergences [38]

≥ β2

2
from noting the value of β

=
H2(f+‖f−)

8
.

Now substituting this in the exponent, using the value of M and doing the same exercise for the other
two probabilities we get the claim of the lemma.

Proof of Theorem 1, Las Vegas Algorithm. First, The algorithm never includes a vertex in a cluster
without querying it with at least one member of that cluster. Therefore, the clusters constructed by our
algorithm are always proper subsets of the original clusters. Moreover, the algorithm never creates
a new cluster with a vertex v before first querying it with all the existing clusters. Hence, it is not
possible that two clusters produced by our algorithm can be merged.

Let C1, C2, ..., Cl be the current non-empty clusters that are formed by Algorithm 3, for some l ≤ k.
Note that Algorithm 3 does not know k. Let without loss of generality |C1| ≥ |C2| ≥ ... ≥ |Cl|. Let
there exists an index i ≤ l such that |C1| ≥ |C2| ≥ · · · ≥ |Ci| ≥ M , where M = 32 logn

H2(f+‖f−) . Of
course, the algorithm does not know either i or M . If even |C1| < M , then i = 0. Suppose j′ is the
minimum index such that there exists a vertex v with highest average membership in Cj′ . There are
few cases to consider based on j′ ≤ i, or j′ > i and the cluster that truly contains v.

Case 1. v truly belongs to Cj′ . In that case, we just make one query between v and an existing
member of Cj′ and the first query is successful.

Case 2. j′ ≤ i and v belongs to Cj , j 6= j′ for some j ∈ {1, . . . , i}. Here we have
Membership(v, Cj′) ≥Membership(v, Cj). Since both Cj and Cj′ have at least M current members,
then using Lemma 8, this happens with probability at most 2

n3 . Therefore, the number of queries
involving v before its membership gets determined is ≤ 1 with probability at least 1− 2k

n3 .

Case 4. v belongs to Cj , j 6= j′ for some j > i. In this case the algorithm may make k queries
involving v before its membership gets determined.

Case 5. j′ > i, and v belongs to Cj for some j ≤ i. In this case, there exists no v with its highest
membership in C1, C2, ..., Ci.
Suppose C1, C2, ..., Cj′ are contained in groups H1, H2, ...,Hs where s ≤ dlog ne. Let Cj ∈ Ht,
t ∈ [1, s]. Therefore, |Cj | ∈ [|C1|2t−1 ,

|C1|
2t]. If |Cj | ≥ 2M , then all the clusters in group Ht have size at

least M . Now with probability at least 1− 2
n2 , Membership(v, Cj)≥Membership(v, Cj′′) for every

cluster Cj′′ ∈ Ht. In that case, the membership of v is determined within at most dlog ne queries.
Else, with probability at most 2

n2 , there may be k queries to determine the membership of v.

Therefore, once a cluster has grown to size 2M , the number of queries to resolve the membership
of any vertex in those clusters is at most dlog ne with probability at least 1 − 2

n2 . Hence, for at
most 2kM elements, the number of queries made to resolve their membership can be k. Thus the
total number of queries made by Algorithm 3 is O(n log n+Mk2) = O(n log n+ k2 logn

H2(f+‖f−)) with
probability 1− on(1).

21

Remark 1. While for the more general setting with unknown fi,js (distribution referring to similarity
of cluster i and j), we do not know how to extend this algorithm yet, if the parameters were known it
is possible to extend our algorithm to such setting. We can calculate Mi = O(logn

minj:j 6=iH2(fi,i‖fi,j)),

and thus whenever the i th clusters grows to size Mi, remainder of its members can be inferred.

Since we handle very generic distributions, our upper bounds are off by a factor of O(log n) from the
lower bound. Tightening this bound, e.g. for sparse SBM to match the conjectured trade-off between
queries and threshold remains an important open question.

C Zero Query and the Stochastic Block Model

Consider the case when we allow zero query to the oracle. The clustering has to be done just by
using the side information matrix. This is a direct generalization to the well-known stochastic block
model. Indeed, if f+ is Bernoulli(p) and f− is Bernoulli(q), then the side information matrix is a
binary matrix, as in the case of stochastic block model [1, 24, 11, 36].

