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Abstract

We consider a learner’s problem of acquiring data dynamically for training a re-
gression model, where the training data are collected from strategic data sources.
A fundamental challenge is to incentivize data holders to exert effort to improve
the quality of their reported data, despite that the quality is not directly verifiable
by the learner. In this work, we study a dynamic data acquisition process where
data holders can contribute multiple times. Using a bandit framework, we lever-
age the long-term incentive of future job opportunities to incentivize high-quality
contributions. We propose a Strategic Regression-Upper Confidence Bound (SR-
UCB) framework, a UCB-style index combined with a simple payment rule,
where the index of a worker approximates the quality of his past contributions
and is used by the learner to determine whether the worker receives future work.
For linear regression and a certain family of non-linear regression problems, we
show that SR-UCB enables an O

(√
logT/T

)
-Bayesian Nash Equilibrium (BNE)

where each worker exerts a target effort level that the learner has chosen, with T
being the number of data acquisition stages. The SR-UCB framework also has
some other desirable properties: (1) The indexes can be updated in an online fash-
ion (hence computation is light). (2) A slight variant, namely Private SR-UCB
(PSR-UCB), is able to preserve (O

(
log−1 T

)
,O
(
log−1 T

)
)-differential privacy for

workers’ data, with only a small compromise on incentives (each worker exerting
a target effort level is an O

(
log6 T/

√
T
)
-BNE).

1 Introduction

More and more data for machine learning nowadays are acquired from distributed, unmonitored
and strategic data sources and the quality of these collected data is often unverifiable. For example,
in a crowdsourcing market, a data requester can pay crowd workers to label samples. While this
approach has been widely adopted, crowdsourced labels have been shown to degrade the learning
performance significantly, see e.g., [21], due to the low quality of the data. How to incentivize
workers to contribute high-quality data is hence a fundamental question that is crucial to the long-
term viability of this approach.

Recent works [2,4,11] have considered incentivizing data contributions for the purpose of estimating
a regression model. For example Cai et al. [2] design payment rules so that workers are incentivized
to exert effort to improve the quality of their contributed data, while Cummings et al. [4] design
mechanisms to compensate privacy-sensitive workers for their privacy loss when contributing their
data. These studies focus on a static data acquisition process, only considering one-time data acqui-
sition from each worker. Hence, the incentives completely rely on the payment rule. However, in
stable crowdsourcing markets, workers return to receive additional work. Future job opportunities
are thus another dimension of incentives that can be leveraged to motive high-quality data contribu-
tions. In this paper, we study dynamic data acquisition from strategic agents for regression problems
and explore the use of future job opportunities to incentivize effort exertion.
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In our setting, a learner has access to a pool of workers and in each round decides on which workers
to ask for data. We propose a Multi-armed Bandit (MAB) framework, called Strategic Regression-
Upper Confidence Bound (SR-UCB), that combines a UCB-style index rule with a simple per-round
payment rule to align the incentives of data acquisition with the learning objective. Intuitively, each
worker is an arm and has an index associated with him that measures the quality of his past con-
tributions. The indexes are used by the learner to select workers in the next round. While MAB
framework is natural for modeling selection problem with data contributors of potentially varying
qualities, our setting has two challenges that are distinct from classical bandit settings. First, after
a worker contributes his data, there is no ground-truth observation to evaluate how well the worker
performs (or reward as commonly referred to in a MAB setting). Second, a worker’s performance
is a result of his strategic decision (e.g. how much effort he exerts), instead of being purely exoge-
nously determined. Our SR-UCB framework overcomes the first challenge by evaluating the quality
of an agent’s contributed data against an estimator trained on data provided by all other agents to
obtain an unbiased estimate of the quality, an idea inspired by the peer prediction literature [13,18].
To address the second challenge, our SR-UCB framework enables a game-theoretic equilibrium
with workers exerting target effort levels chosen by the learner. More specifically, in addition to
proposing the SR-UCB framework, our contributions include:

• We show that SR-UCB helps simplify the design of payment, and successfully incentivizes effort
exertion for acquiring data for linear regression. Every worker exerting a targeted effort level
(for labeling and reporting the data) is an O

(√
logT/T

)
-Bayesian Nash Equilibrium (BNE). We

can also extend the above results to a certain family of non-linear regression problems.
• SR-UCB indexes can be maintained in an online fashion, hence are computationally light.
• We extend SR-UCB to Private SR-UCB (PSR-UCB) to further provide privacy guarantees, with

small compromise on incentives. PSR-UCB is (O
(
log−1 T

)
,O
(
log−1 T

)
)-differentially private

and every worker exerting the targeted effort level is an O
(
log6 T/

√
T
)
-BNE.

2 Related work

Recent works have formulated various strategic learning settings under different objectives [2,4,11,
22]. Among these, payment based solutions are proposed for regression problems when data come
from workers who are either effort sensitive [2] or privacy sensitive [4]. These solutions induce
game-theoretic equilibria where high-quality data are contributed. The basic idea of designing the
payment rules is inspired by the much mature literature of proper scoring rules [9] and peer predic-
tion [18]. Both [2] and [4] consider a static data acquisition procedure, while our work focuses on
a dynamic data acquisition process. Leveraging the long-term incentive of future job opportunities,
our work has a much simpler payment rule than those of [2] and [4] and relaxes some of the re-
strictions on the learning objectives (e.g., well behaved in [2]), at the cost of a weaker equilibrium
concept (approximate BNE in this work vs. dominate strategy in [2]).

Multi-armed Bandit (MAB) is a sequential decision making and learning framework which has
been extensively studied. It is nearly impossible to survey the entire bandit literature. The seminal
work by Lai et al [15] derived lower and upper bounds on asymptotic regret on bandit selection.
More recently, finite-time algorithms have been developed for i.i.d. bandits [1] . Different from
the classical settings, this work needs to deal with challenges such as no ground-truth observations
for bandits and bandits’ rewards being strategically determined. A few recent works [8, 17] also
considered bandit settings with strategic arms. Our work differs from these in that we consider
a regression learning setting without ground-truth observations, as well as we consider long-term
workers whose decisions on reporting data can change over time.

Our work and motivations have some resemblance to online contract design problems for a principal-
agent model [10]. But unlike the online contract design problems, our learner cannot verify the
quality of finished work after each task assignment. In addition, instead of focusing on learning the
optimal contract, we use bandits mainly to maintain a long-term incentive for inducing high-quality
data.
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3 Formulation

The learner observes a set of feature data X for training. To make our analysis tractable, we assume
each x ∈ X is sampled uniformly from a unit ball with dimension d: x ∈ Rd s.t. ||x||2 ≤ 1. Each
x associates with a ground-truth response (or label) y(x), which cannot be observed directly by the
learner. Suppose x and y(x) are related through a function f : Rd → R that y(x) = f (x)+ z, where
z is a zero-mean noise with variance σz, and is independent of x. For example, for linear regression
f (x) = θT x for some θ∈Rd . The learner would like to learn a good estimate f̃ of f . For the purpose
of training, the learner needs to figure out y(x) for different x ∈ X . To obtain an estimate ỹ(x) of
y(x), the learner assigns each x to a selected worker to obtain a label.

Agent model: Suppose we have a set of workers U = {1,2, ...,N} with N ≥ 2. After receiving
the labeling task, each worker will decide on the effort level e he wants to exert to generate an
outcome – higher effort leads to a better outcome, but is also associated with a higher cost. We
assume e has bounded support [0, ē] for all worker i ∈ U. When deciding on an effort level, a
worker wants to maximize his expected payment minus cost for effort exertion. The resulted label
ỹ(x) will be given back to the learner. Denote by ỹi(x,e) the label returned by worker i for data
instance x (if assigned) with chosen effort level e. We consider the following effort-sensitive agent
model: ỹi(x,e) = f (x)+ z+ zi(e), where zi(e) is a zero-mean noise with variance σi(e). σi(e) can
be different for different workers, and σi(e) decreases in e,∀i. The z and zi’s have bounded support
such that |z|, |zi| ≤ Z, ∀i. Without loss of generality, we assume that the cost for exerting effort e is
simply e for every worker.

Learner’s objective Suppose the learner wants to learn f with the set of samples X . Then the
learner finds effort levels e∗ for data points in X such that

e∗ ∈ argmin{e(x)}x∈X
ERROR( f̃ ({x, ỹ(x,e(x))}x∈X ))+λ ·PAYMENT({e(x)}x∈X ) ,

where e(x) is the effort level for sample x, and {ỹ(x,e(x))}x∈X is the set of labeled responses for
training data X . f̃ (·) is the regression model trained over this data. The learner assigns the data and
pay appropriately to induce the corresponding effort level e∗. This formulation resembles the one
presented in [2]. The ERROR term captures the expected error of the trained model using collected
data (e.g., measure in squared loss), while the PAYMENT term captures the total expected budget that
the learner spends to receive the labels. This payment quantity depends on the mechanism that the
learner chooses to use and is the expected payment of the mechanism to induce selected effort level
for each data point {e(x)}x∈X . λ > 0 is a weighting factor, which is a constant. It is clear that the
objective function depends on σi’s. We assume for now that the learner knows σi(·)’s,1 and the
optimal e∗ can be computed.

4 StrategicRegression-UCB (SR-UCB): A general template

We propose SR-UCB for solving the dynamic data acquisition problem. SR-UCB enjoys a bandit
setting, where we borrow the idea from the classical UCB algorithm [1], which maintains an index
for each arm (worker in our setting), balancing exploration and exploitation. While a bandit frame-
work is not necessarily the best solution for our dynamic data acquisition problem, it is a promising
option for the following reasons. First, as utility maximizers, workers would like to be assigned
tasks as long as the marginal gain for taking a task is positive. A bandit algorithm can help execute
the assignment process. Second, carefully designed indexes can potentially reflect the amount of
effort exerted by the agents. Third, because the arm selection (of bandit algorithms) is based on the
indexes of workers, it introduces competition among workers for improving their indexes.

SR-UCB contains the following two critical components:

Per-round payment For each worker i, once selected to label a sample x, we will assign a base
payment pi = ei + γ, 2 after reporting the labeling outcome, where ei is the desired effort level that
we would like to induce from worker i (for simplicity we have assumed the cost for exerting effort ei
equals to the effort level), and γ > 0 is a small quantity. The design of this base payment is to ensure

1This assumption can be relaxed. See our supplementary materials for the case with homogeneous σ.
2We assume workers have knowledge of how the mechanism sets up this γ.
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once selected, a worker’s base cost will be covered. Note the above payment depends on neither the
assigned data instance x nor the reported outcome ỹ. Therefore such a payment procedure can be
pre-defined after the learner sets a target effort level.

Assignment The learner assigns multiple task {xi(t)}i∈d(t) at time t, with d(t) denoting the set of
workers selected at t. Denote by ei(t) the effort level worker i exerted for xi(t), if i ∈ d(t). Note all
{xi(t)}i∈d(t) are different tasks, and each of them is assigned to exactly one worker. The selection of
workers will depend on the notion of indexes. Details are given in Algorithm 1.

Algorithm 1 SR-UCB: Worker index & selection
Step 1. For each worker i, first train estimator f̃−i,t using data {x j(n) : 1≤ n≤ t−1, j ∈ d(n), j 6=
i}, that is using the data collected from workers j 6= i up to time t − 1. When t = 1, we will
initialize by sampling each worker at least once such that f̃−i,t can be computed.
Step 2. Then compute the following index for worker i at time t

Ii(t) =
1

ni(t)

t

∑
n=1

1(i ∈ d(n))
[

a−b
(

f̃−i,t(xi(n))− ỹi(n,ei(n))
)2]

+ c

√
log t
ni(t)

,

where ni(t) is the number of times worker i has been selected up to time t. a,b are two positive
constants for “scoring”, and c is a normalization constant. ỹi(n,ei(n)) is the corresponding label
for task xi(n) with effort level ei(n), if i ∈ d(n).
Step 3. Based on the above index, we select d(t) at time t such that d(t) := { j : I j(t)≥maxi Ii(t)−
τ(t)}, where τ(t) is a perturbation term decreasing in t.

Some remarks on SR-UCB: (1) Different from the classical bandit setting, when calculating the
indexes, there is no ground-truth observation for evaluating the performance of each worker. There-
fore we adopt the notion of scoring rule [9]. Particularly the one we used above is the well-known
Brier scoring rule: B(p,q) = a− b(p− q)2 . (2) The scoring rule based index looks similar to the
payment rules studied in [2, 4]. But as we will show later, under our framework the selection of a,b
is much less sensitive to different problem settings, as with an index policy, only the relative values
matter (ranking). This is another benefit of separating payment from selection. (3) Instead of only
selecting the best worker with the highest index, we select workers whose index is within a certain
range of the maximum one (a confidence region). This is because workers may have competing
expertise level and hence selecting only one of them would de-incentivize workers’ effort exertion.

