
Abstract

This supplementary document contains the technical proofs of all the theorems in
the NIPS’16 paper entitled “Exact Recovery of Hard Thresholding Pursuit”. It is
indeed the appendix section of the paper. The key technical lemmas are gathered
in Appendix A, followed by the proofs of main results in Appendices B∼ E.

A Technical Lemmas

We present here a few technical lemmas to be used in our analysis.

Lemma 1. Let x be a k-sparse vector and y = x−η∇f(x). If f is M2k-smooth, then the following
inequality hods:

f(yk) ≤ f(x)− 1− ηM2k

2η
∥yk − x∥2.

Proof. Since f is M2k-smooth, it follows that

f(yk)− f(x) ≤⟨∇f(x), yk − x⟩+ M2k

2
∥yk − x∥2

ξ1
≤− 1

2η
∥yk − x∥2 + M2k

2
∥yk − x∥2

=− 1− ηM2k

2η
∥yk − x∥2,

where ξ1 follows from the fact that yk is the best k-support approximation to y such that

∥yk − y∥2 = ∥yk − x+ η∇f(x)∥2 ≤ ∥x− x+ η∇f(x)∥2 = ∥η∇f(x)∥2,

which implies 2η⟨∇f(x), yk − x⟩ ≤ −∥yk − x∥2.

Lemma 2. Assume that f is ms-strongly convex. For any ∥x− x′∥0 ≤ s it holds that

∥x− x′∥ ≤

√
2max {f(x)− f(x′), 0}

ms
+

2∥∇F∪F ′f(x′)∥
ms

,

where F = supp(x) and F ′ = supp(x′).

Proof. Since f is ms-strongly convex, we have

f(x) ≥f(x′) + ⟨∇f(x′), x− x′⟩+ ms

2
∥x− x′∥2

≥f(x′)− ∥∇F∪F ′f(x′)∥∥x− x′∥+ ms

2
∥x− x′∥2,

where the second inequality follows from Cauchy-Schwarz inequality. From this above inequality
we can see that if f(x) ≤ f(x′), then

∥x− x′∥ ≤ 2∥∇F∪F ′f(x′)∥
ms

.

If otherwise f(x) > f(x′), then we have

∥x− x′∥ ≤
∥∇F∪F ′f(x′)∥+

√
∥∇F∪F ′f(x′)∥2 + 2ms(f(x)− f(x′))

ms

≤
2∥∇F∪F ′f(x′)∥+

√
2ms(f(x)− f(x′))

ms
.

This proves the bound.
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Lemma 3. Assume that f is ms-strongly convex and Ms-smooth. For any index set F with cardi-
nality |F | ≤ s and any x, y with supp(x) ∪ supp(y) ⊆ F , if η ∈ (0, 2ms/M

2
s ), then

∥x− y − η∇F f(x) + η∇F f(y)∥ ≤
√
1− 2ηms + η2M2

s ∥x− y∥,

and
√

1− 2ηms + η2M2
s < 1.

Proof. By adding two copies of the inequality (2) with x and y interchanged and using the Theorem
2.1.5 in (Nesterov, 2004), we know that

(x− y)⊤(∇f(x)−∇f(y)) ≥ ms∥x− y∥2, ∥∇F f(x)−∇F f(y)∥ ≤Ms∥x− y∥.

For any η > 0 we have

∥x− y − η∇F f(x) + η∇F f(y)∥2 ≤ (1− 2ηms + η2M2
s )∥x− y∥2.

Obviously 1 − 2ηms + η2M2
s ≥ 1 − m2

s/M
2
s ≥ 0, and η < 2ms/M

2
s implies√

1− 2ηms + η2M2
s < 1. This proves the lemma.

