Variational Autoencoder for Deep Learning of Images,
Labels and Captions: Supplementary Material

Yunchen Puf, Zhe Gan', Ricardo Henao', Xin Yuan!, Chunyuan Lif, Andrew Stevens’
and Lawrence Carin’

TDepartment of Electrical and Computer Engineering, Duke University

{yp42, lcarin}@duke.edu

zg27,

r.henao,

cl319,

ajslo4,

#Nokia Bell Labs, Murray Hill
xyuan@bell-labs.com

1 Semi-supervised Results on ImageNet 2012

Table 1: Semi-supervised classification accuracy (%) on the validation set of ImageNet 2012.

Proportion 1% 5% 10% 20% 30% 40%
top-1
AlexNet 0.1£ 0.01 11.5£0.72 19.8 £0.71 38.6£031 4323+0.28 45.85+0.23
GoogeLeNet 475+ 0.58 2213+ 1.14 32.18+:0.80 42.83+£0.28 49.61+0.11 51.90 £0.20
BSVM (ours) | 4398+ 1.15 47.36+:091 4841+£0.76 51.51+0.28 54.14+0.12 57.34+0.18
Softmax (ours) 42.89 46.42 47.51 50.75 53.49 56.83
top-5
AlexNet 0.5 +0.01 2554092 38.60 090 55584025 63.12+£0.23 66.53 £0.22
GoogeLeNet | 11.33£0.96 41.33+134 5633+£0.86 6833021 7450+0.12 7694 +0.14
Ours 60.57 = 1.61 62.67+1.14 6476 £090 75.67+0.19 7895+0.10 80.94+0.13
Softmax (ours) 59.20 61.40 63.58 74.96 78.39 80.46
Proportion 50% 60% 70% 80% 90% 100%
top-1
AlexNet 48.25+£0.23 50.34+0.18 52.12+0.14 5397 £0.14 55.62+0.09 57.1
GoogeLeNet | 55.09 +£0.23 57.78 £0.23 61.25+£0.15 63.82+0.17 66.18 +0.05 68.7
BSVM (ours) | 59.73£0.21 61.24+0.19 61.72+0.14 61.77+£0.13  61.79+£ 0.04 61.8
Softmax (ours) 59.33 60.91 61.40 61.44 61.49 61.53
top-5
AlexNet 69.43 £0.18 72.18£0.19 7481 +£0.13 77.06£0.13 78.87 £0.09 80.2
GoogeLeNet | 79.44 £0.17 81.70 £0.11 83.87 £0.14 8497 +0.18 86.6 &= 0.09 88.9
BSVM (ours) | 81.15+0.13 8253+0.10 83.240.12 83.65+0.17 83.91+0.08 84.3
Softmax (ours) 80.68 82.12 82.82 83.13 83.51 83.88
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Figure 1: Semi-supervised classification accuracy on the validation set of ImageNet 2012.
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Table 2: Architecture of the image models. Image Size: spatial size X color channel (one for gray and three
for RGB), e.g., 282 x 1. Dictionary: dictionary number x dictionary spatial size, e.g., 30 x 8. Pooling:
pooling/unpooling window size, e.g., 3 X 3.

Dataset Image Model Architecture
Size Layer-1 Layer-2 Layer-3 Layer-4 Layer-5
rT 2 2

MNIST | 282 x 1 D;ff;?{}fgry 3g a § 80 %6 - - -

5 Dictionary | 48 x 57 | 128 x 5% | 128 x 57 - -

CIFAR-10 | 32° X3 ' —p e T 2x2 | 2x2 - - -

5 Dictionary | 48 x 52 | 128 x 5% | 128 x 57 - -

CIFAR-100 | 32° X3 —p ong | 2%x2 | 2x2 - - -

5 Dictionary | 48 x 72 | 84 x 5% | 84 x 57 - -

Caltech 101 | 1282 x 3 Pooling Td %D - - -

N Dictionary | 48 x 72 | 128 x 5% | 128 x 52 - -

Caltech 256 | 128“ x 3 Pooling T4 %9 - - -
2 Dictionary | 96 x 57 | 256 x 5% | 512 x 5% | 1024 x 52 | 512 x 52