4.1 Solution concept

Denote by e(n) := {e1(n), ...,eN(n)}, and e−i(n) = {e j(n)} j 6=i. We define approximate Bayesian
Nash Equilibrium as our solution concept:

Definition 1. Suppose SR-UCB runs for T stages. {ei(t)}N,T
i=1,t=1 is a π-BNE if ∀i,{ẽi(t)}T

t=1:

1
T
E[

T

∑
t=1

(pi− ei(t))1(i ∈ d(t))
∣∣{e(n)}n≤t ]≥

1
T
E[

T

∑
t=1

(pi− ẽi(t))1(i ∈ d(t))
∣∣{ẽi(n),e−i(n)}n≤t ]−π.

This is to say by deviating, each worker will gain no more than π net-payment per around. We
will establish our main results in terms of π-BNE. The reason we adopt such a notion is that in a
sequential setting it is generally hard to achieve strict BNE or other stronger notion as any one-step
deviation may not affect a long-term evaluation by much.3 Approximate BNE is likely the best
solution concept we can hope for.

5 Linear regression

5.1 Settings and a warm-up scenario

In this section we present our results for a simple linear regression task where the feature x and ob-
servation y are linearly related via an unknown θ: y(x) = θT x+ z, ∀x ∈ X . Let’s start with assuming

3Certainly, we can run mechanisms that induce BNE or dominant-strategy equilibrium for one-shot setting,
e.g. [2], for every time step. But such solution does not incorporate long-term incentives.
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all workers are statistically identical such that σ1 = σ2 = ...= σN . This is an easier case that serves
as a warm-up. It is known that given training data, we can find an estimation θ̃ that minimizes a
non-regularized empirical risk function: θ̃ = argmin

θ̂∈Rd ∑x∈X (y(x)− θ̂T x)2 (linear least square). To
put this model into SR-UCB, denote θ̃−i(t) as the linear least square estimator trained using data
from workers j 6= i up to time t−1. And Ii(t) := Si(t)+ c

√
log t/ni(t), with

Si(t) :=
1

ni(t)

t−1

∑
n=1

1(i ∈ d(n))
[

a−b
(

θ̃
T
−i(t)xi(n)− ỹi(n,ei(n))

)2]
. (5.1)

Suppose ||θ||2 ≤ M. Given ||x||2 ≤ 1 and |z|, |zi| ≤ Z, we then prove that ∀t,n, i, (θ̃T
−i(t)xi(n)−

ỹi(n,ei(n)))2 ≤ 8M2 +2Z2. Choose a,b such that a− (8M2 +2Z2)b≥ 0, then we have 0≤ Si(t)≤
a, ∀i, t. For the perturbation term, we set τ(t) := O

(√
log t/t

)
. The intuition is that with t samples,

the uncertainties in the indexes, coming from both the score calculation and the bias term, can be
upper bounded at the order of O

(√
log t/t

)
. Thus, to not miss a competitive worker, we set the

tolerance to be at the same order.

We now develop the formal equilibrium result of SR-UCB for linear least square. Our analysis
requires the following assumption on the smoothness of σ.

Assumption 1. We assume σ(e) is convex on e ∈ [0, ē], with gradient σ′(e) being both upper
bounded, and lower bounded away from 0, i.e., L≥ |σ′(e)| ≥ L > 0, ∀e.

The learner wants to learn f with a total of NT (= |X | or dNTe = |X |) samples. Since workers are
statistically equivalent, ideally the learner would like to run SR-UCB for T steps and collect a label
for a unique sample from each worker at each step. Hence, the learner would like to elicit a single
target effort level e∗ from all workers and for all samples:

e∗ ∈ argmineEx,y,ỹ

[
θ

T ({xi(n), ỹi(n,e)}N,T
i=1,n=1) · x− y

]2

+λ · (e+ γ)NT. (5.2)

Due to the uncertainty in worker selection, it is highly likely that after step T , there will be tasks
left unlabelled. We can let the mechanism go for extra steps to complete labelling of these tasks.
But due to the bounded number of missed selections as we will show later, stopping at step T won’t
affect the accuracy in the model trained.

Theorem 1. Under SR-UCB for linear least square, set fixed payment pi = e∗+ γ for all i, where
γ = Ω(

√
logT/T ), choose c to be a large enough constant, c ≥ Const.(M,Z,N,b), and let τ(t) :=

O
(√

log t/t
)
. Workers have full knowledge of the mechanism and the values of the parameters.

Then at an O
(√

logT/T
)
-BNE, workers, whenever selected, exert effort ei(t)≡ e∗ for all i and t.

The net payment (payment minus the cost of effort) per task can be made arbitrarily small by setting
γ exactly on the order of O

(√
logT/T

)
, and pi− e∗ = γ = O

(√
logT/T

)
→ 0, as T → ∞.

Our solution heavily relies on forming a race among workers. By establishing the convergence of
bandit indexes to a function of effort (via σ(·)), we show that when other workers j 6= i follow
the equilibrium strategy, worker i will be selected w.h.p. at each round, if he also puts in the same
amount of effort. On the other hand, if worker i shirks from doing so by as much as (O

(√
logT/T

)
),

his number of selection will go down in order. This establishes the π-BNE. As long as there exists
one competitive worker, all others will be incentivized to exert effort. Though as will be shown
in the next section, all workers shirking from exerting effort is also an O

(√
logT/T

)
-BNE. This

equilibrium can be removed by adding some uncertainty on top of the bandit selection procedure.
When there are ≥ 2 workers being selected in SR-UCB, each of them will be assigned a task with
certain probability 0 < ps < 1. While when there is a single selected worker, the worker is as-
signed a task w.p. 1. Set ps := 1−O

(√
logT/T/γ

)
. So with probability 1− ps = O

(√
logT/T/γ

)
,

even the “winning”workers will miss the selection. With this change, exerting e∗ still forms an
O
(√

logT/T
)
-BNE, while every worker exerting any effort level that is ∆e > O

(
γ
)

lower than the
target effort level is not a π-BNE with π≤ O

(√
logT/T

)
.
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5.2 Linear regression with different σ

Now we consider the more realistic case that different workers have different noise-effort function
σ’s. W.l.o.g., we assume σ1(e) < σ2(e) < ... < σN(e),∀e.4 In such a setting, ideally we would
always like to collect data from worker 1 since he has the best expertise level (lowest variance in
labeling noise). Suppose we are targeting an effort level e∗1 from data source 1 (the best data source).
We first argue that we also need to incentivize worker 2 to exert competitive effort level e∗2 such that
σ1(e∗1) = σ2(e∗2), and we assume such an e∗2 exists.5 This also naturally implies that e∗2 > e∗1 as
worker 1 contributes data with less variance in noise at the same effort level. The reason is similar
to the homogeneous setting—over time workers form a competition on σi(ei). Having a competitive
peer will motivate workers to exert as much effort as he can (up to the payment). Therefore the goal
for such a learner (with 2T samples to assign) is to find an effort level e∗ such that 6

e∗ ∈ argmine2:σ1(e1)=σ2(e2)
Ex,y,ỹ

[
θ

T ({xi(n), ỹi(n,ei))}2,T
i=1,n=1)x− y

]2

+λ · (e2 + γ)2T.

Set the one-step payment to be pi = e∗+ γ,∀i. Let e∗1 be the solution to σ1(e∗1) = σ2(e∗) and let
e∗i = e∗ for i ≥ 2. Note for i > 2 we have σi(e∗i )−σ1(e∗1) > 0. While we have argued about the
necessity for choosing the top two most competitive workers, we have not mentioned the optimality
of doing so. In fact selecting the top two is the best we can do. Suppose on the contrary, the
optimal solution is by selecting top k > 2 workers, at effort level ek. According to our solution, we
targeted the effort level that leads to variance of noise σk(ek) (so the least competitive worker will
be incentivized). Then we can simply target the same effort level ek, but migrating the task loads to
only the top two workers – this keeps the payment the same, but the variance of noise now becomes
σ2(ek)< σk(ek), which leads to better performance. Denote ∆1 := σ3(e∗)−σ1(e∗1)> 0 and assume
Assumption 1 applies to all σi’s. We prove:

Theorem 2. Under SR-UCB for linear least square, set c ≥ Const.(M,Z,b,∆1), Ω(
√

logT/T ) =
γ ≤ ∆1

2L , τ(t) := O
(√

log t/t
)
. Then, each worker i exerting effort e∗i once selected forms an

O
(√

logT/T
)
-BNE.

Performance with acquired data If workers follow the π-BNE, the contributed data from the
top two workers (who have been selected the most number of times) will have the same variance
σ1(e∗1). Then following results in [4], w.h.p. the performance of the trained classifier is bounded by
O
(
σ1(e∗1)/(∑i=1,2 ni(T ))2

)
. Ideally we want to have ∑i=1,2 ni(T ) = 2T , such that an upper bound of

O
(
σ1(e∗1)/(2T )2

)
can be achieved. Compared to the bound O

(
σ1(e∗1)/(2T )2

)
, SR-UCB’s expected

performance loss (due to missed sampling & wrong selection, which is bounded at the order of
O
(
logT

)
) is bounded by E[σ1(e∗1)/(∑i=1,2 ni(T ))2−σ1(e∗1)/(2T )2]≤ O

(
σ1(e∗1) logT/T 3

)
w.h.p. .

Regularized linear regression Ridge estimator has been widely adopted for solving linear regres-
sion. The objective is to find a linear model θ̃ that minimizes the following regularized empirical
risk: θ̃ = argmin

θ̂∈Rd ∑x∈X (y(x)− θ̂T x)2 +ρ||θ̂||22 , with ρ > 0 being the regularization parameter.
We claim that simply changing the f̃−i,t(·) in SR-UCB to the output from the above ridge regression,
the O

(√
logT/T

)
-BNE for inducing an effort level e∗ will hold. Different from the non-regularized

case, the introduction of the regularization term will add bias in θ̃T
−i(t), which gives a biased evalu-

ation of indexes. However, we prove the convergence of θ̃T
−i(t) (so again the indexes will converge

properly) in the following lemma, which enables an easy adaption of our previous results for non-
regularized case to ridge regression:

Lemma 1. With n i.i.d. samples, w.p. ≥ 1− e−Kn (K > 0 is a constant), ||θ̃−i(t)−θ||22 ≤ O
( 1

n2

)
.

Non-linear regression The basic idea for extending the results to non-linear regression is inspired
by the consistency results on M-estimator [16], when the error of training data satisfies zero mean.
Similar to the reasoning for Lemma 1, if ( f̃−i,t(x)− f (x))2→ 0, we can hope for an easy adaptation

4Combing with the results for homogeneous workers, we can again easily extend our results to the case
where there are a mixture of homogeneous and heterogenous workers.

5It exists when the supports for σ1(·),σ2(·) overlap for a large support range.
6Since we only target the top two workers, we can limit the number of acquisitions on each stage to be no

more than two, so the number of query does not go beyond 2T .
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of our previous results. Suppose the non-linear regression model can be characterized by a parameter
family Θ, where f is characterized by parameter θ, and f̃−i,t by θ̃i(t). Due to the consistency
of M-estimator we will have ||θ̃i(t)− θ||2 → 0. More specifically, according to the results from
[20], for the non-linear regression model we can establish an O

(
1/
√

n
)

convergence rate with n
training samples. When f is Lipschitz in parameter space, i.e. there exists a constant LN > 0
such that | f̃−i,t(x)− f (x)| ≤ LN ||θ̃i(t)− θ||2, by dominated convergence theorem we also have
( f̃−i,t(x)− f (x))2→ 0, and ( f̃−i,t(x)− f (x))2 ≤ O

(
1/t
)
. The rest of the proof can then follow.

Example 1. Logistic function f (x) = 1
1+e−θT x

satisfies Lipschitz condition with LN = 1/4.

6 Computational issues
In order to update the indexes and select workers adaptively, we face a few computational challenges.
First, in order to update the index for each worker at any time t, a new estimator θ̃−i(t) (using data
from all other workers j 6= i up to time t−1) needs to be re-computed. Second, we need to re-apply
θ̃−i(t) to every collected sample from worker i,{(xi(n), ỹi(n,ei(n)) : i ∈ d(n),n = 1,2, ...t−1} from
previous rounds. We propose online variants of SR-UCB to address these challenges.