Lemma 4. Assume that f is Ms-smooth and ms-strongly convex. Let F and F ′ be two index sets
with cardinality |F ∪ F ′| = s. Let x = argminsupp(y)⊆F f(y) and supp(x′) ⊆ F ′. Then for any
η ∈ (0, 2ms/M

2
s ), the following two inequalities hold

∥(x− x′)F ∥ ≤
ρ∥x′

F ′\F ∥
1− ρ

+
η∥∇F∪F ′f(x′)∥

(1− ρ)
, (A.1)

∥x− x′∥ ≤
∥x′

F ′\F ∥
1− ρ

+
η∥∇F∪F ′f(x′)∥

(1− ρ)
, (A.2)

where ρ =
√

1− 2ηms + η2M2
s < 1.

Proof. Since x is the minimum of f(y) restricted over the supporting set F , we have ⟨∇f(x), z⟩ = 0
whenever supp(z) ⊆ F . It follows that

∥(x− x′)F ∥2

=⟨x− x′, (x− x′)F ⟩
=⟨x− x′ − η∇F∪F ′f(x) + η∇F∪F ′f(x′), (x− x′)F ⟩ − η⟨∇F∪F ′f(x′), (x− x′)F ⟩
ξ1
≤
√
1− 2ηms + η2M2

s ∥x− x′∥∥(x− x′)F ∥+ η∥∇F∪F ′f(x′)∥∥(x− x′)F ∥,

where ξ1 uses Lemma 3. Let us abbreviate ρ =
√

1− 2ηms + η2M2
s . After simplification, we have

∥(x− x′)F ∥ ≤ ρ∥x− x′∥+ η∥∇F∪F ′f(x′)∥. (A.3)

It follows that

∥x− x′∥ ≤∥(x− x′)F ∥+ ∥(x− x′)F ′\F ∥
≤ρ∥x− x′∥+ η∥∇F∪F ′f(x′)∥+ ∥(x− x′)F ′\F ∥.

After rearrangement we obtain

∥x− x′∥ ≤
∥(x− x′)F ′\F ∥

1− ρ
+

η∥∇F∪F ′f(x′)∥
1− ρ

=
∥x′

F ′\F ∥
1− ρ

+
η∥∇F∪F ′f(x′)∥

1− ρ
.

(A.4)

By combining (A.3) and (A.4) we get

∥(x− x′)F ∥ ≤
ρ∥x′

F ′\F ∥
1− ρ

+
η∥∇F∪F ′f(x′)∥

1− ρ
.

This proves the desired bounds in this lemma.

11



B Proof of Proposition 1

The following lemma gives a necessary condition on the value x⋆
min.

Lemma 5. If f is M2k-smooth, then the following inequality holds for the global minimizer x⋆:

x⋆
min ≥

∥∇f(x⋆)∥∞
M2k

.

Proof. Assume otherwise that ϑ⋆ :=
M2kx

⋆
min

∥∇f(x⋆)∥∞
< 1. Let us consider x̃⋆ = x⋆ − η∇f(x⋆) with

any η ∈ (ϑ⋆/M2k, 1/M2k). From Lemma 1 we get that

f(x̃⋆
k)) ≤ f(x⋆)− 1− ηM2k

2η
∥x̃⋆

k − x⋆∥2.

Since η < 1
M2k

and x⋆
min = ϑ⋆∥∇f(x⋆)∥∞

M2k
< η∥∇f(x⋆)∥∞, we have x̃⋆

k ̸= x⋆ and thus it follows
from the above inequality that f(x̃⋆

k) < f(x⋆) which contradicts the optimality of x⋆.

We also need the following lemma in our proof.

Lemma 6. Assume that f is M2k-smooth and m2k-strongly convex. Let x̄ be an arbitrary k-sparse
vector satisfying x̄ = argminsupp(x)⊆supp(x̄) f(x) and x̄min ≥ ϑ̄

M2k
∥∇f(x̄)∥∞ for some ϑ̄ > 1. If

m2k

M2k
≥ max

{
3ϑ̄+1
4ϑ̄

,
√
3
2

}
, then x̄ is the global minimizer, i.e., x̄ = x⋆.