TmageNet | 256" x 3 | —p i me™ T 4x4 | 2x2 7% 2 7% 2 -
. 5 Dictionary | 48 x 52 | 84 x 5% | 128 x 52 | 192 x 52 | 128 x 57

Flickr8k | 256" x 3 | =5 Crme™ 4 x4 | 2x2 X2 Tx 2 -
. 5 Dictionary | 48 x 52 | 84 x 52 | 128 x 5% | 384 x 5% | 256 x 5°

Flickr30k | 256" x 3 |5 e T 4x4 | 2x2 Tx 2 Tx 2 -
5 Dictionary | 48 x 57 | 84 x 5% | 128 x 5% | 512 x 5% | 384 x 5°

MS COCO | 256" X 3 | —p o Tme [ 4 x4 | 2x2 T2 TX 2 -

2 Model Architecture and Initialization

The architecture of the image models for each dataset in all the experiments are summarized in Table 2}
For example, MNIST data is composed of gray images with spatial size 28 x 28 and CIFAR-10 is
composed of RGB color images with spatial size 32 x 32. A two-layer model is used with dictionary
element size 8 x 8 and 6 x 6 at the first and second layer, respectively. The pooling size is 3 x 3
(pz = py = 3) and the number of dictionary elements at layers 1 and 2 are K1 = 30 and K, = 80,
respectively.

All the parameters for the image model are initialized at random and we do not perform layer-wise
pretraining as in [[1]]. For the RNN training employed in image captioning, we initialize all recurrent
matrices with orthogonal initialization as suggested in [2]]. Non-recurrent weights are initialized
from an uniform distribution in [-0.01,0.01]. All the bias terms are initialized to zero. Word vectors
are initialized with the publicly available word2vec vectors that were trained on 100 billion words
from Google News, these vectors have dimensionality 300 and were trained using a continuous
bag-of-words architecture [3]. Words not present in the set of pretrained words are initialized at
random. The number of hidden units in the RNNS is set to 512.

3 Details for the Variational Autoencoder

3.1 Image Captioning
Recall the variational lower bound for image captioning:
LIX,)Y)= f{Eq¢(S|X) [10gp¢(Y\s)]} + Egy(s,2X) logpa (X, s, z) —logge(s, z|X)] (1)

The gradient of the variational lower bound w.r.t to the decoder model parameters is straightforward:
V¢£(X,Y) = gEq¢(s|X) [vlﬁ 10gp¢(Y|S)] ()
Vo£(X,Y) = Egy(s,2%) [Valogpa(X|s, 2)] 3)
The corresponding gradient w.r.t the encoder model is
VoL(X,Y) = §{Eq, (sx)[log py(Y[s)] x Vo log g (sX) }
+ Eqy (s,2x) { 108 o (X5, 2) — log g (s, 2|X)] x Vg log ge(s, z|X)}  (4)



If we use Monte Carlo integration to approximate the expectation in (@), the variance of the estimator
can be very high. Since there are both real and binary latent variables in (I), we use the variance
reduction techniques in [4] and [3]. The variational lower bound in (T)) can be expressed as

L£(X,Y) = )
= E{Eqy(s1x) 108 Py (Y[8)]} 4 Egy(s,21x) [10g P (X, 2[8) 4 log pa(s) — log g4 (2]X) — log g¢ (s|X)]
= E{Eqy(s1x) 108 Py (Y8)]} — Drcr[qp(8|X)|[pa(8)] + Eqy(s.21%) [log pa (X, 2|8) — log g¢ (2]X)]
D09 (81X)1Pa ()] + Eqy (o130 { €108 2 (Y18)] + Egy a130) 108 Par (X, 215) — og 0 (21X)] }

Recall that gg(s|X) = N(py(C), diag(0%(CH))) and p(s) = N(0,T). Assume J is the

dimension of z, and y; and o is the jth element of u¢(C(L)) and 0'4,((3(")), respectively. We can
get the closed form of the KL term:
J