It is clear that if the clustering input instance is adversarial, then it is impossible to recover the clusters
with high probability. For example, think of the situation that k − 1 clusters are of size 1 each. In
that case, one of these k − 1 small cluster points cannot be assigned to the correct cluster without
querying, with a positive probability. Note that we will not be able to have such an argument later
when querying is allowed, which makes that case significantly difficult.

Let us look at the scenario, when there are k clusters of size n
k each. Suppose V = tki=1Vi is the

correct clustering. Consider the different clustering instances, that can be derived from the correct
clustering, by swapping any two points a ∈ Vi and b ∈ Vj , i 6= j. There are K =

(
k
2

)
n2

k2 =
n2

2 (1− 1/k) such different clusterings (partitions) possible. Let us consider these K different cases
as K hypotheses, and try to identify which one of them is true based on the side information matrix.

Let Qt, t = 1, . . . ,K be the joint probability distributions of the side information matrix under
hypothesis t, t = 1, . . . ,K. Also, let the correct clustering be the zeroth hypothesis and induces a
joint probability distribution Q0.

In this type of multi-hypothesis testing problem, a standard tool to lower bound probability of error
is Fano’s inequality. However, Fano’s inequality in its usual form in hypothesis testing (see, [26,
Thm. 7]) does not give the tightest possible result in our case. We instead use another form of Fano’s
inequality from [23, Thm. II.1 Eq. (5)] - therein taking Q = Q0 and taking f(x) = x log x, we have,
the probability of error Pe of this hypothesis testing problem (to identify between the K hypotheses)
given by,

1

K

∑
i

D(Qi‖Q0) ≥ (1− Pe) log(K(1− Pe)) + Pe log(KPe/(K − 1))

whereD(f‖g) is the Kullback-Leibler (KL) divergence. The KL divergence between joint distribution
of independent random variables is sum of the KL divergence of the marginals, and the only times
when the distributions of wi,j differs under Qi and under Q0 is when i or j belong to the two clusters
where elements were swapped. There are 4n

k such instances, among them 2n
k contributes D(f+‖f−)

to the sum and 2n
k contributes D(f−‖f+) to the sum. Therefore we obtain,

Pe ≥ 1−
1
K

∑
iD(Qi‖Q0) + log 2

logK
≥ 1−

2n
k ∆(f+‖f1)

log n2

2 (1− 1/k)
≈ 1− n∆(f+‖f1)

k log n
,

where ∆(f‖g) ≡ D(f‖g) +D(f‖g) .

One particular regime of interest in the literature of stochastic block model appear (see, [2, 36]) when,
f+ ∼ Bernoulli

(
a logn
n

)
and f− ∼ Bernoulli

(
b logn
n

)
. Then D(f+‖f−) = a logn

n log a
b +

(
1 −

a logn
n

)
log

1− a logn
n

1− b logn
n

and ∆(f+‖f−) = (a− b) logn
n

(
log a

b − log
1− a logn

n

1− b logn
n

)
≈ logn

n · (a− b) log a
b .

In this case, Pe ≥ 1− a−b
k log a

b , and, Pe > 0 as long as (a− b) log a
b < k. This lower bound can be

improved by considering generalized versions of Fano’s inequality involving Hellinger divergence.

22

In particular, by constructing a different hypothesis testing scenario and using a generalized version
of Fano’s inequality we can obtain the following result on probability Pe of erroneous clustering. In
particular, we can use a generalized version of Fano’s inequality due to Polyanskiy and Vérdu [37,
Thm. 4]. Consider the following different hypothesis testing situation. Suppose k divides n, and there
are k equally sized subsets that partition the set of elements [n] = V1 t V2 t · · · t Vk. Let v ∈ V1 be
a fixed element. Take any cluster Vj , j 6= 1. For all elements u1, . . . , un/k ∈ Vj , we obtain K = n/k
different hypotheses by interchanging v with ui, i = 1, . . . , n/k. We consider the probability of error
of this hypothesis testing problem. Inparticular, [37, Thm. 4], says that the probability of error Pe is
given by (considering Renyi divergence of order 1

