
7 Supplementary Material

In this section we study the proofs of Propositions 3-5 and provide additional numerical experi-
ments for the proposed Ada Newton method. To do so, first we prove Lemmata 6 and 7 which are
intermediate results that we use in proving the mentioned propositions.

We start the analysis by providing an upper bound for the difference between the loss functions Ln

and Lm. The upper bound is studied in the following lemma which uses the condition in (3).
Lemma 6. Consider Ln and Lm as the empirical losses of the sets Sn and Sm, respectively, where
they are chosen such that Sm ⇢ Sn. If we define n and m as the number of samples in the training
sets Sn and Sm, respectively, then the absolute value of the difference between the empirical losses
is bounded above by

|Ln(w)� Lm(w)|  n�m

n
(Vn�m + Vm) , w.h.p. (18)

for any w.

Proof. First we characterize the difference between the difference of the loss functions associated
with the sets Sm and Sn. To do so, consider the difference

Ln(w)� Lm(w) =

1

n

X

i2Sn

fi(w)� 1

m

X

i2Sm

fi(w). (19)

Notice that the set Sm is a subset of the set Sn and we can write Sn = Sm [ Sn�m. Thus, we can
rewrite the right hand side of (19) as

Ln(w)� Lm(w) =

1

n
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X
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fi(w)
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mn
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fi(w). (20)

Factoring (n�m)/n from the terms in the right hand side of (20) follows

Ln(w)� Lm(w) =

n�m

n
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5 . (21)

Now add and subtract the statistical loss L(w) to obtain

|Ln(w)� Lm(w)| = n�m

n

������
1
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X
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fi(w)� L(w) + L(w)� 1

m

X
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������

 n�m

n
(Vn�m + Vm) , (22)

where the last inequality follows by using the triangle inequality and the upper bound in (3).

The result in Lemma 6 shows that the upper bound for the difference between the loss functions
associated with the sets Sm and Sn where Sm ⇢ Sn is proportional to the difference between the
size of these two sets n�m. This result will help us later to understand how much we can increase
the size of the training set at each iteration. In other words, how large the difference n � m could
be, while we have the statistical accuracy.

In the following lemma, we characterize an upper bound for the norm of the optimal argument w⇤
n

of the empirical risk Rn(w) in terms of the norm of statistical average loss L(w) optimal argument
w⇤.
Lemma 7. Consider Ln as the empirical loss of the set Sn and L as the statistical aver-
age loss. Moreover, recall w⇤ as the optimal argument of the statistical average loss L, i.e.,
w⇤

= argminw L(w). If Assumption 1 holds, then the norm of the optimal argument w⇤
n of the

regularized empirical risk Rn(w) := Ln(w) + cVnkwk2 is bounded above by

kw⇤
nk2  4

c
+ kw⇤k2, w.h.p. (23)
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Proof. The optimality condition of w⇤
n for the the regularized empirical risk Rn(w) = Ln(w) +

(cVn)/2kwk2 implies that

Ln(w
⇤
n) +

cVn

2

kw⇤
nk2  Ln(w

⇤
) +

cVn

2

kw⇤k2. (24)

By regrouping the terms we can show that the squared norm kw⇤
nk2 is bonded above by

kw⇤
nk2  2

cVn
(Ln(w

⇤
)� Ln(w

⇤
n)) + kw⇤k2. (25)

We proceed to bound the difference Ln(w
⇤
)�Ln(w

⇤
n). By adding and subtracting the terms L(w⇤

)

and L(w⇤
n) we obtain that

Ln(w
⇤
)� Ln(w

⇤
n) =

⇥
Ln(w

⇤
)� L(w⇤

)

⇤
+

⇥
L(w⇤

)� L(w⇤
n)
⇤
+

⇥
L(w⇤

n)� Ln(w
⇤
n)
⇤
. (26)

Notice that the second bracket in (26) is non-positive since L(w⇤
)  L(w⇤

n). Therefore, it is
bounded by 0. According to (3), the first and third brackets in (26) are with high probability bounded
above by Vn. Replacing these upper bounds by the brackets in (26) yields

Ln(w
⇤
)� Ln(w

⇤
n)  2Vn. (27)

Substituting the upper bound in (27) into (25) implies the claim in (23).

