Dense Associative Memory for Pattern Recognition

Dmitry Krotov John J. Hopfield
Simons Center for Systems Biology Princeton Neuroscience Institute
Institute for Advanced Study Princeton University
Princeton, USA Princeton, USA
krotov@ias.edu hopfield@princeton.edu
Abstract

A model of associative memory is studied, which stores and reliably retrieves many
more patterns than the number of neurons in the network. We propose a simple
duality between this dense associative memory and neural networks commonly used
in deep learning. On the associative memory side of this duality, a family of models
that smoothly interpolates between two limiting cases can be constructed. One limit
is referred to as the feature-matching mode of pattern recognition, and the other
one as the prototype regime. On the deep learning side of the duality, this family
corresponds to feedforward neural networks with one hidden layer and various
activation functions, which transmit the activities of the visible neurons to the
hidden layer. This family of activation functions includes logistics, rectified linear
units, and rectified polynomials of higher degrees. The proposed duality makes
it possible to apply energy-based intuition from associative memory to analyze
computational properties of neural networks with unusual activation functions — the
higher rectified polynomials which until now have not been used in deep learning.
The utility of the dense memories is illustrated for two test cases: the logical gate
XOR and the recognition of handwritten digits from the MNIST data set.

1 Introduction

Pattern recognition and models of associative memory [1] are closely related. Consider image
classification as an example of pattern recognition. In this problem, the network is presented with an
image and the task is to label the image. In the case of associative memory the network stores a set of
memory vectors. In a typical query the network is presented with an incomplete pattern resembling,
but not identical to, one of the stored memories and the task is to recover the full memory. Pixel
intensities of the image can be combined together with the label of that image into one vector [2],
which will serve as a memory for the associative memory. Then the image itself can be thought of
as a partial memory cue. The task of identifying an appropriate label is a subpart of the associative
memory reconstruction. There is a limitation in using this idea to do pattern recognition. The standard
model of associative memory works well in the limit when the number of stored patterns is much
smaller than the number of neurons [1], or equivalently the number of pixels in an image. In order
to do pattern recognition with small error rate one would need to store many more memories than
the typical number of pixels in the presented images. This is a serious problem. It can be solved by
modifying the standard energy function of associative memory, quadratic in interactions between the
neurons, by including in it higher order interactions. By properly designing the energy function (or
Hamiltonian) for these models with higher order interactions one can store and reliably retrieve many
more memories than the number of neurons in the network.

Deep neural networks have proven to be useful for a broad range of problems in machine learning
including image classification, speech recognition, object detection, etc. These models are composed
of several layers of neurons, so that the output of one layer serves as the input to the next layer. Each

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

neuron calculates a weighted sum of the inputs and passes the result through a non-linear activation
function. Traditionally, deep neural networks used activation functions such as hyperbolic tangents or
logistics. Learning the weights in such networks, using a backpropagation algorithm, faced serious
problems in the 1980s and 1990s. These issues were largely resolved by introducing unsupervised
pre-training, which made it possible to initialize the weights in such a way that the subsequent
backpropagation could only gently move boundaries between the classes without destroying the
feature detectors [3, 4]. More recently, it was realized that the use of rectified linear units (ReLU)
instead of the logistic functions speeds up learning and improves generalization [5, 6, 7]. Rectified
linear functions are usually interpreted as firing rates of biological neurons. These rates are equal
to zero if the input is below a certain threshold and linearly grow with the input if it is above the
threshold. To mimic biology the output should be small or zero if the input is below the threshold, but
it is much less clear what the behavior of the activation function should be for inputs exceeding the
threshold. Should it grow linearly, sub-linearly, or faster than linearly? How does this choice affect
the computational properties of the neural network? Are there other functions that would work even
better than the rectified linear units? These questions to the best of our knowledge remain open.