1
~Dicr[as(s1X)l[pa(s)] = 5 Y {1 = (1) = ()" +1og ((7)*) } (6)
j=1
Using the reparameterization trick in [4]]
s = f(p,€) = p,¢,((~3(L)) + e(a¢(é(L)), € ~N(0,1I) @)
The expectation term can be expressed as
By s16) {108 2 (¥ [8)] + By a0 l08 P (X, 218) — o5 g(2]X)] } ®)

= Eyo{€logpy (Yls = (9, )] + Eqy o) lo5 pa (X 2ls = £(9,€)) ~ log g, (=]X)]}
Therefore, the gradient of the lower bound with respect to ¢ can be expressed as

Vo L(X,Y) = = VgD L[ge(s[X)|pa(s)] 9
+ Epo{ Vocllogpy(Yls = f(e,¢)) (10)
+ VoEq,(z1x) [log pe. (X, z|s = f(¢,€)) — log q¢(z\X)]} (11)
This expectation can approximated by Monto Carlo sampling:
1 &
> { Vatllogpy (Yis = f(9,€)) (12)
S =1

+ VgEq,(z1x) logpa (X, z|s = f(¢,€;)) — log q¢(z|X)]} (13)
where V4 E, (2x)[log pa (X, 2) — log g4 (2|X)] is the same gradient as in [5].

3.2 Image Classification

Recall that the pseudo-likelihood of a label ¢,, € {1,...,C}
C
£(£n|snnga’7) = H(yff”sn,ﬁg,’yz) (14)
=1
C

] (€) gT . 2
1 n - n n
(1+A Yn By Sn) )MP} (15)

_ YAl _
a E {/0 fomr® P ( 2y, ALY

(3 is treated as another model parameter (part of ). )\%) is treated as latent variable. We have

C
Pl Anlsn, B,7) = [T 150, AL, Be, ve) (16)
=1
C 0 4
:H{ VI o (_(1 +AY - yﬁl)ﬂgsny) } (17
—14(0)
=1 4/ 27r)\7(f) 27, An



Therefore, the variational lower bound for image classification is

L(XvY) = g{Eqd,(s,,L,)\,,L\X,“Z,L)[Ing'l/)()‘na€n|3)]}
+ Eq¢(s,z\X)[1nga(X7svz) —IOgQ¢(S,Z|X)] (18)

Since for the most part (I8) is the same as for the image caption model, we only discuss the gradient
of the lower bound w.r.t. 3. The first term of variational lower bound can be expressed as

B (snxn X0, 108 Py (An, £n]8) Z]E%(sn 201,y oA yP1s0)]  (19)

Note that ¢ (85, An| X, ygf)) = q¢(sn\Xn)q¢()\n|y,(f)), hence we get

c
Z Eq¢(sn A(Z) | Xy “)) [lngw (>‘£L )7 y(é) ‘Sn)] (20)
c
= Z]E (s,,L|x,,L){E%()\g”y;o)[10gp¢(>\%)ayg”%)]} 2D
=1
Since

1+ A0 —yPpTs,)2
27[1)\%)

log pyy (A y(0]s,) = — + AP,y 7) (22)

where c()\([), yﬁl ),'yg) are independent of 3y, we can find that the relevant portion of Equation i is
a linear function of (A{))~1. It means the expectation term ]Eq¢( NCINOR [log p,/;()\ff)7 g |sn)] in

Equation can be obtained by simply replacing ()\ﬁf))*l with its conditional expectation. From
[6], we have

06 (A gDy = 76()1 — y's) B8O 71, 1) (23)
E((AY)~ )—|1 yls! B (24)

Thus, using the same reparameterization trick in (7)), we can get the gradient w.r.t. 3.

4 Multilayer Perceptrons

s (C(™2)) and 04 (C™?) are constituted by “stacking” the K spatially aligned g1, (C("*2:2))
and a¢(é(”’k2’2)) , respectively, which are defined as (bias are omitted in the main paper)

“¢(C(n,k2,2)) — WLk2)h(k2) + bﬂf2) (25)
log U¢(é("’k2’2)) _ WE:Q)h(kz) + b‘(fz) (26)
R = tanh (WE)vec(€h2)) 4 p(+2)) @7

where ko = 1,..., K.
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