7.1 Proof of Proposition 3

From the self-concordance analysis of Newton’s method we know that the variable wm is in the
neighborhood that Newton’s method has a quadratic convergence rate if �n(wm)  1/4; see e.g.,
Chapter 9 of [4]. We proceed to come up with a condition for the quadratic convergence phase which
guarantees that �n(wm) < 1/4 and wm is in the local neighborhood of the optimal argument of
Rn. Recall that we have a wm which has sub-optimality Vm for Rm. We then proceed to enlarge
the sample size to n and start from the observation that we can bound �n(wm) as

�n(wm) = krRn(wm)kH�1
n

 krRm(wm)kH�1
n

+ krRn(wm)�rRm(wm)kH�1
n
, (28)

where we have used the definition Hn = r2Rn(wm). Note that the weighted norm kakA for vector
a and matrix A is equal to kakA = (aTAa)1/2. First, we bound the norm krRn(wm)kH�1

n
in (28).

Notice that the Hessian r2Rn(wm) can be written as r2Ln(wm) + cVnI. Thus, the eigenvalues
of the Hessian Hn = r2Rn(wm) are bounded below by cVn and consequently the eigenvalues of
the Hessian inverse H�1

n = r2Rn(wm)

�1 are upper bounded by 1/(cVn). This bound implies that
kH�1

n k  1/(cVn). Moreover, from Theorem 2.1.5 of [15], we know that the Lipschitz continuity
of the gradients rRm(w) with constant M + cVm implies that

krRm(wm)k2  2(M + cVm)(Rm(wm)�Rm(w⇤
m))  2(M + cVm)Vm, (29)

where the last inequality holds comes from the condition that Rm(wm)�Rm(w⇤
m)  Vm. Consid-

ering the upper bound for krRm(wm)k2 in (29) and the inequality kr2Rn(wm)

�1k  1/(cVn)

we can write

krRm(wm)kH�1
n

=

h
rRm(wm)

TH�1
n rRm(wm)

i1/2


✓
2(M + cVm)Vm

cVn

◆1/2

. (30)

Now we proceed to bound the second the term in (28). The definition of the risk function the
gradient can be written as rRn(w) = rLn(w) + (cVn)w. Thus, we can derive an upper bound
for the difference krRn(wm)�rRm(wm)k as

krRn(wm)�rRm(wm)k
 krLn(wm)�rLm(wm)k+ c(Vm � Vn)kwmk
 krLn(wm)�rLm(wm)k+ c(Vm � Vn)kwm �w⇤

mk+ c(Vm � Vn)kw⇤
mk, (31)

where in the second inequality we have used the triangle inequality and replaced kwmk by its upper
bound kwm �w⇤

mk + kw⇤
mk. By following the steps in (19)-(22) we can show that the difference

krLn(wm)�rLm(wm)k is bounded above by

krLn(w)�rLm(w)k  n�m

n
krLn�m(w)�rL(w)k+ n�m

n
krLm(w)�rL(w)k

 2(n�m)

n
V 1/2
n , (32)
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where the second inequality uses the condition that krLm(w)�rL(w)k  V
1/2
m as in Assump-

tion 3.

Note that the strong convexity of the risk Rm with parameter cVm yields

kwm �w⇤
mk2  2

cVm
(Rm(wm)�Rm(w⇤

m))  2

c
. (33)

Thus, by considering the inequalities in (32) and (33) we can show that upper bound in (31) can be
replaced by

krRn(wm)�rRm(wm)k  2(n�m)

n
V 1/2
n + (

p
2c+ ckw⇤

mk)(Vm � Vn). (34)

Substituting the upper bounds in (30) and (34) for the first and second summands in (28), respec-
tively, follows the inequality

�n(wm) 
✓
2(M + cVm)Vm

cVn

◆1/2

+

(2(n�m)/n)V
1/2
n + (

p
2c+ ckw⇤

mk)(Vm � Vn)

(cVn)
1/2

. (35)

Note that the result in (23) shows that kw⇤
mk2  (4/c) + kw⇤k2 with high probability. This obser-

vation implies that kw⇤
mk is bounded above by (2/

p
c) + kw⇤k. Replacing the norm kw⇤

mk in (35)
by the upper bound (2/

p
c) + kw⇤k yields

�n(wm) 
✓
2(M + cVm)Vm

cVn

◆1/2

+

(2(n�m)/n)V
1/2
n + (

p
2c+ 2

p
c+ ckw⇤k)(Vm � Vn)

(cVn)
1/2

.