This paper examines these questions through the lens of associative memory. We start by discussing
a family of models of associative memory with large capacity. These models use higher order (higher
than quadratic) interactions between the neurons in the energy function. The associative memory
description is then mapped onto a neural network with one hidden layer and an unusual activation
function, related to the Hamiltonian. We show that by varying the power of interaction vertex in
the energy function (or equivalently by changing the activation function of the neural network) one
can force the model to learn representations of the data either in terms of features or in terms of
prototypes.

2 Associative memory with large capacity

The standard model of associative memory [1] uses a system of /N binary neurons, with values +1. A
configuration of all the neurons is denoted by a vector ;. The model stores K memories, denoted by
#, which for the moment are also assumed to be binary. The model is defined by an energy function,
which is given by
1N K
E=—5 > oiljo;, Ty=) &t)

i,j=1 pn=1

and a dynamical update rule that decreases the energy at every update. The basic problem is the
following: when presented with a new pattern the network should respond with a stored memory
which most closely resembles the input.

There has been a large amount of work in the community of statistical physicists investigating
the capacity of this model, which is the maximal number of memories that the network can store
and reliably retrieve. It has been demonstrated [1, 8, 9] that in case of random memories this
maximal value is of the order of K™ ~ (0.14N. If one tries to store more patterns, several
neighboring memories in the configuration space will merge together producing a ground state of
the Hamiltonian (1), which has nothing to do with any of the stored memories. By modifying the
Hamiltonian (1) in a way that removes second order correlations between the stored memories, it is
possible [10] to improve the capacity to K™** = N.

The mathematical reason why the model (1) gets confused when many memories are stored is that
several memories produce contributions to the energy which are of the same order. In other words the
energy decreases too slowly as the pattern approaches a memory in the configuration space. In order
to take care of this problem, consider a modification of the standard energy

K
E=-) F(o))
pn=1

In this formula F'(z) is some smooth function (summation over index 4 is assumed). The compu-
tational capabilities of the model will be illustrated for two cases. First, when F(z) = 2™ (n is
an integer number), which is referred to as a polynomial energy function. Second, when F'(z) is a

rectified polynomial energy function
z", x>0

F(z) = {0, <0

In the case of the polynomial function with n = 2 the network reduces to the standard model of
associative memory [1]. If n > 2 each term in (2) becomes sharper compared to the n = 2 case, thus
more memories can be packed into the same configuration space before cross-talk intervenes.

3)

Having defined the energy function one can derive an iterative update rule that leads to decrease of
the energy. We use asynchronous updates flipping one unit at a time. The update rule is:

K
otV = sign { S (F (e +> o) —F(-e+3 ﬁfoﬁ»“)ﬂ , o
=1 J#i J#i

The argument of the sign function is the difference of two energies. One, for the configuration with
all but the i-th units clumped to their current states and the ¢-th unit in the “off” state. The other one
for a similar configuration, but with the ¢-th unit in the “on” state. This rule means that the system
updates a unit, given the states of the rest of the network, in such a way that the energy of the entire
configuration decreases. For the case of polynomial energy function a very similar family of models
was considered in [11, 12, 13, 14, 15, 16]. The update rule in those models was based on the induced
magnetic fields, however, and not on the difference of energies. The two are slightly different due to
the presence of self-coupling terms. Throughout this paper we use energy-based update rules.

How many memories can model (4) store and reliably retrieve? Consider the case of random patterns,
so that each element of the memories is equal to £1 with equal probability. Imagine that the system
is initialized in a state equal to one of the memories (pattern number p). One can derive a stability
criterion, i.e. the upper bound on the number of memories such that the network stays in that initial
state. Define the energy difference between the initial state and the state with spin ¢ flipped
K K
AB=Y (et +> et} =3 (—eret+ > ety
v=1 YE) v=1 VE)
where the polynomial energy function is used. This quantity has a mean (AE) = N™ — (N — 2)" ~
2nN™~!, which comes from the term with v = y, and a variance (in the limit of large V)
Y2 =0, (K —-1)N""' where Q, =4n*(2n — 3)!!
The i-th bit becomes unstable when the magnitude of the fluctuation exceeds the energy gap (AF)
and the sign of the fluctuation is opposite to the sign of the energy gap. Thus the probability that the
state of a single neuron is unstable (in the limit when both N and K are large, so that the noise is
effectively gaussian) is equal to
N = _ 1 n—1
Peor = / dzx e*% ~ Mie—m
RV 27722 2 N n—1

