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Proof of Theorem

We start by computing the log-pdf of a data point x in the segment τ under the nonlinear ICA model.
Denote for simplicity λτ,i = λi,1(τ). Using the probability transformation formula, the log-pdf is
given by

log pτ (x) =

n∑
i=1

λτ,iq(gi(x)) + log |detJg(x)| − logZ(λτ ), (8)

where we drop the index t from x for simplicity, g(x) = (g1(x), . . . , gn(x))
T is the inverse function

of (the true) mixing function f , and J denotes the Jacobian; thus, si = gi(x) by definition. By
Assumption A1, this holds for the data for any τ . Based on Assumptions A1 and A2, the optimal
discrimination relation in Eq. (3) holds as well and is here given by

log pτ (x) =

n∑
i=1

wτ,ihi(x) + bτ + log p1(x)− cτ , (9)

where wτ,i and hi(x) are the ith element of wτ and h(x), respectively, we drop θ from hi for
simplicity, and cτ is the last term in (3).

Now, from Eq. (8) with τ = 1, we have

log p1(x) =

n∑
i=1

λ1,iq(gi(x)) + log |detJg(x)| − logZ(λ1). (10)

Substituting Eq. (10) into Eq. (9), we have equivalently

log pτ (x) =

n∑
i=1

[wτ,ihi(x) + λ1,iq(gi(x))] + log |detJg(x)| − logZ(λ1) + bτ − cτ . (11)

Setting Eq. (11) and Eq. (8) to be equal for arbitrary τ , we have:

n∑
i=1

λ̃τ,iq(gi(x)) =

n∑
i=1

wτ,ihi(x) + βτ , (12)

where λ̃τ,i = λτ,i−λ1,i and βτ = logZ(λτ )−logZ(λ1)+bτ−cτ . Remarkably, the log-determinants
of the Jacobians cancel out and disappear here.

Collecting the equations in Eq. (12) for all the T segments, and noting that by definition s = g(x),
we have a linear system with the “tall” matrix L in Assumption A3 on the left-hand side:

Lq(s) = Wh(x) + β, (13)

where we collect the βτ in the vector β and the wτ,i in the matrix W. Assumption A3 (L has full
column rank) implies that its pseudoinverse fullfills L+L = I. We multiply the equation above from
the left by such pseudoinverse and obtain

q(s) = [L+W]h(x) + L+β. (14)

Here, we see that the q(si) are obtained as a linear transformation of the feature values h(x), plus an
additional bias term L+β, denoted by d in the Theorem. Furthermore, the matrix L+W, denoted by
A in the theorem, must be full rank (i.e. invertible), because if it were not, the functions q(si) would
be linearly dependent, which is impossible since they are each a function of a unique variable si.
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Dimension reduction

In practice we may want to set the feature extractor dimension m to be smaller than n, to accomplish
dimension reduction. It is in fact simple to modify the generative model and the theorem so that a
dimension reduction similar to nonlinear PCA can be included, and performed by TCL. It is enough to
assume that while in the nonlinear mixing (4) we have the same number of dimensions for both x and
s, in fact some of the components si are stationary, i.e. for them, λτ,i do not depend on τ . Then, the
equations (12) regarding the log-pdfs of such stationary components will have zero on the left hand
side because λ̃τ,i will be zero for all τ ; the equality is trivially fullfilled by setting the corresponding
wτ,i to zero. Such stationary components thus have no effect on the learning procedure. The rest of
the proof is not affected, and the nonstationary components s1(t), . . . , sm(t) will be identified as in
the Theorem, using TCL.
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