Proof. Denote F̄ = supp(x̄). Assume otherwise that F̄ ̸= F ⋆. By using the inequality (A.1) in
Lemma 4 and the definition of ϑ̄ we have

∥x⋆
F⋆\F̄ ∥ ≤∥(x

⋆ − x̄)F⋆∥

≤
ρ∥x̄F̄\F⋆∥
1− ρ

+
m2k∥∇F⋆\F̄ f(x̄)∥

(1− ρ)M2
2k

≤
(ϑ̄ρ+m2k/M2k)∥x̄F̄\F⋆∥

ϑ̄(1− ρ)
ξ1
≤
(
1 +

2m2k

ϑ̄M2k

)
∥x̄F̄\F⋆∥,

(A.5)

where the last inequality ξ1 follows from ρ ≤ 0.5 (as m2k/M2k ≥
√
3
2 ). Let F = F ⋆ ∪ F̄ . Since f

is m2k-strongly convex, it can be easily verified that

∥∇F f(x̄)−∇F f(x
⋆)∥ ≥ m2k∥x̄− x⋆∥. (A.6)

It follows that
∥∇F⋆\F̄ f(x̄)∥+ ∥∇F̄\F⋆f(x⋆)∥

ξ1
=∥∇F f(x̄)∥+ ∥∇F f(x

⋆)∥
ξ2
≥∥∇F f(x̄)−∇F f(x

⋆)∥
ξ3
≥m2k∥x̄− x⋆∥

≥m2k

(
∥x̄F̄\F⋆∥+ ∥x⋆

F⋆\F̄ ∥
)
,

(A.7)

where the inequality ξ1 follows from the optimality condition, i.e., ∇F⋆f(x⋆) = ∇F̄ f(x̄) = 0;
the inequality ξ2 follows from triangle inequality; the inequality ξ3 follows from (A.6). Since the
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definition of ϑ̄ implies ∥∇F⋆\F̄ f(x̄)∥ ≤ M2k

ϑ̄
∥x̄F̄\F⋆∥, it follows from the inequality (A.7) that

∥∇F̄\F⋆f(x⋆)∥ ≥
(
m2k −

M2k

ϑ̄

)
∥x̄F̄\F⋆∥+m2k∥x⋆

F⋆\F̄ ∥

ξ1
≥
(

m2k −M2k/ϑ̄

1 + 2m2k/(ϑ̄M2k)
+m2k

)
∥x⋆

F⋆\F̄ ∥

ξ2
>

(
m2k −M2k/ϑ̄

3
+m2k

)
∥x⋆

F⋆\F̄ ∥

=

(
4m2k −M2k/ϑ̄

3

)
∥x⋆

F⋆\F̄ ∥

ξ3
≥M2k∥x⋆

F⋆\F̄ ∥,

where inequality ξ1 follows from (A.5) and the assumption on m2k/M2k which implies m2k > M2k

ϑ̄
,

ξ2 follows from ϑ̄ > 1 and m2k < M2k, and ξ3 follows from m2k/M2k ≥ 3ϑ̄+1
4ϑ̄

. The previous
inequality obviously leads to

x⋆
min <

∥∇f(x⋆)∥∞
M2k

.

This contradicts the x-min condition we have proved for x⋆ in Lemma 5. Therefore, we must have
x̄ = x⋆ holds.

Now we can prove Proposition 1.

Proof of Proposition 1. We first show that supp(x̄) = supp(x⋆) if Condition (1) holds. Assume
otherwise supp(x̄) ̸= supp(x⋆). From the optimality of x⋆ we have f(x⋆) ≤ f(x̄). By invoking
Lemma 2 we get

x̄min < ∥x⋆ − x̄∥ ≤ 2
√
2k∥∇f(x̄)∥∞

m2k
,

which contradicts the condition.

Next we show that supp(x̄) = supp(x⋆) if Condition (2) is satisfied. From the definition of x̄⋆ and l̄
we have

f(x̄) ≥ f(x̄⋆)

≥ f(x̄)− ∥∇f(x̄)∥∞∥x̄⋆ − x̄∥1 +
l̄

2
∥x̄⋆ − x̄∥21

≥ f(x̄)− ∥∇f(x̄)∥
2
∞

l̄
− l̄

4
∥x̄⋆ − x̄∥21 +

l̄

2
∥x̄⋆ − x̄∥21

= f(x̄)− ∥∇f(x̄)∥
2
∞

l̄
+

l̄

4
∥x̄⋆ − x̄∥21.