Online update of θ̃−i(·) Inspired by the online learning literature, instead of re-computing θ̃−i(t)
at each step, which involves re-calculating the inverse of a covariance matrix (e.g., (ρI +XT X)−1

for ridge regression) whenever there is a new sample point arriving, we can update θ̃−i(t) in an
online fashion, which is computationally much more efficient. We demonstrate our results with
ridge linear regression. Start with an initial model θ̃online

−i (1). Denote by (x−i(t), ỹ−i(t)) any newly
arrived sample at time t from worker j 6= i. Update θ̃online

−i (t +1) (for computing Ii(t +1)) as [19]:

θ̃
online
−i (t +1) := θ̃

online
−i (t)−ηt ·∇θ̃online

−i (t)[(θ
T x−i(t)− ỹ−i(t))2 +ρ||θ||22] ,

Notice there could be multiple such data points arriving at each time – in which case we will up-
date sequentially in an arbitrarily order. It is also possible that there is no sample point arriving from
workers other than i at a time t, in which case we simply do not perform an update. Name this online
updating SR-UCB as OSR1-UCB. With online updating, the accuracy of trained model θ̃online

−i (t+1)
converges slower, so is the accuracy in the index for characterizing worker’s performance. Never-
theless we prove exerting targeted effort exertion e∗ is O

(√
logT/T

)
-BNE under OSR1-UCB for

ridge regression, using convergence results for θ̃online
−i (t) proved in [19].

Online score update Online updating can also help compute Si(t) (in Ii(t)) efficiently. Instead of
repeatedly re-calculating the score for each data point (in Si(t)), we only update the newly assigned
samples which has not been evaluated yet, by replacing θ̃online

−i (t) with θ̃online
−i (n) in Si(t):

Sonline
i (t) :=

1
ni(t)

t

∑
n=1

1(i ∈ d(n))[a−b((θ̃online
−i (n))T xi(n)− ỹi(n,ei(n)))2]. (6.1)

With less aggressive update, again the index term’s accuracy converges slower than before, which is
due to the fact the older data is scored using an older (and less accurate) version of θ̃online

−i without
being further updated. We propose OSR2-UCB where we change the index SR-UCB to: Sonline

i (t)+
c
√

(log t)2/ni(t), to accommondate the slower convergence. We establish an O
(
logT/

√
T
)
-BNE

for workers exerting target effort—the change is due to the change of the bias term.

7 Privacy preserving SR-UCB
With a repeated data acquisition setting, workers’ privacy in data may leak repeatedly. In this section
we study an extension of SR-UCB to preserve privacy of each individual worker’s contributed data.
Denote the training data collected as D := {ỹi(t,ei(t))}i∈d(t),t . We quantify privacy using differential
privacy [6], and we adopt (ε,δ)-differential privacy (DP) [7], which for our setting is defined below:

Definition 2. A mechanism M : (X×R)|D|→ O is (ε,δ)-differentially private if for any i ∈ d(t), t,
any two distinct ỹi(t,ei(t)), ỹ′i(t,e

′
i(t)), and for every subset of possible outputs S ⊆ O, Pr[M (D) ∈

S ]≤ exp(ε)Pr[M (D\{ỹi(t,ei(t))}, ỹ′i(t,e′i(t))) ∈ S ]+δ.

7



An outcome o ∈ O of a mechanism contains two parts, both of which can contribute to privacy
leakage: (1) The learned regression model θ̃(T ), which is trained using all data collected after T
rounds. Suppose after learning the regression model θ̃(T ), this information will be released for
public usage or monitoring. This information contains each individual worker’s private information.
Note this is a one-shot leak of privacy (published at the end of the training (step T )). (2) The
indexes can reveal private information. Each worker i’s data will be utilized towards calculating
other workers’ indexes I j(t), j 6= i, as well as his own Ii(t), which will be published.7 Note this type
of leakage occurs at each step. The lemma below allows us to focus on the privacy losses in S j(t),
instead of I j(t), as both I j(t) and ni(t) are functions of {S j(n)}n≤t .
Lemma 2. At any time t, ∀i, ni(t) can be written as a function of {S j(n),n < t} j.

Preserving privacy in θ̃(T ) To protect privacy in θ̃(T ), following standard method [7], we add a
Laplacian noise vector vθ to it: θ̃p(T ) = θ̃(T )+ vθ, where Pr(vθ) ∝ exp(−εθ||vθ||2). εθ > 0 is a
parameter controlling the noise level.

Lemma 3. Set εθ = 2
√

T , the output θ̃p(T ) of SR-UCB for linear regression preserves
(O
(
T−1/2

)
,exp(−O

(
T
)
))-DP. Further w.p. ≥ 1−1/T 2, ||θ̃p(T )− θ̃(T )||2 = ||vθ||2 ≤ logT/

√
T .

Preserving privacy in {Ii(t)}i,t : a continual privacy preserving model For indexes {Ii(t)}i, it
is also tempting to add vi(t) to each index, i.e. Ii(t) := Ii(t)+ vi(t), where again vi(t) is a zero-
mean Laplacian noise. However releasing {Ii(t)}i at each step will release a noisy version of each
ỹi(n,ei(n)), i ∈ d(n),∀n < t. The composition theory in differential privacy [14] implies that the
preserved privacy level will grow in time t, unless we add significant noise on each stage, which
will completely destroy the informativeness of our index policy. We borrow the partial sum idea for
continual observations [3]. The idea is when releasing continual data, instead of inserting noise at
every step, the current to-be-released data will be decoupled into sum of partial sums, and we only
add noise to each partial sum and this noisy version of the partial sums can be re-used repeatedly.

We consider adding noise to a modified version of the online indexes {Sonline
i (t)}i,t as defined in

Eqn. (6.1), with θ̃online
−i (t) replaced by ∑

t
n=1 θ̃−i(n)/t, where θ̃−i(n) is the regression model we

estimated using all data from worker j 6= i up to time n. For each worker i, his contributed data
appear in both {Sonline

i (t)}t and{Sonline
j (t)}t , j 6= i. For Sonline

j (t), j 6= i, we want to preserve privacy
in ∑

t
n=1 θ̃− j(n)/t, which contains information of ỹi(n,ei(n)).

We first apply the partial sums idea to ∑
t
n=1 θ̃− j(n)/t. Write down t as a binary string and find the

rightmost digit that is a 1, then flip that digit to 0: convert is back to decimal gives q(t). Take the
sum from q(t)+ 1 to t: ∑

t
n=q(t)+1 θ̃− j(n) as one partial sum. Repeat above for q(t), to get q(q(t)),

and the second partial sum ∑
q(t)
n=q(q(t))+1 θ̃− j(n), until we reach q(·) = 0. So

t

∑
n=1

θ̃− j(n)/t =
1
t
(

t

∑
n=q(t)+1

θ̃− j(n)+
q(t)

∑
n=q(q(t))+1

θ̃− j(n)+ ...+
0

∑
n=0

θ̃− j(n)) . (7.1)

Add noise v
θ̃

with Pr(v
θ̃
) ∝ e−ε||v

θ̃
||2 to each partial sum. The number of noise terms is bounded

by ≤ dlog te at time t. So is the number of appearance of each private data in the partial sums [3].
Denote the noisy version of ∑

t
n=1 θ̃− j(n)/t as ˜̃

θonline
−i (n). Each Sonline

i (t) is computed using ˜̃
θonline
−i (n).

For Sonline
i (t), we also want to preserve privacy in ỹi(n,ei(n)). Clearly Sonline

i (t) can be written as
sum of partial sums of terms involving ỹi(n,ei(n)): write Sonline

i (t) as a summation: ∑
ni(t)
n=1 dS(n)/ni(t)

(short-handing dS(n) := a−b(( ˜̃
θonline
−i (t(n)))T xi(t(n))− ỹi(t(n),ei(t(n))))2, where t(n) denotes the

time of worker i being sampled the n-th time.). Decouple Sonline
i (t) into partial sums using the same

technique. For each partial sum, add a noise vS with distribution Pr(vS) ∝ e−ε|vS|.

We then show that with the above two noise exertion procedures, our index policy SR-UCB will
not lose its value in incentivizing effort. In order to prove similar convergence results, we need to
modify SR-UCB by changing the index to the following format:

Ii(t) = Ŝonline
i (t)+ c(log3 t log3 T )/

√
ni(t), τ(t) = O

(
(log3 t log3 T )/

√
t
)
,

7It is debatable whether the indexes should be published or not. But revealing decisions on worker selection
will also reveal information on the indexes. We consider the more direct scenario – indexes are published.
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where Ŝonline
i (t) denotes the noisy version of Sonline

i (t) with added noises ( vS,vθ̃
etc). The change of

bias is mainly to incorporate the increased uncertainty level (due to added privacy preserving noise).
Denote this mechanism as PSR-UCB, we have:

Theorem 3. Set ε := 1/ log3 T for added noises (both vS and v
θ̃
), PSR-UCB preserves

(O
(
log−1 T

)
,O
(
log−1 T

)
)-DP for linear regression.

With homogeneous workers, we similarly can prove exerting effort {e∗i }i (optimal effort level) is
O
(
log6 T/

√
T
)
-BNE. We can see that, in order to protect privacy in the bandit setting, the approxi-

mation term of BNE is worse than before.
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APPENDIX
8 Proofs for Section 5

8.1 Boundedness for indexes

Proof. We prove the indexes have bounded support:

(θ̃T
−i(t)xi(n)− ỹi(n,e))2

≤ (θ̃T
−i(t)xi(n)− y(xi(n))− zi(e))2

≤ 2(θ̃T
−i(t)xi(n)− y(xi(n)))2 +2z2

≤ 2(θ̃T
−i(t)xi(n)−θ

T xi(n))2 +2Z2

≤ 2||θ̃T
−i(t)−θ||22||xi(n)||22 +2Z2

≤ 8M2 +2Z2

8.2 Intuitions and some results that are needed for proving Theorem 1

In order to analyze our bandit setting, we need to track the evolution of the indexes, which are
mainly affected by the change of the “scoring” term Si(t). In analogy to classical bandit setting, we
are hoping to establish a convergence result for Si(t). Specifically we prove the following results:

Lemma 4. Suppose we have n i.i.d. samples to construct θ̃−i(t) in Si(t). Then

|E[Si(t)]− (a−b(σz +σ(ei)))| ≤ O
( 1

n2

)
. (8.1)

And w.p. being at least 1− e−Kn for some K > 0,

|S1
i (t)| ≤ O

( 1
n2

)
.

Proof. To give some intuition, we first decouple the quadratic term (θ̃T
−i(t)xi(n)− ỹi(n,e))2 in each

Si(t), for any time t, and any data sample xi(n) that is collected before t (n≤ t):(
θ̃

T
−i(t)xi(n)− ỹi(n,e)

)2

=

(
θ̃

T
−i(t)xi(n)− y(xi(n))+ y(xi(n))− ỹi(n,e)

)2

= (θ̃T
−i(t)xi(n)− y(xi(n)))2 +(θ̃T

−i(t)xi(n)− y(xi(n)))(y(xi(n))− ỹi(n,e))+(y(xi(n))− ỹi(n,e))2

= ((θ̃−i(t)−θ)T xi(n))2︸ ︷︷ ︸
l1
i,t (n)

+(θ̃−i(t)−θ)T xi(n) · z(n)︸ ︷︷ ︸
l2
i,t (n)

+(θ̃T
−i(t)xi(n)− y(xi(n)))(y(xi(n))− ỹi(n,ei))︸ ︷︷ ︸

l3
i,t (n)

+ z2(n)︸ ︷︷ ︸
l4
i,t (n)

+(y(xi(n))− ỹi(n,e))2︸ ︷︷ ︸
l5
i,t (n)

. (8.2)
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With above decoupling we can re-write Si(t) as

Si(t) := a+
5

∑
k=1

Sk
i (t), where Sk

i (t) =−b
∑

t−1
n=1 1(i ∈ d(n))lk

i,t(n)

ni(t)
.

We analyze each of the five terms Sk
i (t),k = 1,2, ...,5. For the first term l1

i,t(n) first notice ∀n

((θ̃−i(t)−θ)T xi(n))2 ≤ ||θ̃−i(t)−θ||22||xi(n)||22 ≤ ||θ̃−i(t)−θ||22 .

We have the following lemma:

Lemma 5. Suppose we have n i.i.d. samples to construct θ̃−i(t), then w.p. being at least 1− e−Kn

where K > 0 is a constant,

||θ̃−i(t)−θ||22 ≤ Z4(d +2)6 (1+ξ)2

(1−ξ)4
1
n2 , with ξ ∈ (0,1) being a constant.

Using above lemma we know w.p. being at least 1− e−Kn,

|S1
i (t)| ≤ b||θ̃−i(t)−θ||22 ≤ bZ4(d +2)6 (1+ξ)2

(1−ξ)4
1
n2 .

For the second term l2
i,t(n), consider its expectation. Due to independence between any data, and the

independence between data and noise z, we have

E[l2
i,t(n))] = E(θ̃−i(t)−θ)T xi(n))E(z) = 0 .

