
Dense Associative Memory for Pattern Recognition

Dmitry Krotov, John J. Hopfield
Appendix A. Details of experiments with MNIST.

The networks were trained using stochastic gradient descent with minibatches of a relatively large
size, 100 digits of each class, 1000 digits in total. Training was done for 3000 epochs. Initial weights
were generated from a Gaussian distribution N(�0.3, 0.3). Momentum (0.6 p 0.95) was used
to smooth out oscillations of gradients coming from the individual minibatches. The learning rate
was decreasing with time according to

"(t) = "0f
t

, f = 0.998, (12)
where t is the number of epoch. Typical values are 0.01 "0 0.04. The weights (memories) were
updated after each minibatch according to

V

µ

I

(t) = pV

µ

I

(t � 1) � @

⇠

µ

I

C

⇠

µ

I

(t) = ⇠

µ

I

(t � 1) + "

V

µ

I

(t)

max

J

|V µ

J

(t)| ,
(13)

where t is the number of update, I = (i, ↵) is an index which unites the visible and the classification
units. The proposed update in (13) is normalized so that the largest update of the weights for each
hidden unit (memory) is equal to ". This normalization is equivalent to using different learning rates
for each individual memory. It prevents the network from getting stuck on a plateau. All weights
were constrained to stay within the �1 ⇠

µ

I

 1 range. Therefore, if after an update some weights
exceeded 1, they were truncated to make them equal to 1 (and similarly for �1). The slope of the
function g(x) in (9) is controlled by the effective temperature � = 1/T

n, which is measured in
“neurons” or “pixels”. For large n the temperature can be kept constant throughout the entire training
(500 T 700). For small n we found useful to start at a high temperature T

i

, and then linearly
decrease it to the final value T

f

during the first 200 epochs (250 T

i

 400, 30 T

f

 100). The
temperature stays constant after that. All the models have K = 2000 memories (hidden units).

The MNIST dataset contains 60000 training examples, which were randomly split into 50000 training
cases and 10000 validation cases. For each hyperparameter a window of values was selected, such
that the error on the validation set after 3000 epochs is less than a certain threshold. After that the
entire set of 60000 examples was used to train the network (for 3000 epochs) for various values of the
hyperparameters from this optimal window to evaluate the performance on the test set. The validation
set was not used for early stopping.

The objective function is given by

C =

X

training
examples

N

cX

↵=1

�
c

↵

� t

↵

�2m

, (14)

where t

↵

is the target output (t
↵

= �1 for the wrong classes and t

↵

= +1 for the correct class). The
case m = 1 corresponds to the standard quadratic error. For large powers m the function x

2m is
small for |x| < 1 and rapidly grows for |x| > 1. Therefore, higher values of m emphasize training
examples which produce largest discrepancy with the target output more strongly compared to those
examples which are already sufficiently close to the target output. Such emphasis encourages the
network to concentrate on correcting mistakes and moving the decision boundary farther away from
the barely correct examples rather than on fitting better and better the training examples which have
already been easily and correctly classified. Although much of what we discuss is valid for arbitrary
value of m, including m = 1, we found that higher values of m reduce overfitting and improve
generalization at least in the limit of large n. For small n, we used m = 2, 3, 4. For n = 20, 30,
larger values of m ⇡ 30 worked better. We also tried cross-entropy objective function together with
softmax output units. The results were worse and are not presented here.

The training can be done both in the associative memory description and in the neural network
description. The two are related by the duality of section 5. Below we give the explicit expressions
for the update rule (13) for these two methods.

1

Consider a minibatch of size M . In the associative memory framework one can define two (N +

N

c

) ⇥ MN

c

matrices U

↵A

J

and V

↵A

J

(index A = 1...M runs over the training examples of the
minibatch, greek indices ↵, � = 1...N

c

run over classification neurons, index i = 1...N runs over
visible neurons, indices I, J = 1...(N + N

c

) unite all the neurons, visible and classification).

U

↵A

i

= v

A

i

V

↵A

i

= v

A

i

U

↵A

�

= �1 V

↵A

�

=

⇢
+1, ↵ = �

�1, ↵ 6= �

The update rule (9) can then be rewritten as

c

A

↵

= g

h
�

⇣ KX

µ=1

F

n

(⇠

µ

J

V

↵A

J

) � F

n

(⇠

µ

J

U

↵A

J

)

⌘i
,

where F

n

(x) is the rectified polynomial of power n, and summation over index J is assumed. The
derivative of the objective function (14) is given by

@

⇠

µ

I

C = (2m�n)

MX

A=1

N

cX

↵=1

�
c

A

↵

� t

A

↵

�2m�1
h
1�

�
c

A

↵

�2
ih

F

n�1(⇠
µ

J

V

↵A

J

)V

↵A

I

�F

n�1(⇠
µ

J

U

↵A

J

)U

↵A

I

i

The indices A and ↵ can be united in one tensor product index, so that the two sums can be efficiently
calculated using matrix-matrix multiplication.