Therefore,

∥x̄⋆ − x̄∥1 ≤
2∥∇f(x̄)∥∞

l̄
. (A.8)

Let F̄ = supp(x̄). Since f is M2k-smooth, we know from (Nesterov, 2004, Theorem 2.1.5) and the
above inequality that

∥∇f(x̄⋆)−∇f(x̄)∥ ≤M2k∥x̄⋆ − x̄∥ ≤M2k∥x̄⋆ − x̄∥1 ≤
2M2k∥∇f(x̄)∥∞

l̄
, (A.9)

where we have also used the fact ∥x∥ ≤ ∥x∥1. By applying triangle inequality to (A.8) and (A.9)
we further get

x̄⋆
min ≥ x̄min −

2∥∇f(x̄)∥∞
l̄

, ∥∇f(x̄⋆)∥∞ ≤
(l̄ + 2M2k)∥∇f(x̄)∥∞

l̄
.

Given the condition on x̄min, we can obtain from the above

x̄⋆
min ≥

ϑ̄∥∇f(x̄⋆)∥∞
M2k

.

Thus, by using Lemma 6 we obtain that x̄⋆ = x⋆. This leads the desired result since supp(x̄⋆) =
supp(x̄).
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C Proof of Theorem 1

In large picture, the proof of Theorem 1 contains the following three key steps:

(a) In the first step, we prove that under the conditions stated in the theorem, HTP terminates
when x(t) reaches x⋆.

(b) In the second step, we show that if x(t−1) ̸= x⋆, then HTP will output x(t) ̸= x(t−1). That
is, the algorithm will not terminate before reaching x⋆.

(c) In the final step, we show that the conditions in the theorem guarantee a unique optimal
solution x⋆ and finite termination of HTP.

Proof of Theorem 1. Step (a): We first prove that under the conditions stated in the theorem, the
algorithm will terminate when it reaches x⋆. Indeed, let us assume x(t−1) = x⋆. Since ϑ⋆ > 1 and
η = m2k/M

2
2k < 1/M2k, we obtain that

x
(t−1)
min = x⋆

min =
θ⋆∥∇f(x⋆)∥∞

M2k
>
∥∇f(x⋆)∥∞

M2k
> η∥∇f(x⋆)∥∞ = η∇(t−1)

max ,

which indicates that the top k (in magnitude) entries of x̃(t) = x(t−1) − η∇f(x(t−1)) are exactly
the k nonzero entries of x(t−1) and thus F (t) = F (t−1). The step S3 of HTP ensures x(t) = x(t−1).
Therefore, HTP terminates at x(t−1) = x⋆.

Step (b): Further, we show that at time instance t − 1, if x(t−1) ̸= x⋆, then HTP will output
x(t) ̸= x(t−1). From the inequality (A.1) and the definition of ϑ⋆ we have

∥x(t−1)

F (t−1)\F⋆∥ ≤∥(x(t−1) − x⋆)F (t−1)∥

≤
ρ∥(x⋆

F⋆\F (t−1)∥
1− ρ

+
η∥∇F (t−1)\F⋆f(x⋆)∥

1− ρ

≤
(ρϑ⋆ + ηM2k)∥x⋆

F⋆\F (t−1)∥
ϑ⋆(1− ρ)

ξ1
≤
(
1 +

2m2k

ϑ⋆M2k

)
∥x⋆

F⋆\F (t−1)∥,

(A.10)

where the last inequality ξ1 follows from η = m2k/M
2
2k and ρ ≤ 0.5 (as m2k/M2k ≥ 7ϑ⋆+1

8ϑ⋆ >
√
3
2 ).