Similarly for l3
i,t(n), since the noise term in θ̃T

−i(t) is independent from the one in y(xi(n))− ỹi(n,e),
again we have

E[l3
i,t(n)] = E[θ̃T

−i(t)xi(n)− y(xi(n))] ·E[y(xi(n))− ỹi(n,ei)] = 0 .

The second equality follows as E[y(xi(n))− ỹi(n,ei)] = 0. Also we would like to note that due to the
boundedness of (θ̃−i(t)−θ)T xi(n) and θ̃T

−i(t)xi(n)− y(xi(n)), the convergence of S2
i (t),S

3
i (t)can be

established using Hoeffding bound [5].

For l4
i,t(n), l

5
i,t(n) we have (suppose worker i exerts consistent effort ei)

E[l4
i,t(n)] = E[z2(n)] = σz, E[l5

i,t(n)]
2 = E[zi(ei)]

2 = σ(ei) .

The convergence rate is depending on how many samples worker i has been assigned. To summarize
we know

E[
5

∑
k=2

Sk
j(t)] =−b(σz +σ(ei)). (8.3)

And the expected scoring term Si for each user will roughly converge to

a−b(σz +σ(ei))+O
( 1

n2

)
, , (8.4)

with O
( 1

n2

)
being an additional bias term, where n is the number of samples contributed by other

workers. This also implies that

|E[Si(t)]− (a−b(σz +σ(ei)))| ≤ O
( 1

n2

)
.

With above preparation we see if every worker is exerting the same level of efforts, ei ≡ e, the
expected scoring function for workers will become equivalent. Then in order to be selected, workers
will race with each other on σ(ei)

8 and be incentivized to exert efforts.

8Or average over σ(ei(n)) when different effort levels are chosen at different steps.
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8.3 Proof for Lemma 5

Proof. Denote the stacked data in a matrix form as X ∈ Rn×d , and the corresponding labeling out-
come ỹ ∈ Rn. Then it is well known that the optimal estimator from minimizing a non-regularized
empirical loss function is given by θ̃−i(t) = (XT X)−1XT ỹ. Denote y as the true labels. Consider the
following facts.

||θ̃−i(t)−θ||22
= ||(XT X)−1XT ỹ− (XT X)−1XT y||22
= trace((XT X)−1XT (ỹ− y)(ỹ− y)T X(XT X)−1)

= ||(XT X)−1XT (ỹ− y)(ỹ− y)T X(XT X)−1||22
≤ ||(XT X)−1||22 · ||XT (ỹ− y)(ỹ− y)T X||22 · ||(XT X)−1||22 . (8.5)

Since xs are sampled uniformly from a unit ball, by Theorem 7 in [4] (adapted from Corollary 5.52
in [23]), ||(XT X)−1||22 can be bounded at the order of O

( 1
n2

)
w.h.p. (> 1−O

(
e−Kn

)
):

Theorem 4. Let ξ ∈ (0,1), and t ≥ 1. Let || · || denote the spectral norm. If {xi}n
i=1 are i.i.d. and

sample uniformly from the unit ball (with dimension d), then w.p. being at least 1− d−t2
, when

n≥C( t
ξ
)2(d +2) logd, for some constant C, then

||XT X|| ≤ 1+ξ

2+d
n, ||(XT X)−1|| ≤ 1

(1−ξ) 1
2+d n

. (8.6)

We will be repeatedly using this lemma. Then the first and third term in Eqn. (8.5) can be well
bounded: ||(XT X)−1||22 ≤

1
(1−ξ) 1

2+d n
. Consider the second term. For ||XT (ỹ−y)(ỹ−y)T X||22, w.h.p.,

||XT (ỹ− y)(ỹ− y)T X||22 = trace(XT (ỹ− y)(ỹ− y)T X)

≤max
i

z2
i ·∑

i
xT

i xi = max
i

z2
i · trace(XT X)

≤Z2 · trace(XT X) = Z2|||XT X||22

≤Z2 1+ξ

2+d
n ,

Combining above argument, we establish that w.h.p.,

||θ̃−i(t)−θ||22 ≤ (
1

(1−ξ) 1
2+d n

)2 · (Z2 1+ξ

2+d
n)2 · ( 1

(1−ξ) 1
2+d n

)2

= Z4(d +2)6 (1+ξ)2

(1−ξ)4
1
n2 → 0, as n→ ∞.

8.4 Proof for Theorem 1

Proof. To prove the theorem, we proceed in the following ways. We first prove the following lemma:

Lemma 6. If every worker exerts effort level ei(t) = e∗,∀t, there exists a constant δU > 0 such that
for any i, j that i 6= j we have probability at least 1−O

( 1
t2

)
, ni(t)≤ (1+δU )n j(t).

What this lemma is implying is that w.h.p., one worker cannot be selected more than another by a
constant fraction. This result is crucial for us to establish the index analysis for bandits – different
from classical bandit, due to the lack of ground-truth, the evaluation of each worker’s index does
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not only depend on the number of samples from worker himself, but also on the ones from other
workers. With above results at hand, and using union bound we know w.p. being at least 1−O

(N
t2

)
,

(
N−1
1+δU

+1)ni(t)≤∑
j

n j(t)≤ [(1+δU )(N−1)+1]ni(t).

Since ∑ j n j(t) ≥ t (at least one selection at each time) we must have ni(t) ≥ t
(1+δU )(N−1)+1 . Based

on this we can now establish the following lemma.

Lemma 7. If every worker exerts effort level ei(t) = e∗,∀t, we have E[ni(t)]≥ t− const. .

With this lemma we are most ready to prove the first part of the π−BNE. First of all, for any worker,
there is no reason to deviate to e > e∗. This is due to the fact with exerting e∗ each worker has
already guaranteed nearly T number of selection. Further exerting effort, while will decrease the net
payment at each step, will at most bring in O

( 1
T

)
gain per round (a constant number more selections).

Now we show deviating to e < e∗−O
(√ logT

T z

)
,∀ 0≤ z < 1 will also be non-profitable. For any such

z, we can always find a z′ = z+ ς < 1, ς > 0 such that
√

log t
tz′ <

√
log t
tz . Denote ∆ := O

(√ logT
T z

)
.

Therefore we will be having (using convexity and smoothness of σ)
σ(e−∆)≥ σ(e)−σ

′(e)(−∆)≥ σ(e)+L∆

⇒ σ(e−∆)−σ(e)≥ L∆. (8.7)

This creates bL∆ difference in E[∑5
k=2 Sk

j(t)] based on Eqn.(8.3) (exerting e∗ and e). Suppose worker
i is deviating, then we prove:

Lemma 8. After O
(
T z′
)

selections, the number of selection of worker i can be bounded as follows

E[ni(T ; t ≥ T z′)]≤ O
( logT

∆2

)
= O

(
T z) .

Then by deviating the number of selection of worker i is bounded by max{O
(
T z′
)
,O
(
T z
)
} ≤

O
(
T z′
)
. Following which we know the collected reward for worker i is then upper bounded by

(γ + ∆) ·O
(
T z′
)
< γ ·O

(
T
)
, when γ = Ω(

√
logT

T ), and T is large, and z′ is selected such that

z < z′ < z+1
2 . On the other hand, when the deviation is no more than O

(√ logT
T

)
, the per round gain

is bounded by

O
(√ logT

T

)
+ γ︸ ︷︷ ︸

after deviation

− γ · (T − const.)
T︸ ︷︷ ︸

before deviation

≤ O
(√ logT

T

)
,

Thus the above argument establishes that a consistent deviation will result in at most
√

logT
T more

net-payment per task.

We now prove the case when workers may deviate differently at different step. Take worker i as an
example, denote its effort level at step t as ei(t). Denote ∆i(t) = e∗−ei(t)≥ 0 as a per-step deviation.
First we have by convexity σ(ei(t))−σ(e∗)≥ σ′(e∗)∆i(t) . Sum over all period of time we have

∑
T
t=1 σ(ei(t))

T
−σ(e∗)≥ σ

′(e∗)
∑

T
t=1 ∆i(t)

T
. (8.8)

If ∑
T
t=1 ∆i(t)

T ≤ 0, we know that the total cost is higher than Te∗. Then

∑
T
t=1 1(i ∈ d(t))(pi− ei(t))−E[ni(t,e∗)]γ

T

≤∑
T
t=1 1(i ∈ d(t))(ei + γ− ei(t))− (T − const.)γ

T

≤const.
T

γ+
∑

T
t=1 1(i ∈ d(t))∆i(t)

T
≤ const.

T
γ .

13



So the per-round profit is upper bounded by const.
T γ by such a deviation. Now consider the case

∑
T
t=1 ∆i(t)

T > 0. We then have

∑
T
t=1 σ(ei(t))

T
−σ(e∗)≥ L

∑
T
t=1 ∆i(t)

T
. (8.9)

Denote by ∆ := L ∑
T
t=1 ∆i(t)

T > 0. Denote by t ′−1 the last time such that

L
∑

t ′−1
t=1 ∆i(t)
t ′−1

< ∆/2.

If there does not exist such a t ′, that is for all t ′ L ∑
t′−1
t=1 ∆i(t)

t ′−1 ≥ ∆/2, we simply set t ′ = 1. Then starting
from t ′, we have

L
∑

t ′
t=1 ∆i(t)

t ′
≥ ∆/2.

When ∆ = O
(√

logT/T z
)
, z→ 1, we discuss in three cases.

• Case 1: When t ′ ≥ T −O
(√

T
)
. We must have L ∑

t′
t=1 ∆i(t)

t ′ ≤ 2∆/3, as otherwise

L
∑

t ′−1
t=1 ∆i(t)
t ′−1

≥ L
∑

t ′−1
t=1 ∆i(t)

t ′
≥ L

∑
t ′
t=1 ∆i(t)− ē

t ′
≥ 2∆/3− ē

t ′
≥ ∆/2,

which contradicts the definition of t ′. Then for this case, the average utility gain is upper
bounded by the following case (being selected for all the rest of O

(√
T
)

steps): 2∆/3+
O
(√

T/T
)
. So this establishes the O

(√
logT/T

)
-BNE.

• Case 2: For the second case that t ′ = o(T ), specifically say t ′ = O
(
T z
)
,0 < z < 1. We can

prove a result that is similar to Lemma 8 stating that

E[ni(T ; t ≥ T z′)]≤ O
( logT

∆2

)
.

All previous analysis establishes themselves directly except for the convergence of the fifth
term S5

i (t), as now it consists of non-identical noise terms. Nevertheless using Hoeffd-
ing bound, we can establish the convergence of the sum of sequence of non-identical but

independent samples S5
i (t)→

∑
T
t=1 σ(ei(t))

T . If ∑
T
t=1 ∆i(t)

T = Ω(
√

logT
T z ), we will again have

∑
T
t=1 σ(ei(t))

T
−σ(e∗) = Ω(

√
logT

T z ) , (8.10)

from which we can prove a contradiction on profitable deviations, via similarly proving the
bound on the number of selection (Lemma (8)), i.e., by deviating the number of selection
of worker i is bounded by max{O

(
T z′
)
,O
(
T z
)
}= O

(
T z′
)
; and the rest analysis follows.

• Case 3: For the third case that O
(
T z
)
≤ t ′ ≤ T−O

(√
T
)
. Again we must have L ∑

t′
t=1 ∆i(t)

t ′ ≤
2∆/3, as otherwise

L
∑

t ′−1
t=1 ∆i(t)
t ′−1

≥ L
∑

t ′−1
t=1 ∆i(t)

t ′
≥ L

∑
t ′
t=1 ∆i(t)− ē

t ′
≥ 2∆/3−O

(
1/T z)≥ ∆/2,

as O
(
1/T z

)
≤
√

logT/T z. Then we can repeat the argument for Case 2, but with a devi-
ation analysis on the interval of [O

(
T z
)
,T ], with the starting time being O

(
T z
)

or larger.
Then similar to the case with t ′ = o(T ) (as now O

(
T z
)

is as if t ′ = 1), we can prove
that E[ni(T ; t ≥ T z′)] ≤ O

( logT
∆2

)
. Yet the average gain per step before t ′ is bounded by

2∆/3 = O
(√ logT

T z

)
.

When ∆ >
√

logT
T , we will take t ′ as the last time that L ∑

t′−1
t=1 ∆i(t)

t ′−1 < ∆/4 instead. This argument

repeats by above halfing procedure until ∆ reduces to the order of
√

logT
T , and t ′ will remain o(T ).

