A Proof of Initialization

In this section, we will prove Lemma4.T]and a corresponding lemma for asymmetric case as follows
(which will be used to prove Theorem@

Lemma A.1. Assume M € R % js g rank k matrix with p-incoherence, and §) is a subset unformly
i.i.d sampled from all coordinate. Let UgV ] be the top-k SVD of 4 d1dz2 po, (M), where |Q| = m. Let

d = max{dy,ds}. Then there exists universal constant cy, for any m > coudk?k?(M) log d, with
probability at least 1 — le’ we have:

1
HM UOVO ||F = 200'1'11111(M)a

IOuk 10uk

2
max [le] Ug Vg I” < M, mJaXHeJTVOUgH < =M (6)
We will focus mostly on Lemmal[A.T] and prove Lemma[4.T]as a special case. Most of the argument
of this section follows from [[14]. We include here for completeness. The remaining of this section
can be viewed as proving both the Frobenius norm claim and incoherence claim of Lemma
seperately.

In this section, We always denote d = max{d;,ds}. For simplicity, WLOG, we also assume
[IM]| = 1 in all proof. Also, when it’s clear from the context, we use x to specifically to represent
#(M). Then opmin(M) = L. Also in the proof, we always denote SVD(M) = XSY ', and
SVD(UVT) = WyDW,,, where S and D are k x k diagonal matrix.

A.1 Frobenius Norm of Initialization

Theorem A.2 (Matrix Bernstein [23]]). A finite sequence {X.} of independent, random matrices
with dimension dy X ds. Assume that each matrix satisfies:

EX; =0, and ||X:|| <R almost surely

Define
o = max{|| > EX,X/])|[, > EX/X,)||}
t t
Then, for all s > 0,
—52/2
Pr( ;Xt 25) S (d1+d2)eXP(02+RS/3)

Lemma A.3. Let || = m, then there exists universal constant C, cg, for any m > coudk log d, with
probability at least 1 — d%o, we have:

HM - dldQPQ( )H <Cy/ 7ﬂdk;logd

Proof. We know

dyds dyds

did did
M — 12799( M) = L2 1Pg (M) — M
dida
and note: m m
PQ(M) — M = ZM”(Z” — 7)61'6;-'—
i

where Z,; are independence Bernoulli(m/d; dz) random variables. Let matrix

m
Yij = Mij(Zi; — m)eie;

By construction, we have:

m
quzj HPQ ) dldQMH
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Clearly Etp;; = 0. Let XSY " = SVD(M), then by u-incoherence of M, with probability 1:

M|, < maX|eTXSYTe]| < M|

\/d da
Also:
2, o T m m 2 06T
;E(% ZEM Zij — 1d g el | <o -0- o) %:Mijeiei
m 2m ,uk o0 2muk 9
dldQ( dldg)miaxz 1) — d1d2 H H d%dQ || H
2007 m
Z]E RTINS ZEM Zsj dldQ) el | < T d1d2 %:Mwe] ;
m 2m uk 9 Qm,uk
1— M? — IM|* =
d1d2( d1d2 m]axz Y= dldz do I =
Then, by matrix Bernstein (Theorem[A.2)), we have:
—52/2
PI‘( Z%g > < 2(d1 + dQ) p( 2mpudk 2 / Lk )
d2d2 HMH +||M” 3Vdida "

That is, with probability at least 1 — ﬁ, for some universal constant C, we have:

mudklogd pklogd
didy 7 didy
For m > udklog d, we finishes the proof. O

}

m
Po(M) — dldzMH < C|M]| - max{

Theorem A.4. Let UyV be the top-k SVD of d;nﬁpg (M), where |Q)| = m then there exists
universal constant co, for any m > coudk?x? log d, with probability at least 1 — d%, we have:

1
M =TV || < 55

Proof. Since M is a rank k matrix, we know o1 (M) = 0, thus

dyd dyd dyd
71 (B8 () gokH(MH\ 12 o (M) MH \ : 27>Q<M>MH
Therefore:
dyd dyd
M —UV{ || SHM— L2 P (M H ’ L2 (M) — UgV,
dyd dyd dyd
HM - 172739 )H +Uk+1(172PQ(M)) <2 HM - g7’9( )H

Meanwhile, since rank(M) = k, rank(UoyVJ) = k, we know: rank(M — UgV{]) < 2k, and
therefore:

[M—U,V{

| < V2K ||M-UVg | < 2@”1\/1 _ dld%ﬂ H

by choosing m > coudk? log d - k2 for large enough constant ¢y and apply Lemma we finishes
the proof. O
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A.2 Incoherence of Initialization

Lemma A.5. Let UV T be the top-k SVD of 292 Pq (M), where [} = m. then there exists universal
constant co, for any m > coudkr? log d, with probability at least 1 — d%’ we have:

k
max He;(MT - VUT)H <2 nE
J 2
Proof. Suppose SVD(M) = XSY . Denote X = XSz and Y = YS2. Also let SVD(UV ") =
WyDWY.
dyds