(36)

As we mentioned previously, the variable wm is in the neighborhood that Newton’s method has
a quadratic convergence rate for the function Rn if the condition �n(wm)  1/4 holds. Hence,
if the right hand side of (36) is bounded above by 1/4 we can conclude that wm is in the local
neighborhood and the proof is complete.

7.2 Proof of Proposition 4

To prove the result in (16) first we need to find upper and lower bounds for the difference Rn(w)�
Rn(w

⇤
n) in terms of the Newton decrement parameter �n(w). To do so, we use the result in Theorem

4.1.11 of [15] which shows that

�n(w)� ln (1 + �n(w))  Rn(w)�Rn(w
⇤
n)  ��n(w)� ln (1� �n(w)) . (37)

Note that we assume that 0 < �n(w) < 1/4. Thus, we can use the Taylor’s expansion
of ln(1 + a) for a = �n(w) to show that �n(w) � ln (1 + �n(w)) is bounded below by
(1/2)�n(w)

2 � (1/3)�n(w)

3. Since 0 < �n(w) < 1/4 we can show that (1/6)�n(w)

2 
(1/2)�n(w)

2 � (1/3)�n(w)

3. Thus, the term �n(w) � ln (1 + �n(w)) is bounded below by
(1/6)�2. Likewise, we use Taylor’s expansion of ln(1 � a) for a = �n(w) to show that
��n(w) � ln (1� �n(w)) is bounded above by �n(w)

2 for �n(w) < 1/4; see e.g., Chapter 9
of [4]. Considering these bounds and the inequalities in (37) we can write

1

6

�n(w)

2  Rn(w)�Rn(w
⇤
n)  �n(w)

2. (38)

Recall that the variable wm satisfies the condition �n(wm)  1/4. Thus, according to the quadratic
convergence rate of Newton’s method for self-concordant functions [4], we know that the Newton
decrement has a quadratic convergence and we can write

�n(wn)  2�n(wm)

2. (39)

We use the result in (38) and (39) to show that the optimality error Rn(wn) � Rn(w
⇤
n) has an

upper bound which is proportional to (Rn(wm)�Rn(w
⇤
n))

2. In particular, we can write Rn(wn)�
Rn(w

⇤
n)  �n(wn)

2 based on the second inequality in (38). This observation in conjunction with
the result in (39) implies that

Rn(wn)�Rn(w
⇤
n)  4�n(wm)

4. (40)

The first inequality in (38) implies that �n(wm)

4  36(Rn(wm) � Rn(w
⇤
n))

2. Thus, we can
substitute �n(wm)

4 in (40) by 36(Rn(wm)�Rn(w
⇤
n))

2 to obtain the result in (16).
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7.3 Proof of Proposition 5

Note that the difference Rn(wm)�Rn(w
⇤
n) can be written as

Rn(wm)�Rn(w
⇤
n) = Rn(wm)�Rm(wm) +Rm(wm)�Rm(w⇤

m)

+Rm(w⇤
m)�Rm(w⇤

n) +Rm(w⇤
n)�Rn(w

⇤
n). (41)

We proceed to bound the differences in (41). To do so, note that the difference Rn(wm)�Rm(wm)

can be simplified as

Rn(wm)�Rm(wm) = Ln(wm)� Lm(wm) +

c(Vn � Vm)

2

kwmk2

 Ln(w)� Lm(w), (42)

where the inequality follows from the fact that Vn < Vm and Vn � Vm is negative. It follows from
the result in Lemma 6 that the right hand side of (42) is bounded by (n�m)/n (Vn�m + Vm).
Therefore,

