
A Guarantees on Bootstrapped Samples

In this section we prove that the samples generated in Algorithm 1, through the nearest neighbor
bootstrap, are close to samples generated from fCI

(x, y, z) = f
X|Z(x|z)f

Y |Z(y|z)f
Z

(z). The
closeness is characterized in terms of total variational distance as in Theorem 1. Suppose 2n
i.i.d samples from distribution f(x, y, z) are supplied to Algorithm 1. Consider a typical sample
(X, Y, Z) ⇠ f(x, y, z), which is modified to produce a typical sample in U 0

2 (refer to Algorithm 1)
denoted by (X, Y 0, Z). Here, Y 0 are the Y -coordinates of a sample (X 0, Y 0, Z 0

) in U2 such that Z 0

is the nearest neighbor of Z. Let us denote the marginal distribution of a typical sample in U 0
2 by

�
X,Y,Z

(x, y, z), i.e (X, Y 0, Z) ⇠ �
X,Y,Z

(x, y, z). Now we are at a position to prove Theorem 1.

Proof of Theorem 1. Let f
Z

0|z(z
0
) denote the conditional p.d.f of the variable Z 0 (that is the nearest

neighbor of sample Z in U2), conditioned on Z = z. Therefore, the distribution of the new-sample is
given by,

�
X,Y,Z

(x, y, z) = f
X|Z(x|z)f

Z

(z)

Z
f

Y |Z(y|z0
)f

Z

0|z(z
0
)dz0. (4)

We want to bound the total variational distance between �
X,Y,Z

(x, y, z) and fCI

X,Y,Z

(x, y, z). We
have the following chain:
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Z
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Z
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Z
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0
)dz0

�����dxdydz
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(z)

�����
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0
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)

f
Y |Z(y|z)

�����fZ
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0
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=
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0
f

X|Z(x|z)f
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(z)f
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0|z(z
0
)

 Z �����fY |Z(y|z) � f
Y |Z(y|z0

)

�����dy

!
dz0dxdz


Z

x,z,kz

0�zk2✏

f
X|Z(x|z)f

Z

(z)f
Z

0|z(z
0
)

 Z �����fY |Z(y|z) � f
Y |Z(y|z0

)

�����dy

!
dz0dxdz+

2

Z

x,z,kz0�zk2>✏

f
X|Z(x|z)f

Z

(z)f
Z

0|z(z
0
)dz0dxdz


Z

x,z,kz

0�zk2✏

f
X|Z(x|z)f

Z

(z)f
Z

0|z(z
0
)

 Z �����fY |Z(y|z) � f
Y |Z(y|z0

)

�����dy

!
dz0dxdz+

2 ⇤ P (kz0 � zk2 > ✏) (5)

By Pinsker’s inequality, we have:
Z

y

�����fY |Z(y|z) � f
Y |Z(y|z0

)

�����dy 
s

1

2

Z

y

log

f(y|z)

f(y|z0
)

f(y|z)dy (6)

By Taylor’s expansion with second-order residual, we have:
Z

log

f(y|z)

f(y|z0
)

f(y|z)dy =

1

2

(z0 � z)

T I
a

(z)(z0 � z) (7)

for some a = �z + (1 � �)z0 where 0  �  1.
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Under Assumption 1 and ✏ < ✏1 we have,

(z0 � z)

T I
a

(z)(z0 � z)  �kz0 � zk2
2. (8)

Then, (8), (7), (6) and (5) imply:

2 ⇤ d
TV

(�, fCI

) 
r

�

4

E[kz0 � zk21kz

0�zk2✏

] + 2P (kz0 � zk2 > ✏) (9)

We now bound both terms separately. Let Z1, Z2..., Zn

be distributed i.i.d according to f(z). Then,
f

Z

0|z(·) is the pdf of the nearest neighbor of z among Z1, . . . , Zn

.

A.0.1 Bounding the first term

In this section we will use d in place of d
z

for notational simplicity. Let �
d

be the volume of the unit
`2 ball in dimension d. Let S = {z : f(z) � 2 ⇤ c

d

✏2}. This implies, that for z 2 S:

f(z) � c
d

✏2 � f(z)/2 (10)

Let Z 0
= argmin

Z1,Z2...,Z

n

kZ
i

�zk2 be the random variable which is the nearest neighbor to a point
z among n i.i.d samples Z

i

drawn from the distribution whose pdf is f(z) that satisfies assumption 2.
Let r(z) = ||z � z0||2. Let F (r) be the CDF of the random variable R. Since R is a non-negative
random variable,