2),

−2 log
(√1− Pe

K
+

√
Pe(1−

1

K
)
)
≤ − log

∑
y

(
1

K

K∑
j=1

√
Qj(y))2

which implies for us,(√1− Pe
K

+

√
Pe(1−

1

K
)
)2
≥ 1

K2

∑
j

∑
i

∑
y

√
Qj(y)Qi(y) =

1

K2

∑
j

∑
i

(
1−H2(Qi‖Qj)

)
= 1−H2(Qi‖Qj) = 1−

(
1− (1−H2(f+‖f−))

4n
k

)
= (1−H2(f+‖f−))

4n
k ,

where we had to crucially used the following fact: if Pm1 and Qm1 denote joint distributions of m of
independent Pi and independent Qi, i = 1, . . . ,m random variables, then,

H2(Pm1 ‖Qm1) = 1−
∫
x1,...,xm

√
Pm1 (x1, . . . , xm)Qm1 (x1, . . . , xm)dx1, . . . , dxm

= 1−
m∏
i=1

∫
x

√
Pi(x)Qi(x)dx using Tonelli’s theorem

= 1−
m∏
i=1

(1−H2(Pi‖Qi)) ≤
m∑
i=1

H2(Pi‖Qi).

Again, we assume f+ ∼ Bernoulli
(
a logn
n

)
and f− ∼ Bernoulli

(
b logn
n

)
. In this case,√

k

n
+
√
Pe ≥

(√
ab

log n

n
+

√
(1− a log n

n
)(1− b log n

n
)
) 2n
k

=
(

1−
(a+ b

2
−
√
ab− ab log n

n

) log n

n

) 2n
k

≈ e
−
(
a+b
2 −
√
ab− ab logn

n

)
2 logn
k

= n
−
(
a+b
2 −
√
ab− ab logn

n

)
2
k
.

This implies,
√
Pe ≥ n

−
(
a+b
2 −
√
ab

)
2
k −
√
kn−1/2 In particular, if

(
a+b
2 −
√
ab
)

2
k <

1
2 , then Pe > 0.

Hence, Pe > 0 if
√
a−
√
b <

√
k

2
.

While in this regime, this result is slightly suboptimal compared to the lower bound of [2], where
the corresponding bound was

√
a−
√
b <
√
k, note that our bound works for arbitrary f+, f− and

across all regimes; moreover we have not tried to optimize the constants here.

D Connections & Future Direction

This is the first work that rigorously study the query complexity of clustering with side information.
We introduce new general information theoretic methods; as well as use, information theoretic
inequalities to design efficient algorithms for clustering with near-optimal complexity. Our algorithms
are entirely parameter free, and are computationally efficient. This work reveals interesting connection
to the well-studied model of the stochastic block model and, generalize them in a significant way

23

by considering arbitrary distribution for noise opposed to only Bernoulli noise, and opens up new
direction of study in the general area of clustering and community detection.

Even for the zero-query case, using generalized Fano’s inequality in multiple hypothesis testing, we
can derive simple lower bounds for SBM with arbitrary f+, f− and cluster size distribution, matching
closely the bounds for the sparse region f+ ∼ Bernoulli(a logn

n) and f− ∼ Bernoulli(b lognn) and
cluster size ∼ n

k . Extending this lower bound to consider adaptive querying comes as a major
challenge, as querying may reveal different deterministic information under different hypothesis.
We propose a general framework for deriving such lower bounds, and in the process it reveals an
interesting trend on how the threshold of recovery should change with querying: from

√
a−
√
b ≥
√
k

to
√
a−
√
b ≥
√
k
(

1− Q
nk

)
(see Lemma 1). That is querying can help reduce the threshold when

O(n) edges have been queried as k is a constant. Currently, there is a
√

log n gap to achieve this
bound as our lower bounds deal with very generic distributions and cluster sizes. Closing this gap for
the stochastic block model with querying remains an interesting open question.

There is also a very recent result by [5] that studies the specific k-means clustering problem with
a different side information model. While the setting is quite different, it is an interesting future
work to improve their result (for example, they show a lower bound of Ω(log k + log n) to overcome
NP-hardness of the problem) using our general methods.

24

	Upper Bound (Algorithm): Proof of Theorem 1 (Monte Carlo)
	Monte Carlo Algorithm
	Analysis

	A Las Vegas Algorithm for Query-Cluster with an Oracle
	Zero Query and the Stochastic Block Model
	Connections & Future Direction

