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Our theory proof consists of two parts. Appendix A provides preliminary results for lasso, when
strong conditions on the feature matrix are imposed. In Appendix B, we adapt these results to
DECO and show that the decorrelated data will automatically satisfy the conditions on the feature
matrix even when the original features are highly correlated.

Appendix A: Review on the lasso theory
Define @ = {1,2,--- ,p} and let A° be @ \ A for any set A C Q. The following theorem pro-

vides deterministic conditions for lasso on sup-norm convergence, fo-norm convergence and sign
consistency.

Theorem 0. Denote the solution to the lasso problem as
B = arg min lHY — XBH2 + 221811
BERP N 2

Define W =Y — X S,, where By is the true value of 5. For any arbitrary subset J C Q (J could be
0), if X satisfies that

1. My <|zlxi/n| < Ms, for some 0 < My < Ms and all 4,
2. max;4; |x;f:vj/n| < min{vis, 72)\%}, for y > ]?4—21,72 >0,q>0 ands=|J|,
3 3 XTWlloo < An/2,

then any solution to the lasso problem satisfies that
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where By je 15 the sub-vector of By consisting of coordinates in J¢ and
A 18+2s\2
— Bull3 <L 4 60| Buellt + 327208 Bese 1.
1= Bl < s + OBl + 32023 e

Furthermore, if Brje = 0 and minge j |Byr| > Mll)‘"’ then the solution is unique and sign consistent,
that is,

A~

sign(B) = sign(Byk), Yk € J  and By =0, Yk € JC.



Theorem 0 partly extends the results in Bickel et al. (2009) and Lounici (2008). The proof is
provided in Appendix A. Theorem 0 can lead to some useful results. In particular, we investigate
two types of models when [, is either exactly sparse or in an [-ball defined as B(r,R) = {v €
RP: Y0 |ug|” < R}. For the exactly sparse model, we have the following result.

Corollary 1 (s-sparse). Assume that 3, € RP is an s-sparse vector with J containing all non-zero
indices. If Condition 1 and 3 in Theorem 0 hold and max;.; |zl z;/n| < # for some y1 > 32/Mj,
then we have

18v2s)2
(Myy —32)2°

3M1’71+51 ~
Moand B = Bilf3 <

Af * oo< n

Further, if minge y |Br| > MllAn, then B is sign consistent.

The sup-norm convergence in Corollary 1 resembles the results in Lounici (2008). For the [,-ball
we have

Corollary 2 (I,— ball). Assume B € B(r,R). If condition 1 and 3 in Theorem 0 hold and
max;.; [zl z;/n| < 7);7;1% for some v > 32/M, then we have
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A.1 Proof of the ¢, and /., convergence

We first need the following lemmas

Lemma 0. Assuming the Condition 8 in Theorem 0, and defining A = [3 — B«, where B is the
solution to the lasso problem and B, is the true value, then for any set J C Q (J could be (), where
Q={1,2,---,p}, we have

1Agell < 3l[Asllx + 4l Basellr, (1)

where Aj denotes a sub-vector of A containing coordinates whose indezxes belong to J and ||Ag||1 =

0.

Proof of Lemma 0. We follow the proof in Bickel et al. (2009) and Lounici (2008). Define S(3) =

{k: By # 0}. The sufficient and necessary condition (also known as the KKT conditions) for 3 to
minimize the lasso problem is that

L@y — 27X B) = Ausign(B), for i € $(8)

3

1 A A
~|alY — 2 XB| <, fori & S(B).
Therefore, regardless of S(3), the minimizer 3 always satisfies that
1 .
— XY - XTX B0 < M-
n

Noticing that Y = XS, + W and || XTW || < A,/2, we have

w

1 R
gHXTX(,B* - 0)| < §An. (2)



At the same time, using the optimality of lasso we have

1 A A 1 1
glly—Xﬁllg + 218 < EIIY—XB*H% + 20|l = EIIWH% + 2Bl

which implies

~ 1 1 ~
D0allBl < 228l + IWIB = Y — XA3

1 1 .
= 2| B« + EIIWH% - EIIXB* - XB+W|3
XTW|

n

< 22n18: 11 + [2(8 - B.)
Using |2 XTW o < An/2, we know that

2XallBll < 2X1Bulls + AnllB = Bellr,

i.e., we have

2Bl < 2[1Bell + 118 = Bell = 2[1Bellr + 1A, (3)
Let J be any arbitrary subset of @, we have