Then the above argument can be applied. Combine all above we proved the theorem.
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8.5 Proof of Lemma 6

Proof. We follow the notations and definitions in Section 8.2 and Lemma 4 therein (Sk
i etc). Suppose

at a certain time t we have ni(t) = (1+ δU )n j(t),δU > 0. We would like to bound the following
probability Pr[Ii(t)≥ I j(t)]. This is equivalent with proving the following:

Pr[Ii(t)≥ I j(t)] = Pr
[

Si(t)+ c

√
log t
ni(t)

≥ S j(t)+ c

√
log t
ni(t)

]

= Pr
[

Si(t)+ c

√
log t
ni(t)

≥ S j(t)+ c

√
(1+δU ) log t

n j(t)

]

= Pr
[

Si(t)−S j(t)≥ (
√

1+δU −1)c

√
log t
ni(t)

]
.

Using Lemma 5, and denote C1 := bZ4(d + 2)6 (1+ξ)2

(1−ξ)4 . Then we know with probability at least

1− e−K ∑k 6=i nk(t), and 1− e−K ∑k 6= j nk(t) (with K > 0 being a constant) respectively (when worker i, j
exert effort levels ei,e j respectively),

|S1
i (t)| ≤

C1

(∑k 6=i nk(t))2 , |S
1
j(t)| ≤

C1

(∑k 6= j nk(t))2 ,

For ∑k 6=i nk(t) we discuss two cases. For the first case, if there exists a constant ν such that ni(t)≤
(1−ν)t, then ∑k 6=i nk(t)≥ νt. Otherwise if ni(t)> (1−ν)t we will also have

∑
k 6=i

nk(t)≥ n j(t)≥
ni(t)

1+δU
≥ 1−ν

1+δU
t

so to summarize

∑
k 6=i

nk(t)≥min{ν, 1−ν

1+δU
}t .

Similarly we can prove that

∑
k 6= j

nk(t)≥min{ν,(1−ν)(1+δU )}t .

Denote as C2 = min{ν, 1−ν

1+δU
,(1−ν)(1+δU )}. We will have with probability at least 1− e−KC2t

max{|S1
i (t)|, |S1

j(t)|} ≤
C1

C2
2t2

.

Then

Pr
[

Si(t)−S j(t)≥ (
√

1+δU −1)c

√
log t
ni(t)

]

≤Pr
[ 5

∑
k=2

Sk
i (t)−

5

∑
k=2

Sk
j(t)≥ (

√
1+δU −1)c

√
log t
ni(t)

− 2C1

C2
2t2

]
.

Since E[∑5
k=2 Sk

i (t)] = E[∑5
k=2 Sk

j(t)] (at equilibria, and worker i is also exerting the same amount of
effort), using union bound, the above implies that

Pr
[ 5

∑
k=2

Sk
i (t)−

5

∑
k=2

S j
i (t)≥ (

√
1+δU −1)c

√
log t
ni(t)

− 2C1

C2
2t2

]

≤Pr
[ 5

∑
k=2

Sk
i (t)−E[

5

∑
k=2

Sk
i (t)]≥

√
1+δU −1

2
c

√
log t
ni(t)

− C1

C2
2t2

]

+Pr
[ 5

∑
k=2

Sk
j(t)−E[

5

∑
k=2

Sk
j(t)]≤

√
1+δU −1

2
c

√
log t
ni(t)

− C1

C2
2t2

]
. (8.11)
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We bound each of above two terms. (Due to symmetry we only show the bound for one of them.)
For worker i, via union bound:

Pr
[ 5

∑
k=2

Sk
i (t)−E[

5

∑
k=2

Sk
i (t)]≥

√
1+δU −1

2
c

√
log t
ni(t)

− C1

C2
2t2

]

≤
5

∑
k=2

Pr
[

Sk
i (t)−E[Sk

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2
2t2

]
.

Since ni(t) ≤ t we know when t is large
√

log t
ni(t)
≥
√

log t
t ≥

1
t2 . So when c is large enough, e.g.

√
1+δU−1

8 c > C1
4C2

, we will be having

√
1+δU −1

8
c

√
log t
ni(t)

− C1

4C2
2t2

> 0 .

S2
i (t),S

3
i (t) can be bounded similarly, while S4

i (t),S
5
i (t) share similar concentration bound. W.l.o.g.,

we show the derivation for one of each pair. For S2
i (t), first of all notice

|b · l2
i,t(n)|= |b(θ̃−i(t)−θ)T xi(n) · z(n)| ≤ b||θ̃−i(t)−θ||2||xi(n)||2|z(n)|

≤ b(||θ̃−i(t)||2 + ||θ||2)Z ≤ 2MZ

⇒−2bMZ ≤ l2
i,t(n)≤ 2bMZ .

Then via Hoeffding inequality we know

Pr
[

S2
i (t)−E[S2

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2
2t2

]

≤exp
(
−

2(
√

1+δU−1
8 c

√
log t
ni(t)
− C1

4C2
2 t2 )

2n2
i (t)

16b2M2Z2ni(t)

)

≤exp
(
−

2(
√

1+δU−1
8 c

√
log t
ni(t)
− C1

4C2
2 t2 )

2ni(t)

16b2M2Z2

)

≤exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2 t2

√
log t ·ni(t)

16b2M2Z2

)

≤exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2 t

16b2M2Z2

)
≤ 1

t2 · exp(2/t)≤ 2
t2 ,

when δU and c are selected to be large enough, and t large enough: for example

√
1+δU −1

8
c≥ 4bMZ ·max{1, 4C2

2
C1
}, and t ≥ 4.

16



Similarly we can bound S3
i (t). Now consider S4

i (t). We use Hoeffding bound via first observing the
boundedness of each term bl4

i,t(n) = |bz2(n)| ⇒ 0≤ b · l4
i,t(n)≤ bZ2 . Then

Pr
[

S4
i (t)−E[S4

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2
2t2

]

≤exp(−
2((
√

1+δU−1
8 )c

√
log t
ni(t)
− C

4C2
2 t2 )n

2
i (t)

b2Z4ni(t)
)

≤exp(−2
(

√
1+δU−1

8 )2c2

b2Z4 log t) · exp(2

√
1+δU−1

8 c · C1
4C2

2 t2

√
log t ·ni(t)

b2Z4 )

≤exp(−2
(

√
1+δU−1

8 )2c2

b2Z4 log t) · exp(2

√
1+δU−1

8 c · C1
4C2

2 t

b2Z4 )

≤ 1
t2 · e

2/t ≤ 2
t2 ,

again when δU and c are selected to be large enough, and t large enough: for example
√

1+δU −1
8

c≥ bZ2 ·max{1, 4C2
2

C1
}, and t ≥ 4.

Similarly we can bound the term invoking S4
i (t). Also similarly we can bound

Pr
[

S j(t)−E[S j(t)]≤ (

√
1+δU −1

2
)c

√
log t
ni(t)

− C
C2

2t2

]
≤ O

( 1
t2

)
.

And in all summarize we proved Pr[Ii(t)≥ I j(t)]≤ O
( 1

t2

)
.

Now at time t, if ni(t)> (1+δU )n j(t), we must have a time point t ′ that ni(t ′) changes from ≤ (1+
δU )n j(t ′) to > (1+δU )n j(t ′), where we must have ni(t ′)≥ (1+δU )n j(t ′)−1≥ (1+δU −1)n j(t ′).
Choose δU large enough so δU −1 also satisfies the above claim that Pr[Ii(t)≥ I j(t)]≤ O

( 1
t2

)
.. We

know at time t ′, it must be i is selected but not j, otherwise the ratio between them can only go down
(both being selected will not increase a > 1 ratio), i.e., it must be Ii(t ′) ≥ I j(t ′). We discuss two
cases. When t ′ ∈ [t/2, t], we know this is upper bounded by O

( 1
(t/2)2

)
= O

( 1
t2

)
.

If not, consider the worker who has been selected most of the times between [t/2, t]. Denote it
as k. Then we must have nk(t) ≥ t

N2 . If nk(t) ≤ (1 + δU )n j(t), we will have ni(t) ≥ t
2δU N , so

ni(t)/n j(t)≤ t/2
t

2δU N
= δU ·N. Otherwise if nk(t)> (1+δU )n j(t). We must have there exists a t ′ such

that t ′ ≥ t/2 and
nk(t ′)≥ (1+δU )n j(t ′)−1≥ (1+δU −1)n j(t ′),

and such that k is selected but not j. However we know the probability for this event is also upper
bounded by O

(
1/t2

)
. Reset δU := δU ·N we finished the proof.

8.6 Proof for Lemma 7

Proof. Following Lemma 6 we know w.h.p. (≥ 1−O
( 1

t2

)
)

ni(t)≥
t

(1+δU )(N−1)+1
.

Following proof for Lemma 6 we know that w.h.p. (≥ 1−O
( 1

t2

)
),

|Si(t)−E[Si(t)]| ≤
√

1+δU −1
2

c

√
log t
ni(t)

+
2C1

C2
2t2

.
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Plug in ni(t)≥ t
(1+δU )(N−1)+1 we have

|Ii(t)− (a−b(σz +σ(e∗)))|= |Si(t)+ c

√
log t
ni(t)

− (a−b(σz +σ(e∗)))|

≤|Si(t)−E[Si(t)]|+ |E[Si(t)]− (a−b(σz +σ(e∗)))|+ c

√
log t
ni(t)

≤
√

1+δU +1
2

c
√
(1+δU )(N−1)+1

√
log t

t
+

3C1

C2
2t2

≤
√

1+δU +1
2

c
√
(1+δU )N

√
log t

t
+

3C1

C2
2t2

.

Then if we set τ(t) to be two times of above bound:

τ(t) := 2
(√

1+δU +1
2

c
√
(1+δU )N

√
log t

t
+

3C1

C2
2t2

)
= (
√

1+δU +1)c
√

(1+δU )N

√
log t

t
+

6C1

C2
2t2

.

we will have

Pr
[

I j(t)≥max
i

Ii(t)− τ(t)
]
≤ O

( 1
t2

)
, i.e., Pr[ j ∈ d(t)]≥ 1−O

( 1
t2

)
, ∀ j, t .

Therefore we know

E[ni(T )] = E[
T

∑
n=1

1(i ∈ d(n))] =
T

∑
n=1

Pr[i ∈ d(n)]≥ T −O
( T

∑
n=1

1
n2

)
≥ T − const. .

8.7 Proof for Lemma 8

Proof. To bound the number of selections of worker i we need to bound Pr[Ii(t)≥max j I j(t)−τ(t)].
We further bound this term by the following term ∀ j 6= i, j ∈ {1,2}(top 2 workers):

Pr[Ii(t)≥ I j(t)− τ(t)] = Pr
[

Si(t)+ c

√
log t
ni(t)

≥ S j(t)+ c

√
log t
n j(t)

− τ(t)
]
.

Notice the event {Si(t)+ c
√

log t
ni(t)
≥ S j(t)+ c

√
log t
n j(t)
− τ(t)} implies at least one of the following

should hold
5

∑
k=2

Sk
i (t)−E[

5

∑
k=2

Sk
i (t)]≥ c

√
log t
ni(t)

,
5

∑
k=2

Sk
j(t)−E[

5

∑
k=2

Sk
j(t)]≤−c

√
log t
ni(t)

bL∆≤ 2c

√
log t
ni(t)

+ τ(t)+
C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 .

As otherwise we will have

S j(t)+ c

√
log t
n j(t)

− τ(t)>
5

∑
k=2

Sk
j(t)+ c

√
log t
n j(t)

− τ(t)− C1

(∑k 6= j nk(t))2

> E[
5

∑
k=2

Sk
j(t)]− τ(t)− C1

(∑k 6= j nk(t))2 ≥ E[
5

∑
k=2

Sk
i (t)]+bL∆− τ(t)− C1

(∑k 6= j nk(t))2

> E[
5

∑
k=2

Sk
i (t)]+2c

√
log t
ni(t)

+
C1

(∑k 6=i nk(t))2 >
5

∑
k=2

Sk
i (t)− c

√
log t
ni(t)

+2c

√
log t
ni(t)

+
C1

(∑k 6=i nk(t))2

=
5

∑
k=2

Sk
i (t)+ c

√
log t
ni(t)

+
C1

(∑k 6=i nk(t))2 ≥ Si(t)+ c

√
log t
ni(t)

,
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which is a contradiction. Similarly as in the proof for Lemma 6 we can prove

Pr
[
|

5

∑
k=2

Sk
i (t)−E[

5

∑
k=2

Sk
i (t)]| ≥ c

√
log t
ni(t)

]
= O

( 1
t4

)
,

Then when ni(t)≥ O
(
T z′
)
, we will be having

∑
k 6= j

nk(t)≥ ni(t)≥ O
(
T z′),

also repeating argument in the proof for Lemma 6 to establish that ni(t) ≤ (1 + δU )n j(t), j 6= i
(intuitively, Si converges to a smaller quantity, due to lack of effort. So this side of inequality holds;
particularly Eqn.(8.11) holds. We omit the details). So

∑
k 6=i

nk(t)≥ n j(t)≥ O
(
T z′),

Thus w.p. at least 1− eK O
(

T z′
)
≥ 1−O

( 1
t4

)
(as T z′ ≥ logT ≥ log t when T,z′ are large) ,

2c

√
log t
ni(t)

+ τ(t)+
C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 ≤ 2c

√
log t
ni(t)

+ τ(t)+O
( 1

T 2z′
)
.