Let F = F ⋆ ∪ F (t−1). Since f is m2k-strongly convex, it can be easily verified that

∥∇F f(x
⋆)−∇F f(x

(t−1))∥ ≥ m2k∥x⋆ − x(t−1)∥. (A.11)

Thus

∥∇F (t−1)\F⋆f(x⋆)∥+ ∥∇F⋆\F (t−1)f(x(t−1))∥
ξ1
=∥∇F f(x

⋆)∥+ ∥∇F f(x
(t−1))∥

ξ2
≥∥∇F f(x

⋆)−∇F f(x
(t−1))∥

ξ3
≥m2k∥x⋆ − x(t−1)∥

≥m2k

(
∥x⋆

F⋆\F (t−1)∥+ ∥x(t−1)

F (t−1)\F⋆∥
)
,

(A.12)

where the inequality ξ1 follows from the optimality condition of∇F⋆f(x⋆) = ∇F (t−1)f(x(t−1)) =
0; the inequality ξ2 follows from triangle inequality; the inequality ξ3 follows from (A.11). Since
the definition of ϑ⋆ implies ∥∇F (t−1)\F⋆f(x⋆)∥ ≤ M2k

ϑ⋆ ∥x⋆
F⋆\F (t−1)∥, it follows from the inequal-
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ity (A.12) that

∥∇F⋆\F (t−1)f(x(t−1))∥ ≥
(
m2k −

M2k

ϑ⋆

)
∥x⋆

F⋆\F (t−1)∥+m2k∥x(t−1)

F (t−1)\F⋆∥

ξ1
≥
(

m2k −M2k/ϑ
⋆

1 + 2m2k/(ϑ⋆M2k)
+m2k

)
∥x(t−1)

F (t−1)\F⋆∥

ξ2
>

(
m2k −M2k/ϑ

⋆

3
+m2k

)
∥x(t−1)

F (t−1)\F⋆∥

=

(
4m2k −M2k/ϑ

⋆

3

)
∥x(t−1)

F (t−1)\F⋆∥,

where inequality ξ1 follows from (A.10) and the assumption on m2k/M2k which implies m2k >
M2k

ϑ⋆ , and ξ2 follows from ϑ⋆ > 1 and m2k < M2k. Now we claim that η∥∇F⋆\F (t−1)f(x(t−1))∥ >
∥x(t−1)

F (t−1)\F⋆∥. Indeed, since η = m2k

M2
2k

and m2k

M2k
≥ 1+7ϑ⋆

8ϑ⋆ , it can be verified from the previous
inequality that

η∥∇F⋆\F (t−1)f(x(t−1))∥ >
(
4m2

2k

3M2
2k

− m2k

3M2kϑ⋆

)
∥x(t−1)

F (t−1)\F⋆∥ ≥ ∥x
(t−1)

F (t−1)\F⋆∥.

Thus at least the nonzero entries of x(t−1) supported on F (t−1) \ F ⋆ and the entries of ∇f(x(t−1))
supported on F ⋆ \ F (t−1) can (but not have to) be swapped in the step S2. Thus F (t) ̸= F (t−1) and
HTP proceeds to x(t) ̸= x(t−1).

Step (c): The final step is to further show that under the conditions stated in the theorem, the optimal
solution x⋆ is unique and the sequence {f(x(t))} generated by HTP reach f(x⋆) within a finite
number of iteration. We first prove the uniqueness of optimal solution by contradiction. Assume
otherwise there exists x⋆⋆ ̸= x⋆ such that f(x⋆⋆) = f(x⋆). Let F ⋆⋆ = supp(x⋆⋆). Since f is
m2k-strongly convex, it is true that F ⋆⋆ ̸= F ⋆. Similar to the arguments in part(b) we can prove that

η∥∇F⋆\F⋆⋆f(x⋆⋆)∥ > ∥x⋆⋆
F⋆⋆\F⋆∥.

Now consider x̃⋆⋆ = x⋆⋆ − η∇f(x⋆⋆). From the above inequality we get x̃⋆⋆
k ̸= x⋆⋆. By using

Lemma 1 we get

f(x̃⋆⋆
k )− f(x⋆) = f(x̃⋆⋆

k )− f(x⋆⋆) ≤ −1− ηM2k

2η
∥x̃⋆⋆

k − x⋆⋆∥2 < 0.