E
R

[r(z)1
r✏

] =

Z

r✏

rdF (r) = [rF (r)]✏0 �
Z

r✏

F (r)dr 
Z

r✏

P (R > r)dr (11)

For any r  ✏, observe that

Pr(R > r) = Pr(@i : z
i

2 B(z, r))

= (1 � Pr(Z 2 B(z, r)))n

 exp(�nPr(Z 2 B(z, r))) (12)

We have the following chain to bound Pr(Z 2 B(z, r)). Let a = �z + (1 � �)t.

|Pr(Z 2 B(z, r)) � f(z)�
d

rd| 
�����

Z
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(f(t) � f(z))dt

�����

=

�����

Z
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T .(t � z) + (t � z)
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f
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f

(t)k2
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d

�
d

rd+2 (13)

By putting together (11),(12) and(13), we have:
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Therefore, the first term in bounded by:

E[kz0 � zk21kz

0�zk2✏

]  E
Z

[E
R

[r(z)1
r✏

]] (14)

 E
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(n�
d
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�
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(16)

(17)

A.0.2 Bounding the second term

We now bound the second term as follows:

Pr(||z � z0||2 > ✏)  E
Z

[Pr(R > ✏)]

 E
Z
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z2S
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✓
�n�

d
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2

◆�
+ Pr(z 2 Sc

)
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�
�n�

d

c
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�
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�
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Substituting in (9), we have:

2 ⇤ d
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(g, fCI

) 
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�

4
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d
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+
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Substitute d
z

in place of d to recover Theorem 1.

B Generalization Error Bounds on Classification

In this section, we will prove generalization error bounds for our classification problem in Algorithm 2.
Note the samples in U 0

2 are not i.i.d, so standard risk bounds do not hold. We will leverage a spatial
near independence property to provide generalization bounds under non-i.i.d samples. In what
follows, we will prove the results for any bounded loss function L(g(u), `)  |L|. Let S , D

r

i.e.,
the set of training samples. For 1  i  3, let Z

i

, {z : (x, y, z) 2 U
i

}. Let Z , Z1 [ Z2. Observe
that

R
q

(g
S

)  R
q

(g⇤
q

) + 2 sup

g2G
(R

S

(g) � R
q

(g)), (18)

and hence in the rest of the section we upper bound sup

g2G(R
S

(g) � R
q

(g)). To this end, we define
conditional risk R

S

(q|Z) as

R
S

(g|Z) , 1

n

X

(u,`)2S

E[L(g(u), `)|Z].

By triangle inequality,

sup

g2G
(R

S

(g) � R
q

(g))  sup

g2G
(R

S

(g) � R
S

(g|Z)) + sup

g2G
(R

S

(g|Z) � R
q

(g)). (19)

We first bound the second term in the right hand side of Equation (19) in the next lemma.
Lemma 1. With probability at least 1 � �,

sup

g2G
(R

S

(g|Z) � R
q

(g))  |L|C
r

V

n
+ |L|

r
2 log(1/�)

n
,

where V is the VC dimension of the classification model.
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Proof. For a sample u = (x, y, z), observe that Z ! z ! u forms a Markov chain. Hence,

E[L(g(u), `)|Z] = E[L(g(u), `)|Z].

Let
h(Z) , E[L(g(u), `)|Z] (20)

Hence,

R
S

(g|Z) � R
q

(g) =

1

n

X

z2Z
h(Z) � E

q

[h(Z)].

The above term is the average of n independent random variables h(Z) and hence we can apply
standard tools from learning theory [4] to obtain

sup

g2G
(R

S

(g|Z) � R
q

(g))  |L|C
r

V
h

n
+ |L|

r
2 log(1/�)

n
,

where V
h

is the VC dimension of the class of models of h. The lemma follows from the fact that VC
dimension of h is smaller than the VC dimension of the underlying classification model.

We next bound the first term in the RHS of Equation (19). Proof is given in Appendix B.1.
Lemma 2. Let ✏ > 0. If the Hessian of the density f(z)and the Lipscitz constant of the same is
bounded, then with probability at least 1 � 7�,

sup

g2G
(R

S

(g) � R
n

(g|Z))  |L|
 

p
V +

r
log

1

�

! ✓
log(n/�)

n

◆1/3

+

r
4

d

log(n/�) + o
n

(1/✏)

n

!