2| Agellt = 2l|B.e = Begelli < 2[1Bellr + 21| Buyellr- (4)
Now if J = (), using (3) and (4) we have

20| Allr = 2l A el < 201Bsellt + 20l Bells = 208l + 201Bx 1 < 4l Bsllr + A1

This gives that

[Agells = 1Al < 4f|Bullr = 31 Ayl + 4] Besellr-
For J # 0, because £1 norm is decomposable, i.e., [|3]|l1 = ||8s]l1 + ||B7||1, using (3), we have

201811 + 201 Besells = 211811 — 211841l + 21| Besels
< 2/|Bully + 1Al = 21151l + 2l1Beselln
= 2[|Buslls + 20 Bl + 1A 111 + 1A sell = 2018111 + 21| Beselln
= 2(|1Beslls = 1Bs11) + 1Al + 1A sells + 4] el
< 3[[All1 + [[Agellr + 4 Besellr,

where the second inequality is due to (3). Thus, combining the above result with (4) we have
proved that

[Asellr < 3[|Ag|l + 4| Brgellr-
Il

Lemma 1. Assume the Condition 1 and 2 in Theorem 0. For any J C {1,2,--- ,p} (J could be
0) and |J| < s and any v € RP such that ||vje|l1 < collvglli + 1| Begellr, we have

1+2€0

1
L0l > (31— 2220 Y oy~ 2erra 5Bl %)



where vy denotes a sub-vector of v containing coordinates whose indexes belong to J.

Proof of Lemma 1. When J = (), the result is straightforward and thus omitted. Assume |J| > 0.
For convenience, we define ¥ to be the vector that extends v; to p-dimensional by adding zero
coodinates, i.e.,

v, =v ifieJ

U, =0 ifigJ
We use vy) to denote the i'* coordinate of v;. For any J C {1,2,---,p} with |J| = s and any
v € RP such that ||vje||1 < eollvs|li + e1]|Besell1, we have
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Notice that [Jvs|? < s|lvs||3 because |J| < s. Thus, we have
l|va\|§ > l|yX@||§ + 217T(1XTX)(U )
n n n
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Lemma 2. Assume the Condition 1 and 2 in Theorem 0. For any J C {1,2,--- ,p} (J could be
0) and |J| < s and any v € RP such that ||vye|1 < collvsllh + c1]|Bugell1, we have

1 201 + o)
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where vy denotes a sub-vector of v containing coordinates whose indexes belong to J.



Proof of Lemma 2. Different from Lemma 1, we have

*IIXvH2>Z lzsll30? + fL“ TjViv;

ZEQ l#JEQ
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Now, We turn to the proof of 5 and ¢, convergence in Theorem O.
(Partial) proof of Theorem 0. According to Lemma 0, 1, 2 and (1), (2) and (5), we have
1 3
—XTXA| <
I le <3 (7)
and
1Al < 41Asl1x + 4l Bisell < 4Vs[|Asll2 + 4]l Bese 1 (8)
and
1
HIXAIE = (3= 1818~ syl A 0

Using Equations (7) and (8), we have
1 1
~[XAS <= XTXAllo|All < 625 A2 + 6Xn]| Bese
which combining with (9) implies that
7
(341 = Y1818 - 239500 + 4r0VSAL s L) 1Al = 6Bl <0

This is a quadratic form and with some simple algebra, we get a loose solution to the quadratic
inequality

1 7 2(3v/8An + 4y91/5AL || Brse|l1)?
5 (00— )1 < 2Rt e SRRy 65 5,
gi! I
thus
72425 1927273 Brge||3s 1271 | Brgelly
A2 < I° a2 2onh L
A2 < (M, — 7)2 (Myy — 7) My —7



and thus

2
HAJHQS\/( s 19200815l , 120l

My —17)2°" (Myy —7)2 7" My —7 "