Rn(wm)�Rm(wm)  n�m

n
(Vn�m + Vm) . (43)

According to the fact that wm as an Vm optimal solution for the sub-optimality Rm(wm)�Rm(w⇤
m)

we know that
Rm(wm)�Rm(w⇤

m)  Vm. (44)
Based on the definition of w⇤

m which is the optimal solution of the risk Rm, the third difference in
(41) which is Rm(w⇤

m)�Rm(w⇤
n) is always negative. I.e.,

Rm(w⇤
m)�Rm(w⇤

n)  0. (45)

Moreover, we can use the triangle inequality to bound the difference Rm(w⇤
n)�Rn(w

⇤
n) in (41) as

Rm(w⇤
n)�Rn(w

⇤
n) = Lm(w⇤

n)� Ln(w
⇤
n) +

c(Vm � Vn)

2

kw⇤
nk2

 n�m

n
(Vn�m + Vm) +

c(Vm � Vn)

2

kw⇤
nk2. (46)

Replacing the differences in (41) by the upper bounds in (43)-(46) follows

Rn(wm)�Rn(w
⇤
n)  Vm +

2(n�m)

n
(Vn�m + Vm) +

c(Vm � Vn)

2

kw⇤
nk2 w.h.p. (47)

Substitute kw⇤
nk2 in (47) by the upper bound in (23) to obtain the result in (17).

7.4 Additional Numerical Experiments

In this section, we compare the performance of SAGA, Newton, and Ada Newton in solving a
l2-regularized logistic regression on A9A, W8A, COVTYPE.BINARY, and SUSY datasets. These
datasets have different size and dimensionality as stated in Table 1.

Table 1: Summary of the datasets

Dataset Number of Samples Number of Features

A9A 32561 123

W8A 49749 300

COVTYPE.BINARY 581012 54

SUSY 5000000 18

In these experiments, we use 90% of samples of the data points as the training set and the remaining
10% as the test set. The stepsize for SAGA is set as 1/L as suggested in [6].

Figure 2 illustrates the sub-optimality RN (w)�R⇤
N of these methods versus the number of passes

over the datasets. In order to connect convergence on the empirical and expected risks, we plot the a

13



0 1 2 3 4 5 6 7

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

0 1 2 3 4 5 6 7 8 9

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

(a) A9A (b) COVTYPE

0 1 2 3 4 5 6 7

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

0 2 4 6 8 10 12

Number of passes

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

R
N
(w

)
−
R

∗ N

Ada Newton
Newton
SAGA

(c) SUSY (d) W8A

Figure 2: Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in terms of number
of effective passes over dataset for four datasets. The horizontal axis represents the number of
effective passes over the training set and the vertical axis shows the sub-optimality error RN (w)�
R⇤

N where N is the size of training set. The dotted horizontal line refers to statistical accuracy.

horizontal dotted green line that shows the iteration at which Ada Newton reached convergence on
the test set. As we observe, Ada Newton achieves statistical accuracy (the green line) after almost 2
passes over the training set for all the considered datasets.

Since the computational complexity of SAGA is lower than the ones for Newton’s method and
Ada Newton, we also compare these methods in terms of runtime. Figure 3 demonstrates the sub-
optimality of these methods versus their runtimes. This comparison justifies that the Newton’s
method is impractical for large scale ERM minimization, and Ada Newton significantly improves
the performance of Newton’s method.

We further present the expected error of classifiers trained by SAGA, Newton, and Ada Newton on
the test set of each of the considered datasets in Figure 4. The results showcase that in all experiments
Ada Newton achieves a target test error faster than Newton’s method and SAGA.
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Figure 3: Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in terms of run
time for four datasets. The horizontal axis represents runtime and the vertical axis shows the sub-
optimality error RN (w)�R⇤

N where N is the size of training set. The dotted horizontal line refers
to statistical accuracy.
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Figure 4: Comparison of the sub-optimality of SAGA, Newton, and Ada Newton in terms of test
error for four datasets. The horizontal axis represents the number of effective passes over the training
set and the vertical axis shows the error on the test set.
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