Note this is a much smaller quantity compared with O
(√ logT

T z

)
(since z′ > z, and this is the amount

of deviation). When t,T are larger than certain constants such that τ(t)+O
( 1

T 2z′
)
< bL∆

2 , and when

ni(t)≥ (2c)2 log t
( bL∆

2 )2 :

2c

√
log t
ni(t)

+ τ(t)+
C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 < bL∆ .

Combined above we know

Pr[Ii(t)≥max
j

I j(t)− τ(t),ni(t)≥
(2c)2 log t

( bL∆

2 )2
] = O

( 1
t4

)
.

That is after ni(t)≥ (2c)2 log t
( bL∆

2 )2 number of selections, worker i will not be selected, except for the O
( 1

t4

)
fraction of probability. Then following the classical method detailed in [1] for UCB1 (the three way
arguments), we know the expected number of selection E[ni(T )] bounds as follows: for some ζ > 0:

ni(t)≤ ζ+
t

∑
s=ζ+1

1
(

Si(t)+ c

√
log t
ni(t)

≥ S j(t)+ c

√
log t
n j(t)

− τ(t)
)

≤ ζ+
t

∑
s=ζ+1

1
(

min
0<n∗<s

S j(n∗)+ c

√
logs
n∗
− τ(n∗)≤ max

ζ<n<s
Si(n)+ c

√
logs

n
, j = 1 or 2

)

≤ ζ+ ∑
j∈{1,2}

∞

∑
s=1

s−1

∑
n∗=1

s−1

∑
n=ζ

1
(

S j(n∗)+ c

√
logs
n∗
− τ(s)≤ Si(n)+ c

√
logs

n
, j = 1 or 2

)
.

Take expectation and set ζ = (2c)2 log t
( bL∆

2 )2 we know

E[ni(T )]≤
(2c)2 log t

( bL∆

2 )2
+ ∑

j∈{1,2}

∞

∑
s=1

s−1

∑
n∗=1

s−1

∑
n=ζ

O
( 1

s4

)
≤ (2c)2 log t

( bL∆

2 )2
+ ∑

j∈{1,2}

∞

∑
s=1

O
( 1

s2

)
≤ (2c)2 log t

( bL∆

2 )2
+ const. = O

( logT
∆2

)
.
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8.8 Proof for Theorem 2

Proof. We first prove that regardless of workers’ decision on efforts exertion we will be having:

Lemma 9. Under SR-UCB for linear least square, we have when t is large ni(t) = Ω(log t),a.s.

Note the classical bandit argument cannot be applied directly to establish a O
(
log t

)
lower bound

since the underlying distribution for the index terms can be different for different arms, as now Si(t)
depends not only on each worker’s parameter ei, but will also depend on other workers ei and their
labeled data. With the help of this lemma we have the following results:

Lemma 10. At any time t, the number of selection of workers i > 2 with ei(t) ≤ e∗1 + γ,∀t satisfies
E[ni(t)] = O

( log t
∆2

)
. And moreover if e1(t) ≡ e∗1,e2(t) ≡ e∗2, we will be having E[n1(t)],E[n2(t)] =

T −O
(
logT

)
.

Also since σ1(e∗1) = σ2(e∗2), following previous argument for Lemma 6 we can similarly establish
that there exists a constant δU > 0 s.t. with probability at least 1−O

( 1
t2

)
, 1

1+δU
n2(t)≤ n1(t)≤ (1+

δU )n2(t), following which we know E[n1(t)],E[n2(t)]≥ T −O
(
logT

)
. Therefore further deviating

to e1(2) > e∗1(2) will give the corresponding worker at most O( logT
T ) < O

(√ logT
T

)
additional profit

per task. For deviation to ei < e∗i , i = 1,2, similar to the symmetric case we can again show such a

deviation can bring in at most O
(√ logT

T

)
additional payment: what we need to establish is similar

to Lemma 8 that
E[n2(T ; t ≥ T z′)]≤ O

( logT
∆2

)
= O

(
T z) .

With above we establish the fact that exerting efforts e∗1,e
∗
2 is O

(√ logT
T

)
−BNE for worker 1 & 2.

For worker i > 2, since we already proved that for any effort level ei ≤ e∗1 + γ, the expected number
of selection is bounded up by O

(
logT

)
, as γ is set to be small enough such that Lγ ≤ ∆1

2 , and we
will then be having σi(ei)−σ1(e∗1) ≥

∆1
2 . Therefore any profitable deviation will lead to at most

O
( logT

T

)
< O

(√ logT
T

)
additional profit per task. Apparently deviating to ei > e∗1+γ is not profitable

at all (negative marginal gain).

Again consider the dynamic case, where workers can choose to exert different level of efforts at each

different steps. When exerting efforts to reach the same effort level as worker 1 & 2 ∑
T
t=1 σi(ei(t))

T =

σ1(e∗1),
9 suppose σ1(e∗1) = σi(e∗i ) and we know e∗i > e∗1; and further

σi(e∗i )−σi(e∗1)≤ L(e∗i − e∗1)⇒ e∗i ≥
∆

L
+ e∗1.

Also we have (by convexity)

σi(e∗i ) =
∑

T
t=1 σi(ei(t))

T
≥ σi(

∑
T
t=1 ei(t)

T
)⇒ ∑

T
t=1 ei(t)

T
≥ e∗i ≥

∆

L
+ e∗1 ≥ e∗1 + γ

However the average payment is only e∗1 + γ, we know such a deviation is not profitable for workers
i > 2.

8.9 Proof for Lemma 9

Proof. Suppose there is i, such that ni(t) = o(log t). The basic intuition of a contradiction is as
follows: denote the worker with maximum number of selection as j 6= i, and we know n j(t) = O

(
t
)
.

Then we will have

Ii(t)≥ a−4M2b+ c

√
log t
ni(t)

> a+ c

√
log t
O
(
t
) − τ(t)≥ I j(t)− τ(t) , (8.12)

9This is really a relaxed argument, in fact we need to prove for a o(1)-close to σ1(e∗1).
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thus i will be selected when t is large. More rigorously consider t ′ as the earliest time such that
n j(t ′)≥ tz. We know tz ≤ t ′ ≤ t− tz, where 0 < z < 1 is a constant, and the second inequality comes
as otherwise ni(t)≤ n j(t ′)+ tz ≤ tz + tz +1 < O

(
t
)
. Then

ni(t)≥
t

∑
n=t ′

1( j ∈ d(n)) ·1
(

c

√
logn
ni(n)

≥ 4M2b+ c

√
logn
n j(n)

)

≥
t

∑
n=t ′

1( j ∈ d(n)) ·1
(

c

√
z log t
ni(t)

≥ 4M2b+ c

√
log t

tz

)
,

where the second inequality comes from the facts that

logn
ni(n)

≥ log t ′

ni(t)
,

logn
n j(n)

≤ log t
n j(t ′)

≤ log t
tz .

If ni(t) = o(log t), when t is large

1
(

c

√
z log t
ni(t)

≥ 4M2b+ c

√
log t

tz

)
= 1⇒ ni(t)≥

t

∑
n=t ′

1( j ∈ d(n)) = O
(
t
)
,

which is a contradiction.

8.10 Proof for Lemma 10

Proof. With an appropriately selected γ, for i > 2, worker i will only be willing to pay ei ≤ e∗1 + γ,
as otherwise no matter how many times they got selected, they always receive negative payment.
Therefore we will be having σi(ei) ≥ σi(e∗1 + γ) ≥ σi(e∗1)− Lγ. If we make γ small enough such
that Lγ ≤ ∆1

2 , we will then be having σi(ei)−σ1(e∗1) ≥
∆1
2 , which leads to b ∆1

2 difference in the
expected value of index. With this, following the proof for Lemma (8), we upper bound the number
of selections on the order of O

( logT
∆2

1

)
: the only difference is in bounding the following event:

{b∆1

2
≤ 2c

√
log t
ni(t)

+ τ(t)+
C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 )} .

By Lemma 9, we claim, a.s.,

(∑
k 6=i

nk(t))2 ≥ O
(
(log t)2), (∑

k 6= j
nk(t))2 ≥ O

(
(log t)2),

and thus since ∆ is a positive constant, we know when t is large enough, there exists a ∆′ = α∆1
where 0 < α < 1 such that

{b∆1

2
≤2c

√
log t
ni(t)

− τ(t)−O
( 1
(∑k 6=i nk(t))2

)
−O

( 1
(∑k 6= j nk(t))2

)
}

⊆ {b∆′

2
≤ 2c

√
log t
ni(t)
},

from where we can follow the reasoning for Lemma (8) to finish the proof.

8.11 Removing bad equilibira

Proof. When following the equilibria e∗, the average utility for each worker is psγ. With adding
this independent randomization device, most of the key parts of the proof will go through. For
example, the proof of Lemma 6 and 7 will go through directly, except for the small change that,
the number of selections up to time t is now lower bounded (instead of being lower bounded
by t) by the following random variable that satisfies: denote the event of a selection as s(t) ∈
{1(selection),0(no selection)}

Pr
[

∑n s(n)
t
≥ ps−

√
log t

t

]
≤ exp(−2

log t
t
· t) = 1/t2.
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Then based on Lemma 7, we know with O
(
T
)

number of times, the worker will be jointly selected
with others. This finishes the ps · γ argument.

Now if worker i deviates, his utility will be upper bounded by the following case (1) he becomes the

monopoly for O
(
T
)

number of times. (2) His marginal gain is upper bounded by γ+O
(√ logT

T

)
. (as

otherwise if the deviation of effort is higher than O
(√ logT

T

)
, the number of selection will be upper

bounded at the order of sublinear). Then the utility gain for such a deviation is

γ+O
(√ logT

T

)
− ps · γ = O

(√ logT
T

/γ
)
· γ+O

(√ logT
T

)
= O

(√ logT
T

)
.

This establishes the O
(√ logT

T

)
-BNE.

When others are exerting e = e∗−∆e (∆e > O
(√ logT

T

)
). If a particular worker i is also exerting the

same level of effort, the average payoff is ps(γ+∆e). However if the worker deviates by exerting

e = e∗−∆e+ ∆̃e, where ∆̃e > O
(√ logT

T

)
, we have the number of times the other workers being

selected bounded by (by Lemma 8): O
( logT

∆̃e2

)
= o(T ). This fact helps establish that the number of

unique selection for worker i is O
(
T
)
. Then his marginal payment will become γ+∆e− ∆̃e. The

gain of such a deviation is

O
(√logT/T

γ

)
(γ+∆e− ∆̃e)> O

(√ logT
T

)
when ∆e > O

(
γ
)

and ∆̃e <
√

logT/T · ∆e
γ

.

8.12 With unknown σ

Proof. Within our sequential learning setting, we now show we can even afford to assign tasks and
induce efforts without knowing the exact σ values. The idea is as follows: we fix an arbitrary effort
level for a certain period of time, and at any time t, we can use collected data from past with this
particular effort level to learn a regression model θ(t). Using this estimated regression model, we
are able to estimate σ(e). When the space of effort level is finite, we can further impose a bandit
selection procedure over effort(i.e., the effort levels are bandits). When the effort level is continuous,
using the assumption we made earlier that σ is continuous in e, and suppose the effort level has a
bounded support [0,e], we can then separate [0,e] into T z,0 < z < 1 intervals uniformly, with each
interval having length 1/T z. For each of the interval we assign T κ number of data. Both 0 < z,κ < 1
are constant parameters by design. We choose that z+ κ < 1. For each interval k = 1, ...,T z, we
assign e(k) = k

T z e. Then use the T κ samples to estimate σ(e(k)) in the following way (denote the
samples assigned as (x(n), ỹ(x(n)))):

σ̃(e(k)) =
∑

κ
n=1(θ

T (T κ)x(n)− ỹ(x(n)))2

T κ
.

Now we have the following lemma,

Lemma 11. With SR-UCB for linear least square, but adaptive effort selection mechanism detailed

above, with probability at least 1−O
( 1

T 2

)
, |σ̃(e)−σ(e)| ≤ O

(√
κ logT

T κ

)
+O

( 1
T z

)
,∀e.

Proof. Using Chernoff bound, we can prove the following concentration results for the estimation
when T κ samples are available: with probability at least 1−O

( 1
T 2

)
,

|σ̃(e(k))−σ(e(k))| ≤ O
(√κ logT

T κ

)
.