+ |L|G(✏). (21)

Lemmas 1 and 2, together with Equations (18) and (19) yield the following theorem.
Theorem 3. Let ✏ > 0. If the Hessian and the Lipscitz constant of f(z) is bounded, then with
probability at least 1 � 8�,

R
q

(ĝ)  R
q

(g⇤
q

)+c|L|
  

p
V +

r
log

1

�

! ✓
log(n/�)

n

◆1/3

+

r
4

d

log(n/�) + o
n

(1/✏)

n

!
+ G(✏)

!
,

(22)
where c is a universal constant and ĝ is the minimizer in Step 6 of Algorithm 2.

B.1 Proof of Lemma 2

We need few definitions to prove Lemma 2. For a point z, let B
n

(z) be a ball around it such that

Pr

Z⇠f(z)
(Z 2 B

n

(z)) =

log

n

2

�

n
, ↵

n

.

Intuitively, with high probability the nearest neighbor of each sample z lies in B
n

(z). We formalize
it in the next lemma.
Lemma 3. With probability > 1 � �, the nearest neighbor of each sample z 2 Z2 in Z3 lie in B(z).

Proof. The probability that none of Z3 appears in B(z) is 1� (1�↵
n

)

n  �/n. The lemma follows
by the union bound.

We now bound the probability that the the nearest neighbor balls B
n

() intersect for two samples.
Lemma 4. Let ✏ > 0. If the Hessian of the density (f(z)) is bounded by c and the Lipschitz constant
is bounded by �, then for any given z1 such that f(z1) � ✏ and a sample z2 ⇠ f ,

Pr

z2⇠f

(B
n

(z1) \ B
n

(z2) 6= ;)  �
n

, 4

d↵
n

(1 + o
n

(1/✏)).
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Proof. Let r
n

(z) denote the radius of B
n

(z). Let B(z, r) denote the ball of radius r around z and
V (z, r) be its volume. We can rewrite �

n

as

= Pr(B
n

(z1) \ B
n

(z2) 6= ;)

= Pr(B
n

(z1) \ B
n

(z2) 6= ;, 3r
n

(z1) � r
n

(z2)) + Pr(B
n

(z1) \ B
n

(z2) 6= ;, 3r
n

(z1) < r
n

(z2)).

We first bound the first term. Note thatZ

z

02B

n

(z)
f(z0

)dz0
= ↵

n

,

Hence, by Taylor’s series expansion and the bound on Hessian yields,

↵
n

=

Z

z

02B

n

(z)
f(z0

)dz0
= V (z, r

n

(z))

�
f(z) + O(r2

n

(z)c)
�
.

Similarly,

Pr(z0 2 V (z, 4r
n

(z))) = V (z, 4r
n

(z))

�
f(z) + O(9r2

n

(z)c)
�

= 4

d↵
n

(1 + o
n

(1/✏)),

where the last equality follows from the fact that V (z, 4r
n

(z))/V (z, r
n

(z)) = 4

d in d dimensions.

Then the first term can be bounded as

Pr(B
n

(z1) \ B
n

(z2) 6= ;, 3r
n

(z1) � r
n

(z2)) = Pr(z2 2 B(z1, rn

(z1) + r
n

(z2)), 3r
n

(z1) � r
n

(z2))

 Pr(z2 2 B(z1, 4r
n

(z1)), 3r
n

(z1) � r
n

(z2))

 Pr(z2 2 B(z1, 4r
n

(z1)))

 4

d↵
n

(1 + o
n

(1/✏)).

To bound the second term, observe that if B
n

(z1) \ B
n

(z2) 6= ; and 3r
n

(z1) < r
n

(z2). There exists
a point z0 on the line joining z1 and z2 at distance 3r

n

(z1) from z1 such that

Pr(z00 2 B(z0, 3r
n

(z1))) < ↵
n

.

As before bound on the Hessian yields,

↵
n

> V (z0, 3r
n

(z1))(f(z0
) � O(9r2

n

(z1)c)).

Hence,
f(z0

) < 3

�d

(f(z) + O(r2
n

(z)c)) + O(9r2
n

(z1)c).

However, f(z) > ✏ and f(z0
) � f(z) � 3r

n

(z1)� and r
n

(z1) ! 0. Hence, a contradiction. Thus

Pr(B
n

(z1) \ B
n

(z2) 6= ;, 3r
n

(z1) < r
n

(z2)) = 0.

Consider the graph on indices [n], such that two indices are connected if and only if B
n

(z
i

) \
B

n

(z
j

) 6= ;, f(z1) � ✏, f(z2) � ✏ . Let �(Zn

1 ) be the maximum degree of the resulting graph. We
first show that the maximum degree of this graph is small.
Lemma 5. With probability � 1 � �,

�(Zn

1 )  4n�
n

.