This contradicts the optimality of x⋆. Therefore, the optimal solution x⋆ is unique under the condi-
tions in the theorem.

Last, we show that f(x(t)) will reach f(x⋆) in finite steps. In the above Step (b) we have proved
x(t) ̸= x(t−1) whenever x(t) ̸= x⋆, and in such a case it must hold that |F ⋆ \ F (t−1)| ≤ |F (t) \
F (t−1)|. Thus from the fact that ∇F (t)\F (t−1)f(x(t−1)) contains the top |F (t) \ F (t−1)| entries of
∇f(x(t−1)) we get

∥∇F⋆\F (t−1)f(x(t−1))∥ ≤ ∥∇F (t)\F (t−1)f(x(t−1))∥.

From the definition of x̃(t) we have that the following inequality holds:

∥x̃(t)

F (t) − x(t−1)∥ ≥ η∥∇F (t)\F (t−1)f(x(t−1))∥. (A.13)

By using Lemma 1, (A.13) and the above inequality we have

f(x(t))− f(x(t−1)) ≤ f(x̃
(t)

F (t))− f(x(t−1)) ≤ − (1− ηM2k)η

2
∥∇F⋆\F (t−1)f(x(t−1))∥2. (A.14)

From the m2k-strong convexity of f we have
m2k

2
∥x⋆ − x(t−1)∥2 ≤ f(x⋆)− f(x(t−1))− (x⋆ − x(t−1))⊤∇f(x(t−1))

ξ1
≤ f(x⋆)− f(x(t−1)) +

m2k

2
∥x⋆ − x(t−1)∥2 + 1

2m2k
∥∇F⋆\F (t−1)f(x(t−1))∥2,
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where ξ1 follows from Cauchy-Schwartz inequality, ma2/2 + b2/(2m) ≥ ab for any m > 0, and
∇F (t−1)f(x(t−1)) = 0. This implies

∥∇F⋆\F (t−1)f(x(t−1))∥2 ≥ 2m2k

[
f(x(t−1))− f(x⋆)

]
. (A.15)

By combining (A.14) and (A.15) we arrive at

f(x(t))−f(x(t−1)) ≤ −(1−ηM2k)m2kη(f(x
(t−1))−f(x⋆)) = −

(
1− m2k

M2k

)
m2

2k

M2
2k

(f(x(t−1))−f(x⋆)).

Therefore, we get
f(x(t))− f(x⋆) ≤ (1− ν)(f(x(t−1))− f(x⋆)),

where

ν =

(
1− m2k

M2k

)
m2

2k

M2
2k

.

Therefore f(x(t)) − f(x⋆) ≤ △−⋆ when t ≥ 1
ν ln △(0)

△−⋆ (note that △−⋆ > 0 due to the uniqueness
of optimal solution). After that, we have f(x(t)) < f(x−⋆) and thus f(x(t)) = f(x⋆). Since x⋆ is
unique, it must hold that x(t) = x⋆.

By combining the above three steps (a), (b) and (c), we complete the proof of Theorem 1.

D Proof of Theorem 2

Proof. Since the conditions of Theorem 1 are assumed to be fulfilled, it follows from the the-
orem that x(t) = x⋆ after sufficient iteration. If x̄min ≥ 2

√
2k

m2k
∥∇f(x̄)∥∞, then we know

from Proposition 1 that supp(x̄) = supp(x⋆), and thus supp(x(t)) = supp(x̄). If x̄min ≥(
ϑ⋆

M2k
+ 2ϑ⋆+2

l̄

)
∥∇f(x̄)∥∞, then using the arguments in the proof of Proposition 1 we can derive

that

x̄⋆
min ≥

ϑ⋆∥∇f(x̄⋆)∥∞
M2k

.