Then using Lipschitz condition we know

|σ̃(e)−σ(e)| ≤ |σ̃(e)−σ(e(k))|+ |σ(e(k))−σ(e)| ≤ O
(√κ logT

T κ

)
+O

( 1
T z

)
.
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Note in order to use such an estimation, we need to make sure that during each interval each worker

will exert e(k). We can similarly establish a O
(√ logT

T κ

)
-BNE for worker to contribute the corre-

sponding effort for each interval. The reason that we can decouple the above argument for each
interval that worker will exert effort e(k) is due to the fact that net payment pi− ei = γ is indepen-
dent of the effort level, so the workers have no incentives to mislead the learner into believing a
wrong mapping between σ and e; and within each assignment block, workers again try to maximize
total payment. Therefore for any e, suppose k−1

T z ≤ e≤ k
T z , use σ̃(e(k)) to serve as an approximation

we will have

|σ̃(e)−σ(e)| ≤ |σ̃(e)−σ(e(k))|+ |σ(e(k))−σ(e)| ≤ O
(√κ logT

T κ

)
+O

( 1
T z

)
.

The above error bound reaches the optimal order when κ/2 = z, and since κ+ z < 1, we have the
error decays roughly on the order of O

(
T−1/3

)
.

8.13 Performance with contributed data

Proof. For outputting the final regression model, we will use the data from only the top 2 most
selected workers. First since E[ni(T )]≥ T −O

(
logT

)
for i = 1,2 we know

Pr[T −ni(T )≥ T/2]≤ E[T −ni(T )]
T/2

≤ O
( logT

T

)
, i = 1,2.

So w.h.p., n1(T ),n2(T ) ≥ T/2, and then w.p. being at least 1− e−O
(

T
)

we know the square error
loss of the trained regression model is bounded as follows:

E[σ1(e∗1)/( ∑
i=1,2

ni(T ))2−σ1(e∗1)/(2T )2]

≤E[ max
∑i=1,2 ni(T )

2σ1(e∗1)
(∑i=1,2 ni(T ))3 (2T − ∑

i=1,2
ni(T ))]

≤2σ1(e∗1)
T 3 (2T −E[ ∑

i=1,2
ni(T )])

≤2σ1(e∗1)
T 3 (2T −2T +2O

(
logT

)
)

=O
(σ1(e∗1) logT

T 3

)
,

where the first inequality is due to mean value theorem, and the second is due to ∑i ni(T ) ≥ T , as
there is at least one selection at a time.

8.14 Ridge regression: Proof for Lemma 1

Proof. Again denote the stacked data in a matrix form as X ∈Rn×d , and the corresponding labeling
outcome ỹ ∈ Rn. Following classical results from linear regression we know

||θ̃−i(t)−E[θ̃−i(t)]||22 = trace((ρI +XT X)−1XT (ỹ− y)(ỹ− y)T X(ρI +XT X)−1) .

||E[θ̃−i(t)]−θ||22 = ||−ρ(ρI +XT X)−1
θ||22 .

The variance term is independent of the ground-truth regression model θ and will converge similarly
with our previous arguments. The bias term ||E[θ̃−i(t)]−θ||22 is depending on θ which is unknown.
Therefore without knowing such a quantity10, it is hard for both the workers and requester to evaluate
the one step payment rule. Within our dynamic setting, workers do not need to calculate the specific
form of θ; instead workers only need to form the belief that under the same effort level, they will
have comparable indexes. Further with more and more data being collected, the bias term will

10And we cannot assume we know it as we are learning it.
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be decreasing and its effects will diminish – this is by observing the following fact that [4] w.h.p.
≥ 1− e−C1n, when there is n sample being available (following the notations in Lemma 5)

||ρI +XT X|| ≤ ρ+(1+ξ)
n

d +2
, ||(ρI +XT X)−1|| ≤ 1

ρ+(1−ξ) n
d+2

.

As in the proof for Lemma 5, we also know

||XT (ỹ− y)(ỹ− y)T X||22 ≤ Z2 1+ξ

2+d
n ,

with which we will be able to prove

trace
(
(ρI +XT X)−1XT (ỹ− y)(ỹ− y)T X(ρI +XT X)−1

)
≤
(
(

(1+ξ) n
d+2

(ρ+(1−ξ) n
d+2 )

2 )
2 ·Z2 1+ξ

2+d
n
)

≤
(

Z2(1+ξ)3(d +2)
(1−ξ)4

)2 1
n2 ,

and

||−ρ(ρI +XT X)−1
θ||22 ≤

(
ρM

ρ+(1−ξ) n
d+2

)2

=(
ρM(d +2)

1−ξ
)2 ·
(

1
ρ(d +2)/(1−ξ)+n

)2

≤(ρM(d +2)
1−ξ

)2 1
n2 .

To summarize

||θ̃−i(t)−θ||22 ≤ ((
Z2(1+ξ)3(d +2)

(1−ξ)4 )2 +(
ρM(d +2)

1−ξ
)2)

1
n2 .

8.15 (Sketch)-Proof for π-BNE for Non-linear estimator

Proof. Again we evaluate the score for each worker:

( f̃−i,t(x)− ỹ(x))2 = ( f̃−i,t(x)− y(x))2−2( f̃−i,t(x)− y(x)) · (z+ zi(ei))+(z+ zi(e− i))2 .

We want to bound ( f̃−i,t(x)− y(x))2. More specifically according to the results from [20], for non-
linear regression model we can establish:

Lemma 12. With n i.i.d. samples, w.h.p.||θ̃i(t)−θ||2 ≤ O( 1√
n ) .

The key difference that is going to affect establishing the π-BNE is in proving Lemma 6. With
Lipschitz condition we know now w.h.p.|S1

i (t)| ≤
C1
n , where C1 is re-defined as the constant proved

in Lemma 12. Again we know w.h.p., n ≥ C2t which gives us |S1
i (t)| ≤

C1
C2t . So what we need to

prove is to bound for each k = 2,3,4,5

Pr
[

Sk
i (t)−E[Sk

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2t

]
.
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Take S2
i (t) for example, and the rest follow the same logic.

Pr
[

S2
i (t)−E[S2

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2t

]

≤ exp
(
−2(
√

1+δU −1
8

c

√
log t
ni(t)

− C1

4C2t
)2ni(t)

)

≤ exp
(
−

2(
√

1+δU−1
8 c

√
log t
ni(t)
− C1

4C2
2 t
)2ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
·exp

(
2

√
1+δU−1

8 c · C1
4C2

2 t

√
log t ·ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2

16b2M2Z2

)
≤ exp(2)

t2 .

8.16 Example: logistic regression

Proof. To see this, denote µ := θT x and µ̃ := θ̃T
i (t)x and apply mean value theorem to 1

1+e−y we have

| 1
1+ e−µ −

1
1+ e−µ̃ |

≤max(
1

1+ e−y )
′|µ− µ̃|

=max
1

ey + e−y +2
|(θ− θ̃i(t))T x|

≤1
4
|(θ− θ̃i(t))T x| ,

where we used the fact ey + e−y ≥ 2. Since

|(θ− θ̃i(t))T x| ≤ ||θ− θ̃i(t)||2||x||2 ≤ ||θ− θ̃i(t)||2,

we proved the claim.

9 Proofs for Section 6

9.1 O
(√

logT/T
)
-BNE for OSR1-UCB

Proof. Following the results detailed in [19] for online learning algorithm for strongly convex func-
tion (ρ-ridge regularized loss function is 2ρ-strongly convex), set ηt = 1/(2ρt) we have

Lemma 13. ∀t of OSR1-UCB, w.p. ≥ 1−δ, ||θ̃online
−i (t)− θ̃−i(t)||22 ≤ O

(
log(log t/δ)/ρt

)
.

We can similarly establish the O
(√

logT/T
)
-BNE for effort exertion – the only difference is com-

pared to what we established earlier that ||θ̃−i(t)−θ||22 ≤ O
(
1/t2

)
, here we will have a O

(
log t/ρt

)
(by setting δ = 1/t2) convergence rate which is much slower in the order. Nevertheless we show this
is enough – the intuition is O

(
log t/ρt

)
< O

(√
log t/t

)
which is the order of the bias term in our SR-

UCB index, such small converging term will not affect the analysis by much. The argument is similar
to the proof in Section 8.15, in that we only need to prove bound on Sk

i (t)−E[Sk
i (t)],k = 1,2, ...,5
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with a different confidence/bias term. Take S2
i (t) for example:

Pr
[

S2
i (t)−E[S2

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1 log t
4C2t

]

≤ exp
(
−2(
√

1+δU −1
8

c

√
log t
ni(t)

− C1 log t
4C2t

)2ni(t)
)

≤ exp
(
−

2(
√

1+δU−1
8 c

√
log t
ni(t)
− C1 log t

4C2t )2ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1 log t
4C2t

√
log t ·ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2
log t

√
log t

t

16b2M2Z2

)
.

If we choose
√

1+δU−1
8 c≥ 4bMZ ·max{1, 4C2

2
C1
}, and t ≥ 100, we know

exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2
log t

√
log t

t

16b2M2Z2

)
≤ exp(−2log t)exp(2)≤ exp(2)

t2 .

9.2 O
(
logT/

√
T
)
-BNE for OSR2-UCB

Proof. First we prove

Lemma 14. With Sonline
i (t), ∀t, w.p. 1−O

(
1/t2

)
:

1
t

t

∑
n=1

1(i ∈ d(n))
(
(θ̃online
−i (n)−θ)T xi(n)

)2

≤ O
(
log t/

√
ni(t)

)
.

Then the argument is similar to the proof in Section 8.15, in that we again need to prove bound on
Sk

i (t)−E[Sk
i (t)],k = 1,2, ...,5 with a different confidence/bias bound. Take S2

i (t) for example:

Pr
[

S2
i (t)−E[S2

i (t)]≥
√

1+δU −1
8

c

√
log t
ni(t)

− C1 log t

4C2
√

ni(t)

]

≤ exp
(
−2(
√

1+δU −1
8

c

√
log2 t
ni(t)

− C1 log t

4C2
√

ni(t)
)2ni(t)

)

≤ exp
(
−

2(
√

1+δU−1
8 c

√
log2 t
ni(t)
− C1 log t

4C2
√

ni(t)
)2ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log2 t
)
· exp

(
2

√
1+δU−1

8 c · C1 log t
4C2
√

ni(t)
log t

√
ni(t)

16b2M2Z2

)

≤ exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log2 t
)
· exp

(
2

√
1+δU−1

8 c · C1
4C2

2
log2 t

16b2M2Z2

)
.
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If we choose
√

1+δU−1
8 c≥max{2 C1

4C2
2
,4bMZ} , we know

exp
(
−2

(

√
1+δU−1

8 )2c2

16b2M2Z2 log2 t
)
·exp

(
2

√
1+δU−1

8 c · C1
4C2

2
log2 t

16b2M2Z2

)
≤ exp(− log2 t)≤ 1

t2 , if t ≥ e2.

9.3 Proof for Lemma 14

Proof. As in Lemma 13, let δ = 1
t3 , we know with probability at least 1− 1

t3 we have

((θ̃online
−i (n)−θ)T xi(n))2 ≤ ||θ̃online

−i (n)−θ||22 ≤ O
( log t

n

)
.

Via union bounds with probability at least 1− 1
t2 ,

ni(t)

∑
n=1

((θ̃online
−i (n)−θ)T xi(n))2 =

√
ni(t)2M2 +

ni(t)

∑
n=
√

ni(t)

O
( log t

n

)
= O

(
log t logni(t)

)
.

which leads to the average error√
ni(t)2M2 + log t logni(t)

ni(t)
≤ log t√

ni(t)
,

which is due to the fact shown in Lemma 9 that when t is large, ni(t) ≥ O
(
log t

)
a.s. and when

ni(t) = Ω(log t) we have
√

ni(t)≥ logni(t) when t is large.

10 Proof for Section 7

10.1 Proof for Lemma 2

Proof. This can be proved by induction. At time t = 2, ni(2) is a function of {S j(1)} j, the initial
value. Assume this is true for t. Consider time t + 1. ni(t + 1) is an outcome from an ordering
function based on inputs of {S j(t)} j and {n j(t)} j. Based on induction hypothesis, {n j(t)} j can be
written as functions of {S j(n),n < t} j. With this we proved that {n j(t +1)} j can also be written as
functions of {S j(n),n < t +1} j. Proved.