Proof. For index 1, by Lemma 4 that probability of j points intersect is at most
jX

i=0

✓
n

i

◆
�i

n

(1 � �
n

)

n�i.

Hence, the degree of vertex 1 is dominated by a binomial distribution with parameters n and �
n

. The
lemma follows from the union bound and the Chernoff bound.

Let k > 2�(Zn

1 ) and S0, S1, S2 . . . S
k

be k independent sets of the above graph such that
max

t�1 |S
t

|  2n/k. Note that such independent sets exists by Lemma 10. We set the exact
value of k later. Let S0 contains all indices such that f(z

i

) < ✏.
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Lemma 6. With probability > 1 � �,

|S0|  nG(✏) +

r
n log

1

�
.

Proof. Observe that |S0| is the sum of n independent random variables and changing any of them
changes S0 by at most 1. The lemma follows by McDiarmid’s inequality.

We can upper bound the LHS in Equation (21) as

sup

g2G
(R

S

(g) � R
n

(g|Z)) 
kX

t=1

|S
t

|
n

sup

g2G

1

|S
t

|
X

i2S

t

(L(g(u
i

), `
i

) � h(Z
i

)) +

|S0|
n

|L|.

Let N(Z
i

) denote the number of elements of Z3 that are in B(Z
i

) and Let A
i

be always true if
Z

i

2 Z1 and otherwise A
i

be the event such that nearest neighbor of samples in N(Z
i

) > 0. We first
show the following inequality.
Lemma 7. With probability � 1 � �, for all sets S

t

.

sup

g2G

1

|S
t

|
X

i2S

t

(L(g(u
i

), `
i

) � h(Z
i

)) = sup

g2G

1

|S
t

|
X

i2S

t

1

A

i

(L(g(u
i

), `
i

) � h(Z
i

)) .

Proof. Let X
i

= (L(g(u
i

), `
i

) � h(Z
i

)) and Observe that LHS can be written as

sup

g2G

1

|S
t

|
X

i2S

t

X
i

= sup

g2G

1

|S
t

|
X

i2S

t

X
i

1

A

i

+ sup

g2G

1

|S
t

|
X

i2S

t

(X
i

� X
i

1

A

i

).

If the conditions of Lemma 3 hold, the nearest sample of Z
i

’s lie within B
n

(Z
i

). Hence, with
probability � 1 � �, the second term is 0. Hence the lemma.

Let r be defined as follows.

r(Z
i

, N
i

) , E[1

A

i

(L(g(u
i

), `
i

) � h(Z
i

)) |N(Z
i

) = N
i

].

Observe that

E
"
X

i2S

t

1

A

i

(L(g(u
i

), `
i

) � h(Z
i

)) |N(Z1), . . . N(Z
n

)

#

=

X

i2S

t

E [1

A

i

(L(g(u
i

), `
i

) � h(Z
i

)) |N(Z1), . . . N(Z
n

)]

=

X

i2S

t

E [1

A

i

(L(g(u
i

), `
i

) � h(Z
i

)) |N(Z
i

)]

=

X

i2S

t

r(Z
i

, N
i

). (23)

Hence, we can split the term as

sup

g2G

1

|S
t

|
X

i2S

t

1

A

i

(L(g(u
i

), `
i

) � h(Z
i

))

 sup

g2G

1

|S
t

|
X

i2S

t

1

A

i

(L(g(u
i

), `
i

) � r(Z
i

, N(Z
i

))) + sup

g2G

1

|S
t

|
X

i2S

t

1

A

i

(r(Z
i

, N(Z
i

)) � h(Z
i

))

(24)

Given {Z
i

, N(Z
i

)}, the first term in the RHS of the Equation (24) is a function of |S
t

| independent
random variables as 1

A

i

⇤ L(g(u
i

), `
i

) are mutually independent given {Z
i

, N(Z
i

)}. Thus we can
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use standard tools from VC dimension theory and state that with probability � 1 � �, the first term in
the RHS of Equation (24) can be upper bounded as

sup

g2G

1

|S
t

|
X

i2S

t

1

A

i

(L(g(u
i

), `
i

) � r(Z
i

, N(Z
i

)))  |L|C
s

V

|S
t

| + |L|
s

log(1/�)

|S
t

| .