Requiring that this probability is less than a small value, say 0.5%, one can find the upper limit on
the number of patterns that the network can store

Kmaez — anNn717 (5)

where a,, is a numerical constant, which depends on the (arbitrary) threshold 0.5%. The case
n = 2 corresponds to the standard model of associative memory and gives the well known result
K = 0.14N. For the perfect recovery of a memory (Peyor < 1/N) one obtains
1 N~ 1
KTYLGQC ~ 6

floetor == 2(2n —) In(N) ©
For higher powers n the capacity rapidly grows with N in a non-linear way, allowing the network
to store and reliably retrieve many more patterns than the number of neurons that it has, in accord'
with [13, 14, 15, 16]. This non-linear scaling relationship between the capacity and the size of the
network is the phenomenon that we exploit.

(AE)

!"The n-dependent coefficient in (6) depends on the exact form of the Hamiltonian and the update rule.
References [13, 14, 15] do not allow repeated indices in the products over neurons in the energy function,
therefore obtain a different coefficient. In [16] the Hamiltonian coincides with ours, but the update rule is
different, which, however, results in exactly the same coefficient as in (6).

We study a family of models of this kind as a function of n. At small n many terms contribute to the
sum over p in (2) approximately equally. In the limit n — oo the dominant contribution to the sum
comes from a single memory, which has the largest overlap with the input. It turns out that optimal
computation occurs in the intermediate range.

3 The case of XOR

The case of XOR is elementary, yet instructive. It is presented here for three reasons. First, it illustrates
the construction (2) in this simplest case. Second, it shows that as n increases, the computational
capabilities of the network also increase. Third, it provides the simplest example of a situation in
which the number of memories is larger than the number of neurons, yet the network works reliably.

The problem is the following: given two inputs x and y produce an output z such that the truth table

x|y | z
-1 -1 -1
S
1]-1]1
1 1|-1

is satisfied. We will treat this task as an associative memory problem and will simply embed the

four examples of the input-output triplets x, y, z in the memory. Therefore the network has N = 3

identical units: two of which will be used for the inputs and one for the output, and K = 4 memories
%, which are the four lines of the truth table. Thus, the energy (2) is equal to

En(z,y,2)=—(~a-y—2)"—(~z+y+z)" —(e-y+2)" ~(z+y-2)", D

where the energy function is chosen to be a polynomial of degree n. For odd n, energy (7) is an odd
function of each of its arguments, F,, (z,y, —z) = —E,(,y, z). For even n, it is an even function.
For n = 1 itis equal to zero. Thus, if evaluated on the corners of the cube x, y, z = +1, it reduces to

0, n=1
E.(z,y,2z) =} Chy, n=2,4,6,... (8)
Chxyz, n=3,57,..,

where coefficients C,, denote numerical constants.

In order to solve the XOR problem one can present to the network an “incomplete pattern” of inputs
(z,y) and let the output z adjust to minimize the energy of the three-spin configuration, while holding
the inputs fixed. The network clearly cannot solve this problem for n = 1 and n = 2, since the energy
does not depend on the spin configuration. The case n = 2 is the standard model of associative
memory. It can also be thought of as a linear perceptron, and the inability to solve this problem
represents the well known statement [17] that linear perceptrons cannot compute XOR without hidden
neurons. The case of odd n > 3 provides an interesting solution. Given two inputs, and y, one can
choose the output z that minimizes the energy. This leads to the update rule

z = Sign[E,(z,y,—1) — E,(z,y, +1)] = Sign| — zy]

Thus, in this simple case the network is capable of solving the problem for higher odd values of n,
while it cannot do so for n = 1 and n = 2. In case of rectified polynomials, a similar construction
solves the problem for any n > 2. The network works well in spite of the fact that K > N.