10.2 Proof for Lemma 3

Proof. We first prove that a finite deviation from worker i creates at most O
(
1/T

)
differences in

θ̃(T ) (sensitivity) with high probability. Denote this event as E(T ), we know Pr[E(T )] ≤ e−KT .
Shorthand the contributed data as ỹi(n) := ỹi(n,ei(n)), ỹ′i(n) := ỹ′i(n,e

′
i(n)). And denote the regres-

sion model trained with ỹi(n), ỹ′i(n) as θ̃(T ), θ̃′(T ) (differ only in one data point). Then we have

Pr[θ̃p(T )|ỹ′i(n)] = Pr[θ̃p(T )|ỹ′i(n),E(T )] ·Pr[E(T )]+Pr[θ̃p(T )|ỹ′i(n),E(T )]Pr[E(T )]

≤ Pr[θ̃p(T )|ỹ′i(n),E(T )]+O(e−KT ) .

Consider the first term above Pr[θ̃p(T )|ỹ′i(n),E(T )]:

Pr[θ̃p(T )|ỹ′i(n),E(T )] = Pr[vθ = θ̃
p(T )− θ̃

′(T )]

=Pr[vθ = θ̃
p(T )− θ̃(T )+ θ̃

′
(T )− θ̃(T )]

=C · exp(−εθ||θ̃p(T )− θ̃(T )+ θ̃
′
(T )− θ̃(T )||2)

≤C · exp(−εθ||θ̃p(T )− θ̃(T )||2) · exp(εθ||θ̃
′
(T )− θ̃(T )||2)

=Pr[θ̃p(T )|ỹi(n)] · exp(εθ ·O
( 1

T

)
) .
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What is left to prove is that θ̃(T )’s sensitivity is O
( 1

T

)
w.h.p., that is we want to bound the difference

in the regression model: ||θ̃(T )− θ̃′(T )||2. First

||θ̃(T )− θ̃
′(T )||2

=||θ̃(T )−θ+θ− θ̃
′(T )||2

≤||θ̃(T )−θ||2 + ||θ− θ̃
′(T )||2 .

Since ∑i ni(T )≥ T , by results from Theorem 4 we know with probability at least 1− e−KT ,

||θ̃(T )−θ||2 ≤ O
( 1

T

)
, ||θ− θ̃

′(T )||2 ≤ O
( 1

T

)
.

Thus we know (via union bound) w.p. being at leat 1−2e−KT ,

||θ̃(T )− θ̃
′(T )||2 ≤ O

( 1
T

)
.

Also notice that by the CDF of Laplacian distribution,

Pr
[
||vθ||2 ≥

logT√
T

]
= exp(−εθ ·

logT√
T

) = exp(−2
√

T
logT√

T
) =

1
T 2 .

10.3 Proof for Theorem 3

Proof. First for Sonline
i (t), each ỹi(·) appears in at most logT +1 partial sums. The reason is that a

noisy partial sum is discarded only when the size of the partial sum doubles (combine two partial
sums). So if the number of such partial sum is greater than logT +1 we will have the total number
of data being greater than 2logT = T which is a contradiction. Then by composition theory we know
the privacy leakage in Sonline

i (t) is bounded by O
(
(logT +1)ε

)
= O

( 1
log2 T

)
.

Now consider the privacy leakage in ˜̃
θonline
− j (t). First we prove the following:

Lemma 15. The sensitivity of θ̃− j(t) for each ỹi(n,ei(n)),n ≤ t, i 6= j is ||θ̃− j(t)− θ̃′− j(t)||2 ≤
O
(
1/t
)

with probability at least 1−O
(
1/t3

)
.

The reasoning is similar to a combination of proof for Lemma 7 and Lemma 3. First similar to
Lemma 7, we can prove the number of samples that come from j 6= i is at the order of O

(
t
)

with
probability at least 1−O

(
1/t3

)
. Then with O(t) samples, similar to Lemma 3, ||θ̃− j(t)− θ̃′− j(t)||2≤

O
(
1/t
)

with probability at least 1− e−O
(

t
)

. Combine above we proved the Lemma.

Again due to the decoupling procedure of the partial sum, each θ̃− j(t) appears in at most logT +1
partial sums ( [3]). Then the privacy leakage of ỹi(n,ei(n)) from θ̃− j(t) is bounded as (logT +1)ε ·
O
( 1

t

)
, with probability at least 1−O

(
1/t3

)
(similar to the argument made in the proof for Section

7). Based on this we know for t ≥ O
(
logT

)
, with an appropriately selected constant we know w.p.

at least 1−O
( 1

logT ·
1
t2

)
, we have the sensitivity of θ̃− j(t) is at the order of O

(
1/t
)
. Via union bound

we know with probability at least

1−∑
t

O
( 1

logT
· 1

t2

)
= 1−O

( 1
logT

)
,

it satisfies for all t ≥O
(
logT

)
, the sensitivity results hold. Sum over all θ̃− j(t), we have by compo-

sition theory the total privacy leakage is

O
(

logT
)

∑
t=1

(logT +1)ε ·O
(
1
)
+

T

∑
t=O
(

logT
)(logT +1)ε ·O

(1
t

)
= O

(
(logT )2) · ε .

Then we set ε = 1
log4 T

we have the preserved privacy level is at the order of O
( 1

logT

)
. Combined

with Lemma 3, composited with the privacy preserving level in θ̃p(T ) we proved the theorem.
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10.4 O
(
log6 T/

√
T
)
-BNE for PSR-UCB

Theorem 5. With PSR-UCB for linear regression, set fixed payment pi for all workers as follows:
pi = e∗+ γ, γ = Ω(log6 T/

√
T ) , and set c to be large enough c≥ Const.(M,Z,N,b). Then exerting

effort e∗ is O
(
log6 T/

√
T
)
-BNE.

Proof. The main challenge of the proof is to re-establish the convergence of indexes Ii(t) with newly
added noises, so that the noise exertion process will not make the indexes useless. There are three
sources of noises:

• 1. Noise in θ̃online
−i (t), due to the change to a batch summation: ˜̃

θonline
− j (t) := ∑

t
n=1 θ̃− j(n)/t.

• 2. Noise in Sonline
i (t), due to added noise vS to partial sums for privacy preserving.

• 3. Noise in ˜̃
θonline
−i (t), due to added noise v

θ̃
to partial sums for privacy preserving.

1. First of all we show with the averaging θ̃online
−i (t) we do not loss too much performance in con-

verging. Denote n(t) as the number of updates on θ̃online
− j (t) up to time t. Notice

||θ̃online
− j (t)−θ||2 = ||

∑
ni(t)
n=1 θ̃− j(n)

t
−θ||2 ≤

∑
ni(t)
n=1 ||θ̃− j(n)−θ||2

t
.

Consider the summation from n = 1 to ni(t). Select a constant D. For n < D
√

ni(t), we have

D
√

ni(t)

∑
n=1

((θ̃online
−i (n)−θ)T xi(n))2 ≤ 2M2D

√
ni(t) .

For n ≥ D
√

ni(t), since we know ni(t) ≥ (logT )6 log6 t a.s. (similarly argued as in Lemma 9, but
with different bias order), we know

√
ni(t) ≥ O

(
logT

)
,a.s. Therefore for such n, with probability

at least 1
T 3 we will be having

||θ̃online
− j (n)−θ||2 ≤ O

( 1√
n

)
. (10.1)

And sum over

∑
n≥D
√

ni(t)

O
( 1√

n

)
= O

(√
ni(t)

)
.

Using union bound we have w.p. being at least 1− 1
T 2

2M2D
√

ni(t)+O
(√

ni(t)
)

ni(t)
= O

( 1√
ni(t)

)
.

2. Now we analyze how these noises affect the accuracy of our indexes. First consider the added
noise in ∑(θ̃T

i (n)xi(n)− ỹi(n))2 (as in Sonline
i (t)). At any time t we have added at most dlog te

number of Laplacian noise with parameter ε. Denote the sum of E(t) := ∑
dlog te
k=1 vS(k). From Lemma

2.8 in [3], we know

Pr[|E(t)|> λ]≤ 2exp(− λ2

8dlog te 1
ε2

)≤ exp
(
−λ2

8
1

(log t +1)(logT +1)6

)
. (10.2)
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Let λ := 4(log t +1)(logT +1)3 we have

Pr
[
|E(t)|> 4(log t +1)(logT +1)3

]
≤2exp

(
−16(log t +1)2(logT +1)6

8
1

(log t +1)(logT +1)6

)
≤2exp(−2log t) = 2/t2 .

Note this additional error term is creating a larger than the index bias by order: O
( (log t+1)(logT+1)3

ni(t)

)
.

3. Now consider the noise v
θ̃

inserted in ˜̃
θonline
−i (t). Denote E(t) := ∑

dlog te
k=1 v

θ̃
(k). Consider the

following fact: for any sample (x,y)

((θ+E(t)/t)T ·x− y)2 = (θT ·x− y)2 +(ET (t)/t ·x)2 +2ET (t)/t ·x · (θT ·x− y)

The additional noises appear in two terms:

|2ET (t)x · (θT ·x− y)| ≤ O
(
||ET (t)||2

)
,

due to boundedness of x and θT · x− y. For the other quadratic term: (ET (t)x)2 ≤ ||E(t)||22. For
||E(t)||22 we know

||E(t)||22 ≤ (
dlog te

∑
k=1
||v

θ̃
(k)||2)2 := (E(t))2.

Note each ||v
θ̃
(k)||2 is an exponential random variable with parameter ε (mean ε−1). And E(t) is a

summation of i.i.d. exponential random variables. Therefore from Theorem 5.1 of [12] we know

Pr[|E(t)| ≥ λ
′/ε · (log t +1)]≤ e1−λ′ .

Take λ′ := 4(log t +1), we know

Pr[|E(t)| ≥ 4(log t +1)2 log3 T ≤ O
(
1/t2).

Denote by λ(t) := 4(log t+1)2 · log3 T . Then the total noise added up to time t is bounded as follows:

λ
2(t) ·

ni(t)

∑
n=1

1
n2 = O

(
λ

2(t)
)
.

Since O
(
||ET (t)||2

)
is on a much smaller order, the average error bounds as: O

(
λ2(t)
ni(t)

)
=

O
( log4 t·log6 T

ni(t)

)
.

To summarize the total error induced is at the order of

O
( 1√

ni(t)
+

log4 t · log6 T
ni(t)

)

The rest of the proof is then similar to the reasoning in the proofs in Section 8.15, we need to bound
the following term

Pr
[

S2
i (t)−E[S2

i (t)]≥
√

1+δU −1
8

c
log3 t log3 T√

ni(t)
−O

( 1√
ni(t)

)
−O

( log4 t · log6 T
ni(t)

)]
.
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After applying the Hoeffding bound, the exponent term is proportional to :

−
(√

1+δU −1
8

c
log3 t log3 T√

ni(t)
−O

( 1√
ni(t)

)
−O

( log4 t · log6 T
ni(t)

))2

ni(t).

Expand it we will have the positive components coming from the inter-product term: first consider
the inter-product term

√
1+δU −1

8
c

log3 t log3 T√
ni(t)

·O
( 1√

ni(t)

)
·ni(t)

=O
(
log3 t · log3 T

)
< O

(
(log3 t · log3 T )2),

For the other inter-product term:
√

1+δU −1
8

c
log3 t log3 T√

ni(t)
·O
( log4 t · log6 T

ni(t)

)
·ni(t)

=O
(√1+δU −1

8
c

log3 t log3 T√
ni(t)

· (log4 t · log6 T )
)

≤O
(
log4 t · log6 T

)
<O

(
(log3 t · log3 T )2),

where the first inequality is due to the fact that after we change the bias term we can proved
√

ni(t) =
Ω(log3 t log3 T ) a.s., when t is large.

The inner-product term (lower bounded by the first inner-product term):

O
((√1+δU −1

8
c

log3 t log3 T√
ni(t)

)2

·ni(t)
)
= O

(
(log3 t · log3 T )2).

Therefore the inter-products (positive exponents) is on a smaller order compared to inner-product
terms (negative exponents), and thus can be ignored. We can similarly prove the convergence results.

Meanwhile with changing the bias term from
√

log t/ni(t) to log3 t log3 T√
ni(t)

, workers have stronger in-

centives to deviate. The difference we need to bound lies in changing the bounding of the following
events (in Lemma 8)

2c

√
log t
ni(t)

+ τ(t)+
C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 < bL∆ ,

to the following one

2c
log3 t log3 T√

ni(t)
+ τ(t)+

C1

(∑k 6=i nk(t))2 +
C1

(∑k 6= j nk(t))2 < bL∆ ,

from which we know the number of selection after deviating by ∆ is bounded as follows

E[ni(t)]≤ O
( (log3 t · log3 T )2

∆2

)
.

Let t = T , and when

∆ > O
(√ (log3 T · log3 T )2

T

)
=

log6 T√
T

,

we will have E[ni(t)] = o(T ), from where we can prove a contradiction on non-profitable deviation.
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