Since m2k

M2k
≥ 7ϑ⋆+1

8ϑ⋆ , we get from Lemma 6 that x̄⋆ = x⋆. This leads to the desired result as
supp(x(t)) = supp(x⋆) = supp(x̄⋆) = supp(x̄).

E Proof of Theorem 3

Proof of Theorem 3. Part(a). This part can be proved by showing that F (t) ̸= F (t−1) whenever
supp(x̄) * supp(x(t−1)). To this end, let us assume supp(x̄) * supp(x(t−1)). Then

x̄min + ∥x(t−1)

F (t−1)\F̄ ∥ ≤ ∥x̄− x(t−1)∥

ξ1
≤

√
2max

{
f(x̄)− f(x(t−1)), 0

}
m2k

+
2∥∇F̄\F (t−1)f(x(t−1))∥

m2k

ξ2
≤

√
2(f(x̄)− f(x⋆))

m2k
+

2∥∇F̄\F (t−1)f(x(t−1))∥
m2k

,

where “ξ1” follows from Lemma 2 and “ξ2” is due to the fact of f(x(t−1)) ≥ f(x⋆). Since it is

assumed x̄min >
√

2(f(x̄)−f(x⋆))
m2k

, the above inequality implies that

∥x(t−1)

F (t−1)\F̄ ∥ <
2∥∇F̄\F (t−1)f(x(t−1))∥

m2k
.

Let x(t−1)

bot(|F̄\F (t−1)|) be the smallest (in magnitude) |F̄ \ F (t−1)| elements of x(t−1). Then it can be
shown from the previous inequality that

∥∇F̄\F (t−1)f(x(t−1))∥ > m2k|F (t−1) \ F̄ |1/2

2|F̄ \ F (t−1)|1/2
∥x(t−1)

bot(|F̄\F (t−1)|)∥ ≥
(k − k̄)1/2m2k

2k̄1/2
∥x(t−1)

bot(|F̄\F (t−1)|)∥.
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Since η = 1
2M2k

and k ≥
(
1 +

16M2
2k

m2
2k

)
k̄, we thus have

η∥∇F̄\F (t−1)f(x(t−1))∥ > ∥x(t−1)

bot(|F̄\F (t−1)|)∥.

This further implies at least the bottom |F̄ \F (t−1)| entries of x(t−1) can (but not have to) be swapped
in the step S2 of Algorithm 1, and thus F (t) ̸= F (t−1). Therefore, when the algorithm terminates at
time instance t, i.e., F (t+1) = F (t), we must have supp(x̄) ⊆ supp(x(t)) holds.

Finally, we claim that HTP is finite under the assumed conditions. Indeed, based on Lemma 1 it is
easy to verify that when η = 1

M2k
, the sequence {f(x(t))} generated by Algorithm 1 is monotone.

Since the number of k-support index sets is finite, the sequence {f(x(t))}will be eventually periodic,
and thus must be eventually a constant. Therefore we deduce that x̃(t)

k = x(t−1), i.e., F (t) = F (t−1),
for t large enough. This completes the proof of Part (a).

Part(b): Given the conditions in this part, we know from Part(a) that supp(x̄) ⊆ supp(x(t)) when
HTP terminates at time instance t. Let us assume supp(x̄) ̸= supp(x(t)

k̄
). Then

x̄min ≤ ∥x̄− x
(t)

k̄
∥

ξ1
≤ 1.62∥x̄− x(t)∥

ξ2
≤ 1.62

√
2(f(x̄)− f(x⋆))

m2k
+

2∥∇F̄\F (t)f(x(t))∥
m2k

ξ3
= 1.62

√
2(f(x̄)− f(x⋆))

m2k
,

where “ξ1” is based on the truncation error bound in (Shen & Li, 2016, Theorem 1), “ξ2” follows
from Lemma 2 and the fact of f(x(t)) ≥ f(x⋆), and “ξ3” is the consequence of F̄ ⊆ F (t) and the
optimality of x(t) over F (t). This above inequality contradicts the assumption on x̄min. Therefore,
it must holds that supp(x̄) = supp(x(t)

k̄
).
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