While this way of training the network is most closely related to the theoretical calculations presented
in the main text, it is computationally inefficient. The second dimension of the matrices U and V

is N

c

times larger than the size of the minibatch. This can become problematic if the classification
problem involves many classes. For this reason it is computationally easier to train the dense memory
in the dual description, which is more closely related to the conventional methods used in deep
learning. In this framework, the minibatch matrix v

A

i

has N ⇥ M elements. The update rule is

c

A

↵

= g

h
�

KX

µ=1

⇠

µ

↵

f

n

(⇠

µ

i

v

A

i

)

i
,

where f

n

(x) is a rectified polynomial of power3
n, and summation over the visible index i = 1...N

is assumed. The derivatives of the objective function (14) are given by

@

⇠

µ

i

C = (2m�n)

MX

A=1

N

cX

↵=1

�
c

A

↵

� t

A

↵

�2m�1
h
1 �

�
c

A

↵

�2
i
⇠

µ

↵

f

n�1

�
⇠

µ

j

v

A

j

�
v

A

i

@

⇠

µ

↵

C = (2m�)

MX

A=1

�
c

A

↵

� t

A

↵

�2m�1
h
1 �

�
c

A

↵

�2
i
f

n

�
⇠

µ

j

v

A

j

�
,

where summation over the visible index j is assumed. These expressions are very similar to the
conventional derivatives used in networks with rectified linear activation functions, but they use
power activation functions instead. The minibatch training can be efficiently implemented on GPU.

Appendix B. Capacity of Dense associative memory.

In section 2 of the main text a theoretical calculation of the capacity for model (4) was presented
in the case of power energy functions. In section 5 an intuitive argument (based on the low energy
states of the Hamiltonian) was given arguing that the capacities of the models with power energy
functions and rectified polynomial energy functions should be very similar. In this appendix we
compare the theoretical results of section 2 with numerical simulations and numerically validate the
intuitive argument about low energy states.

A random set of K = 2000 binary memory vectors was generated in the model with N = 100

neurons. A collection of 10000 random initial configurations of binary spins were evolved according
3One should remember that the energy function of power n is dual to the activation function of power n� 1.

Here, for the sake of notations, we describe the training procedure for general n.

2

to (4) until convergence. The quality of memory recovery was measured by the overlap between

the final configuration of spins
�
�

i

= �

(t!1)
i

�
and the closest memory, max

µ

� NP
i=1

⇠

µ

i

�

i

�
. If the

recovery is perfect, this quantity is equal to N ; if some of the spins failed to match a memory vector,
this quantity is smaller than N . In Fig. 4 the histograms of the overlaps are shown for n = 2, 3, 4

in case of power and rectified polynomial energy functions. For n = 2, 3 the number of memories
(K = 2000) places the model above the capacity (according to (6), K

max

no errors ⇡ 11 for n = 2 and
K

max

no errors ⇡ 360 for n = 3). Thus, the model is unable to reconstract the memories. For n = 4, the
number of memories is below the capacity (Kmax

no errors ⇡ 7240), thus the distribution sharply peaks at
perfect recovery. For n � 5 all 10000 samples converge to one of the memories. Qualitatively, this
behavior is demonstrated by both power models and rectified models.

0 20 40 60 80 1000

20

40

60

80

100

maximal overlap

pe
rc

en
t o

f t
ria

ls

n=2
n=3
n=4

N = 100

K = 2000

maximal overlap max

µ

(⇠

µ

i

�

i

)

pe
rc

en
t o

f t
ria

ls

0 20 40 60 80 1000

20

40

60

80

100

maximal overlap

pe
rc

en
t o

f t
ria

ls

n=2
n=3
n=4

pe
rc

en
t o

f t
ria

ls

maximal overlap max

µ

(⇠

µ

i

�

i

)

N = 100

K = 2000

F (x) =

�
x

n

, x � 0

0, x < 0

F (x) = x

n

Figure 4: The histograms of overlaps for models with n = 2, 3, 4 with power energy functions (left) and
rectified polynomial energy functions (right). Each histogram has 10000 samples in it.

A family of models with 50 N 200 and 50 K 1500 was studied. For each combination
of N and K a set of binary memory vectors was generated to make a model of associative memory.
After that 1000 random binary initial conditions were evolved according to (4) until convergence.
K1/2 is the number of memories when half (500) of these samples perfectly converge to one of the
memories. In Fig. 5 the K1/2 dependence of N is shown for the power and the rectified models with
n = 3. The solid curve is given by Eq.(6). The results of numerical simulations for the case of power
activation functions are consistent with the theoretical calculation (6). The results for the rectified
polynomials are a little bit above the theoretical curve, but show similar non-linear behavior.

0 50 100 150 200
0

200

400

600

800

1000

1200

1400

1600
A A
A A
A A

N

K

1
/
2

n = 3

n = 3 rect.p
theory

Figure 5: Scaling behavior of the capacity vs. the number of neurons for n = 3 with power and rectified
polynomial energy functions. Solid curve is the theoretical result (6).

3

Acknowledgments

We thank B. Chazelle, D. Huse, A. Levine, M. Mitchell, R. Monasson, L. Peliti, D. Raskovalov,
B. Xue, and all the members of the Simons Center for Systems Biology at IAS for useful discussions.
We especially thank Y. Roudi for pointing out the reference [13] to us. The work of DK is supported
by Charles L. Brown membership at IAS.

4