4 An example of a pattern recognition problem, the case of MNIST

The MNIST data set is a collection of handwritten digits, which has 60000 training examples and
10000 test images. The goal is to classify the digits into 10 classes. The visible neurons, one for each
pixel, are combined together with 10 classification neurons in one vector that defines the state of
the network. The visible part of this vector is treated as an “incomplete” pattern and the associative
memory is allowed to calculate a completion of that pattern, which is the label of the image.

Dense associative memory (2) is a recurrent network in which every neuron can be updated multiple
times. For the purposes of digit classification, however, this model will be used in a very limited

capacity, allowing it to perform only one update of the classification neurons. The network is
initialized in the state when the visible units v; are clamped to the intensities of a given image and the
classification neurons are in the off state z, = —1 (see Fig.1A). The network is allowed to make
one update of the classification neurons, while keeping the visible units clamped, to produce the
output c,. The update rule is similar to (4) except that the sign is replaced by the continuous function
g(x) = tanh(x)

K N N
Ca = g[ﬁz (F(—ggxa Y+ >l - F(&hwa+ Y sxmeffvi))} ©)
pu=1 1 1

yEo i= o i=

where parameter (3 regulates the slope of g(z). The proposed digit class is given by the number
of a classification neuron producing the maximal output. Throughout this section the rectified
polynomials (3) are used as functions F'. To learn effective memories for use in pattern classification,
an objective function is defined (see Appendix A in Supplemental), which penalizes the discrepancy

A B . ol §+—158-262 epochs
v; | Co, | o L
18 1.8
o o
o o 7
‘(3 1.6| -.‘7; 1.6
g L
15 1.5]
v; | To |
1.4 1.4

0 560 1 dOO 1 5b0 2060 2500 3000 0 560 1 060 1 F;OO ZdOO 2500 3000
number of epochs number of epochs

Figure 1: (A) The network has N = 28 x 28 = 784 visible neurons and N. = 10 classification neurons.
The visible units are clamped to intensities of pixels (which is mapped on the segment [—1, 1]), while the
classification neurons are initialized in the state x, and then updated once to the state c,. (B) Behavior of the
error on the test set as training progresses. Each curve corresponds to a different combination of hyperparameters
from the optimal window, which was determined on the validation set. The arrows show the first time when the
error falls below a 2% threshold. All models have K = 2000 memories (hidden units).

between the output c, and the target output. This objective function is then minimized using a
backpropagation algorithm. The learning starts with random memories drawn from a Gaussian
distribution. The backpropagation algorithm then finds a collection of KX memories féfa, which
minimize the classification error on the training set. The memories are normalized to stay within the
—-1< 5{; < 1 range, absorbing their overall scale into the definition of the parameter 3.

The performance of the proposed classification framework is studied as a function of the power n.
The next section shows that a rectified polynomial of power n in the energy function is equivalent
to the rectified polynomial of power n — 1 used as an activation function in a feedforward neural
network with one hidden layer of neurons. Currently, the most common choice of activation functions
for training deep neural networks is the ReLLU, which in our language corresponds to n = 2 for
the energy function. Although not currently used to train deep networks, the case n = 3 would
correspond to a rectified parabola as an activation function. We start by comparing the performances
of the dense memories in these two cases.