1
6v2 8vV3 wJe 2 wre|l?
< \[71 \/5)\”_|_ f7172"6 J ||1\/§>\% \[’71 ||B J Hl (10)
Miy =7 My =7 Myy =7
Similarly, for ||Al|3, using (6) we have
My === ANz = 329220 Bl < TIX ALz < 6AnV/s[|AJ 12 + 6An]|Brell1-
Noticing that ||Ay|l2 < [|A|l2, we can solve the quadratic inequality and obtain that
18v2s\2
Allf < ——12 4+ 6A ell1 + 3272 AL || Bese I3- 11
|A[]Z < (Mi — 32)2 + 6An[Bagellt + 3292AL || Bise Iy (11)

For the sup-norm, we make use of (10). Notice that

XTx T X x5 xle;
6? - A — Jn A:” TJZ”ZA]_‘_Z anAi
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which combning with (7) and (8) implies that
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Note that max;z + |z )| < mm{%, Y2A%} also implies that max;zy, +|2f x| < \/7727. There-

fore, using result in (10) we have

1
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This completes the proof. O

A.2 Proof of the sign consistency
Our conclusion on sign consistency is stated as follows

Theorem 1. Let J be the set containing indexes of all the nonzero coefficients. Assume all the
conditions in Theorem 0. In addition, if the following conditions hold

2
' > 2\
r]glel}}lﬁkl TR



then the solution to the lasso is unique and satisfies the sign consistency, i.e,
sign(Bk) = sign(Px), Yk € J and By =0, Yk € JC.

Here we use the primal-dual witness (PDW) approach (Wainwright, 2009) to prove sign consis-
tency. The PDW approach works on the following two terms

Zk: kanX}W—ankX‘](nXJXJ) ZJ,

where II 4 is the projection on to the linear space spanned by the vectors in A and

1 e

A =ef <X?~f XJ> (X?f W — Ansz’gn(ﬁm),

n n
for which Wainwright (2009) proves the following lemma
Lemma 3. (Wainwright, 2009) If Zy, and Ay satisfy that

sign(Bsk + Ak) = sign(Bsk), Yk € J and |Zx| <1, Yk € J€,
then the optimal solution to lasso is unique and satisfies the sign consistency, i.e.,
sz’gn(ﬁAk) = sign(Bk), Yk € J and By =0, Vk € JC.

Therefore, we just need to verify the two conditions in Lemma 3 for Theorem 1. Before we
proceed to prove Theorem 1, we state another lemma that is needed for the proof.

Lemma 4. (Varah, 1975) Let A be a strictly diagonally dominant matriz and define § = ming (| Agx|—
Zﬁgk |Ak;|) > 0, then we have

1A oo < 67,
where || Al is the mazimum of the row sums of A.

Proof of Theorem 1. We first bound |Z| for k € J¢. Notice the first term in Zj follows that

1

1
= — ——a Xy (X7 X ) ' XTW,
nAn

T p—

where ﬁx{W follows
1 7 1,1 7 1
— Wl < —||=-X'W < =
’nknxk ‘ - )\an loo < 2

and = f X (X7 X )" XTW follows

1 _ 1.1 _
=, Xy (X7 X)) T XTW| < - X [(XTX0) T X T W oo
NAn A ' M
From Condition 2 in Theorem 0, we know that
1 7 1, 7 1
—r:. Xy < - < =
It Xl = 3 Sl <



and using Lemma 4 we have

XX /1) o = maX\\ek (X7 Xg/m) "Ml < (My = 1/3) 7

Thus, we have

X)X W < S IOKT X ) el X Wi € s
Together, the first term can be bounded as
T 1
‘n)\nkaXJLW‘ < 7+m. (12)
The second term can be bounded similarly as the first term, i.e.,
1

1 N 1
XXX < X (X X0)

Flle < 5T
Therefore, we have

3

1
Zp| £ =4+ —.
| k|_2+2(M1’71—1)

It is easy to see that when ~; > 32/M;, we have
|Zk] < 1, Yk € J¢

and completes the proof for Z;. We now turn our attention to Ay and check whether sign(By;) =
sign(Bsk + Ag). For Ay, we have

1 A ,
|Ag| = ef(anXJ) (nX}FW - An*”Q”(ﬂ*J))‘

1 1L xTw 1 -1
< e;-f(X;XJ) L+ N\, (X}’XJ)
n n n 00
1 -1 Ly -1
< ’(Xf)g) I XTW/n|so + An ( XJ)
n o0 o0
71 71
< An + A
2(Myyy —1)"" " Myyp — 17"
— LA
2(Myyy — )7

Thus, with the conditions in Theorem 2, we have

3 3 2
An A < — -
oMy — 1) 2(My — 1)) M,

|Ag| <

To meet the requirement sign(Byx) = sign(Bsk + Ag), we just need minge s |Bk| > Mll)‘n and this
completes the proof. O

A.3: Proof of Corollary 1 and 2

To prove the two corollaries, we just need to adapt the magnitude of max;; %|x;fx]\ to the correct
order.