conditioned on {Z
i

, N(Z
i

)}
To bound the second term in the RHS of Equation (24), observe that unlike the first term, the N(Z

i

)s
are dependent on each other. However note that N(Z1), . . . N(Z|S

t

|) are distributed according to
multinomial distribution with parameters n and ↵

n

. However, if we replace them by independent
Poisson distributed N(Z

i

)s we expect the value not to change. We formalize it by total variation
distance. By Lemma 9, the total variation distance between a multinomial distribution and product of
Poisson distributions is

O(|S
t

|↵
n

),
and hence any bound holds in the second distribution holds in the first one with an additional penalty
of

O (|S
t

|↵
n

|L|) .
Under the new independent sampling distribution, again the samples are independent and we can use
standard tools from VC dimension and hence, with probability � 1 � �, the term is upper bounded by

|L|C
s

V

|S
t

| + |L|
s

log(1/�)

|S
t

| .

Hence, summing over all the bounds, we get

sup

g2G
(R

S

(g) � R
n

(g|Z))  |L|O

0

@ |S0|
n

+

kX

t=1

|S
t

|
n

0

@
s

log

1
�

|S
t

| + c

s
V

|S
t

| + ↵
n

|S
t

|

1

A

1

A

 |L|O

0
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conditioned on Z
i

, N(Z
i

) Choose k = n↵2/3
n

+8n�
n

, and note that the conditioning can be removed
as the term on the r.h.s are constants.This yields the result. The error probability follows by the union
bound.
Theorem 4. Assume the conditions for Theorem 3. Suppose the loss is L(g(u), `) = 1

g(u) 6=`

(s.t |L|  1). Further suppose the class of classifying function is such that R
q

(g⇤
q

)  r0 + ⌘.
Here, r0 , 0.5(1 � d

TV

(q(x, y, z|1), q(x, y, z|0))) is the risk of the Bayes optimal classifier when
P(` = 1) = P(` = 0). This is the best loss that any classifier can achieve for this classification
problem [4]. Under this setting, w.p at least 1 � 8� we have:

1

2

�
1 � d

TV

(f, fCI

)

�
� b(n)

2

 R
q

(g
S

)  1

2

�
1 � d

TV

(f, fCI

)

�
+

b(n)

2

+ ⌘ + �
n

Proof. Assume the bounds of Theorem 3 holds which happens w.p at least 1 � 8�. From Theorem 3
we have that

R
q

(g
S

)  R
q

(g⇤
q

) + �
n

. (25)
Also, note that from Theorem 1 we have the following:

d
TV

(q(x, y, z|1), q(x, y, z|0)) = d
TV

(�, f)

 d
TV

(�, fCI

) + d
TV

(fCI , f)

 b(n) + d
TV

(fCI , f) (26)
Under our assumption we have R

q

(g⇤
q

)  r0 + ⌘. Combining this with (25) and (26) we get the r.h.s.
For, the l.hs note that R

q

(g⇤
q

) � r0 as the bayes optimal classifier has the lowest risk. We can now
use (26) to prove the l.h.s.
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C Tools from probability and graph theory

Lemma 8 (McDiarmid’s inequality [20]). Let X1, X2, . . . Xm

be m independent random variables
and f be a function from xn

1 ! R such that changing any one of the X
i

s changes the function f at
most by c

i

, then

Pr(f � E[f ] � ✏)  exp

✓
�2✏2P
m

i=1 c2
i

◆
.

Lemma 9 (Special case of Theorem 1 in [25]). Let f
m

be the multinomial distribution with
parameters n and p1, p2, . . . p

k

, 1 �
P

k

i=1 p
i

, and f
p

be the product of Poisson distributions with
mean np

i

for i  1  k, then

d
TV

(f
m

, f
s

)  8.8
kX

i=1

p
i

.

Lemma 10. For a graph with maximum degree �, there exists a set of independent sets S1, S2, . . . Sk

such that k � 2� and
max

1ik

|S
i

|  2n/k.

Proof. We show that the following algorithm yields a coloring (and hence independent sets) with the
required property.

Let 1, 2, . . . k be k colors, where k > 2�. We arbitrarily order the nodes, and sequentially color
nodes with a currently least used color from among the ones not used by its neighbors. Consider the
point in time when i nodes have been colored, and we evaluate the options for the (i + 1)

th node.
The number of possible choices of color for that node is c � k � �. Out these c colors, the average
number of nodes belonging to each color at this point is at-most i/c. Therefore by pigeonholing, the
minimum is less than the average; thus the number of nodes belonging to chosen color is no larger
than i/c  i/(k � �).

Hence at the end when all n nodes are colored, each color has been used no more than (n � 1)/(k �
�) + 1 < 2n/k.
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