The performance of the network depends on n and on the remaining hyperparameters, thus the hyper-
parameters should be optimized for each value of n. In order to test the variability of performances
for various choices of hyperparameters at a given n, a window of hyperparameters for which the
network works well on the validation set (see the Appendix A in Supplemental) was determined.
Then many networks were trained for various choices of the hyperparameters from this window to
evaluate the performance on the test set. The test errors as training progresses are shown in Fig.1B.
While there is substantial variability among these samples, on average the cluster of trajectories for
n = 3 achieves better results on the test set than that for n = 2. These error rates should be compared
with error rates for backpropagation alone without the use of generative pretraining, various kinds
of regularizations (for example dropout) or adversarial training, all of which could be added to our
construction if necessary. In this class of models the best published results are all® in the 1.6% range
[18], see also controls in [19, 20]. This agrees with our results for n = 2. The n = 3 case does
slightly better than that as is clear from Fig.1B, with all the samples performing better than 1.6%.

2 Although there are better results on pixel permutation invariant task, see for example [19, 20, 21, 22].

Higher rectified polynomials are also faster in training compared to ReLLU. For the n = 2 case, the
error crosses the 2% threshold for the first time during training in the range of 179-312 epochs. For
the n = 3 case, this happens earlier on average, between 158-262 epochs. For higher powers n
this speed-up is larger. This is not a huge effect for a small dataset such as MNIST. However, this
speed-up might be very helpful for training large networks on large datasets, such as ImageNet. A
similar effect was reported earlier for the transition between saturating units, such as logistics or
hyperbolic tangents, to ReLU [7]. In our family of models that result corresponds to moving from
n=1ton=2.

Feature to prototype transition

How does the computation performed by the neural network change as n varies? There are two
extreme classes of theories of pattern recognition: feature-matching and formation of a prototype.
According to the former, an input is decomposed into a set of features, which are compared with
those stored in the memory. The subset of the stored features activated by the presented input is then
interpreted as an object. One object has many features; features can also appear in more than one
object. The prototype theory provides an alternative approach, in which objects are recognized as a
whole. The prototypes do not necessarily match the object exactly, but rather are blurred abstract

n=2 n=3 n =20 n =30
T — T oS T : [
0.5
o]
105
[t
50 10000 — T T
° —n=2 —n=2
= —n=3 (%] —n=3
%) n=20 8) 8000 n=20
Q —n=30] —n=30
S E
g 43 6000]
e L errorest = 1.51%
ks © 4000 errorest = 1.44% |
‘E [}
g £
(5]
S S 2000 eIrorest = 1.80%
o c
0 1 2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 0 1011 12
number of RU with !} > 0.9¢ number of memories making the decision

Figure 2: We show 25 randomly selected memories (feature detectors) for four networks, which use recti-
fied polynomials of degrees n = 2, 3, 20, 30 as the energy function. The magnitude of a memory element
corresponding to each pixel is plotted in the location of that pixel, the color bar explains the color code. The
histograms at the bottom are explained in the text. The error rates refer to the particular four samples used in this
figure. RU stands for recognition unit.

representations which include all the features that an object has. We argue that the computational
models proposed here describe feature-matching mode of pattern recognition for small n and the
prototype regime for large n. This can be anticipated from the sharpness of contributions that each
memory makes to the total energy (2). For large n the function F'(z) peaks much more sharply
around each memory compared to the case of small n. Thus, at large n all the information about a
digit must be written in only one memory, while at small n this information can be distributed among
several memories. In the case of intermediate 7 some learned memories behave like features while
others behave like prototypes. These two classes of memories work together to model the data in an
efficient way.

The feature to prototype transition is clearly seen in memories shown in Fig.2. Forn = 2 or 3
each memory does not look like a digit, but resembles a pattern of activity that might be useful for
recognizing several different digits. For n = 20 many of the memories can be recognized as digits,
which are surrounded by white margins representing elements of memories having approximately
zero values. These margins describe the variability of thicknesses of lines of different training
examples and mathematically mean that the energy (2) does not depend on whether the corresponding
pixel is on or off. For n = 30 most of the memories represent prototypes of whole digits or large
portions of digits, with a small admixture of feature memories that do not resemble any digit.