Proof of Corollary 1 and 2. To prove Corollary 1, we just need to take o arbitrarily large and
g = 1. The result follows immediately from Theorem O.

To prove Corollary 2, we first determine the set J by taking the larger signals as follows

J=Ak: |Bk| > M}

Then the size of J can be bounded as

s=|J| <

| =

and the size of ||3.J¢||1 can be bounded as

BT = > 1Bkl S AT Y |Bk[T < RAYT

keJe keJe

Now we take 75 = 1/[|3.J¢||1 and ¢ = 1, then the bound on max;; -|z! z;| becomes

1 1 A A A
maxx?mﬂﬁmin{,n}gmin{ o 7”}§ n
i#j n 718 |8+ 7R R MR

which completes the proof. O

Appendix B: Proof Theorem 1 and 2

To prove the two theorems, we just need to verify the three conditions for DECO. To verify
Condition 1 and Condition 2 in Theorem 0, we cite a result from Wang et al. (2015) which proves
the boundedness of M7 and M, and that max;.; \i:ZT:E]T|/ n is small.

Lemma 5. Assuming X ~ N(0,%) and p > con for some ¢y > 1, we have that for any C > 0,
there exists some constant 0 < c¢1 < 1 < cg and c3 > 0 such that for any i # j € Q

1, cic 1, coc* _
P(2af < 22) s2eon p(Link> 25) <2en
n c* n c

*

and

1 “t 1
P(@%}j\ > e > < 5e7C" 4 2¢71/2,
n ¢ /n

c2(co—c1)

for any t > 0, where c4 = 3(co—1)

and cy,c* are the smallest and largest eigenvalues of X.

_ Verifying Condition 3 is the key to the whole proof. Different from the conventional setting,
W now contains non-zero signals that are not independent from the predictors. This requires

us to accurately capture the behavior of the following two terms maxyeq ‘%5:;{5( (=k) Bi_k)’ and
maxie(Q ‘%izé{, for which we have

Lemma 6. Assume that ¢ is a sub-Gaussian variable with a 1o norm of o and X ~ N(0,%).
Define o3 = var(Y). If p > con for some ¢y > 1, then we have for any t > 0

1 ot ciCl
P max —|#L&| > — | <2pexp | — ——2 2 4pe= ",
(keinkl \/ﬁ>_p p( St7 ) 4 4p

P < max ! ’igf((_k)ﬁfk) ‘

keQ n

v

T
o

\

Q
[

~

N————

3
c _
< 2pexp < - 20{0*2 t2> + 5pe= ™,



where C, c1,ca,cq, Cx, " are defined in Lemma 5.

B.1: Proof of Lemma 5 and 6

Lemma 5 and the first part of 6 are existing results from Wang et al. (2015) and Wang and Leng
(2015). We focus on proving the second part of Lemma 6.

Proof of Lemma 5 and 6. Lemma 5 follows immediately from Lemma 3 in Wang et al. (2015)
and the first part of Lemma 6 follows Lemma 4 in Wang et al. (2015).

To prove the second part of Lemma 6, we first define H = XT(XXT)f%. When X ~ N(0,3),
H follows the M ACG(X) distribution as indicated in Lemma 3 in Wang et al. (2015) and Theorem
1 in Wang and Leng (2015). For simplicity, we only consider the case where k = 1.

For vector v with v1 = 0, we define v’ = (va,v3,- -+ ,v,)T and we can always identify a (p — 1) x
(p— 1) orthogonal matrix 7" such that 770" = ||v’||2€] where €] is a (p — 1) X 1 unit vector with the
first coordinate being 1. Now we define a new orthogonal matrix T as

1 0
(5 1)
and we have

(1 0N[O0\ _ [ 0 Y\ _ v _ v (1 0\ _ 7
TU—(O T’> (v’)_<||v\26’1>_”v”262' and e;T" =e; <O T =€

Therefore, we have
eTHH Yy = I TTTHHTTT Ty = T TTHH T ey = |0 0el HH ey.

Since H follows MACG(X), H = TTH follows M ACG(TTXT) for any fixed T. Therefore, we can
apply Lemma 3 in Wang et al. (2015) or Lemma 5 again to obtain that

P(|61TXT(XXT)—1XU| > Mwﬁ) _ IP’<|61THHTU| > Mw%)
p

Cx . »
~ o~ *t - *t
N P(HvMQ{HHT(E2| = HUHW\/H) - P(|61THHT62| > = \/ﬁ) < B5e "4 2e /2
Cx p Cx D

Applying the above result to v = (0, ﬁifl)) we have

XXT\ !
6’1XT< > Xv
P

with probability at least 1 — 5e=¢™ — 2e17/2.
In addition, we know that o = var(Y) = 81 S8, + 02 and thus

cac™t || B2

e n’

1 ~ _ 1 o~
~FT XV = Zje XT X0 =
n n

1
= = Lo xT(xXT) 1 xv| <
n n

2 _ 9
o5 — 0

[1Ball2 <

*

Consequently, we have

1 ~ 1 o — o2t 3
Pl 217 x D £ ) > V% 9 9 . x__42 5e-Cn.
(n|x1 p e vn = <exp 2020*2 +oe

Applying the result to any k& € @Q and taking the union bound gives the result in Lemma 6. O
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B.2: Proof of Theorem 1 and 2

We assemble all previous results to prove these two theorems.

Proof of Theorem 77 and ??7. We just need to verify the Condition 1 and 3 listed in Theorem
0 and the variants of Condition 2 in two corollaries.

First, we verify Condition 1. Taking M; = <& and My = cﬁf* and using Lemma 5, we have
that
1
IP’(Ml < ﬁ\@f@\ < My, Vi€ Q) > 1 — 4pe= ™.
Next, we verify Condition 3, which follows immediately from Lemma 6. Forany ! € {1,2,3,--- ,m},
we have
1., ~mo= 1 ~ _ 1 200t
max — | XOW 0|, < max—‘i:{X(*k)Bi k)| + max — i} é| < V200 ,
I n kEQ n keQ n Vn
ith probability at least 1 — 2pe - ¢t2 — 2pe - i152 — 9pe~C". Takin
w p y pexp 2cvca(1—co)2 P exp 2c3c*2 P . g

t = Ay/logp/(2v/2) for any A > 0, we have

1 os 1 1
]P’<mlaxHX(l)W(l)Hoo > 5 Aooy/ ng> < opl=Cr1A? 4 4y1=CaA? | 9O
n n

2
where €] = ——%0___ and Cy =

6o oa (1o This also indicates that A, should be chosen as
c*ca(l—co)

3
c2*

*2 *
16c;c

/1
An = Aoy 98D
n

Finally, we verify the two conditions in Corollary 1 and 2. Notice that Lemma 5 indicates that

1 /1
P(mjx|j3“jj| > A ng) < 2p1—802A2/C* + 5p€—CTL < 2p1—CQA2 + 5p6—0n‘

Therefore, the two conditions in Corollary 1 and 2 will be satisfied as long as
2 2 2logp 2 2p2( logp e
A*yis*—= <1 and AR () <1
n n

Now we have verified that the three conditions hold for all subsets of the data. Let B(l) and 59
denote the estimate and true value of the coefficients on the I** worker and define s; = Hﬁil) llo and
R = Bil)m. Applying Corollary 1 and 2 to each subset and taking v; = 64/M; we have

5Acg [logp N ) 72A%02 s;logp
bt d O Y2 < /=20
TR 50— ) < TR

18D = 8010 <

for | =1,2,--- ,m and B, being s-sparse. For 3, € B(r, R), we have

1—-T
51 0 12A0g logp (1 1) 72 —r log p 2
189 = 800 < =720/ = and 189 - B3 < a2 T8 (Ao TR )

Notice that |8 — B3 = 7%, 180 — ﬁg)Hg, s=> s, Ry =3 ", R;. Taking summation over [
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and replacing M1 by cic./c* completes the whole proof. O
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