Then, we have:
d1d2
2 Po(M) Wo W)

e/ (MT — Po(M) "Wy W)

e (M7 = VU™ =

e/, M" - M'WyW{, + MTWyW{, —

dids

<|le;MT(I- WyW{)|| +

ey 7 — B2p, ) )WUwEH

For the first term, since WITJWU7 1 = 0, we have:
le) MT (1= WuW{)|| < [|e] Y[[[|SX Wy Wy ||
k
=\l 7 [Y'M" —= WyDW{H Wy W ||
wk uk 1
<\ g IMT - WyDWy </ 5=~

The last step is due to sample m > pdkk? log d, and theorem

For the second term, we have:

did dd
e ( inQ?DQ(M)T—MT)WUWIJ Y/ (=2 > xwl, - ZxZwUlWU
i:(4,§)€Q
,uk: d1d2
<. /22 .
“Vdya m Z X w Ul dldQle Ui (7N

(1,5)€Q

Where x; and wy ; are the i-th row of X and Wy respectively.

Letg;; = iiwai(Zij - ﬁ), where Z;; is Bernoulli(ﬁ) random variable, Z;; = 1iff (i, 5) € Q.
Clearly, we have E¢ = 0, and with probability 1:

uk
||¢ng < 2%l ||WU il < 2\/;1max‘|eTWU‘|

Also, we have variance term:

m -
> E¢j6i _’ Zij — m)z 1% wuiwd
m ~ 12 T
_d1d2 (1= d1d2)miax||xi” |zi:wU’iWU’i
m_pk ukm
<— WLWyl| <
“didsy dy H U UH d2d
Ed:.dr||l = E(Z:: LAY 12 .57
Z Gijdij|| = Z ( zy_m) Wl %%,

m
<
1d2

mas o] W
3
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Therefore, with m > pudkr? log d, by matrix Bernstein, we have with probability at least 1 — dw , We
know that for all j € [ds], there exists some absolute constant C” so that:

, Imlogd, [uk

Z xiw A dydy ZXZWU i d1da ( dy o HeTWUH
4:(1,7)EQ

‘ <o [ERLOB IR 4 e W)

On the other hand, we also have:

o7 W < e W] 87! = 25 ]e UV ]| < 25([e] (UVT M) + [l ]

gzﬁ;(,/%k + e/ (VT —M)|)
1

This gives overall inequality:

maxHeJT(VUT—MT)Hg,/Z—k. ,/“kdllogd /5 +max||e (UVT -M)|))
J 2

By symmetry, we will also have:

pk 1 pkds log d wk
max e/ (UVT —M)| < 1/671 = C”HQTHO / 5 + max e (VUT =M "))

Combine above two equations and choose m > coudkr? log d for some large enough c,. We have:

Substitue into Eq.(7), this gives:

did
SPa(M)T - M)Wy W

e](

k

max HejT(MT - VUT)H <o, /2

J : 2
This finishes the proof.

O

Theorem A.6. Let UgV{ be the top-k SVD of dl—nffng (M), where |Q2] = m. then there exists
universal constant co, for any m > coudkr? log d, with probability at least 1 — d%o, we have:

m‘auxHe;'—Uo\/'(—')—H2 < Suk and m‘auxHe;»'—VOUJH2 < uk
i dl J d2
Proof. By Theorem we know for any j € [da]:
k
o] M~ VoUp) | 2,/
Therefore, we have:
uk
lej VoUq || <[flej M7+ [lej (M" = VoUg)[[] <34/ "=
By symmetry, we also know for any ¢ € [d;]
uk
lef UoVy | <3 dT
Which finishes the proof. O

For the special case where M € R%*? is symmetric and PSD, we can easily extends to have following:
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Corollary A.7. Let UgU|] be the top-k SVD of %PQ(M), where || = m. then there exists
universal constant co, for any m > coudkr? log d, with probability at least 1 — d%, we have:

2 10pkk
- d

mas o] U|
K2

Proof. By Corollary [A.6] we have:

Iuk

max HeiTUoUgH2 < %

On the other hand, by Theorem[A.4] we have:
9
omin(Ug Ug) = 0 (UgUg ) > 03,(M) — |[M — U Uy || > Tom
Therefore, for any ¢ € [d] we have:
T2 < el UoUg I° _ 10pks
e/ Uo|” < -
Omin (U Uo) d

Which finishes the proof. O

Finally, Lemma[A.T|can be easily concluded from Theorem [A.4and Theorem[A.6] while Lemma[4.T|
is also directly proved by Theorem|[A.4]and Corollary[A.7]

B Proof of Symmetric PSD Case

In this section, we prove Theorem[3.1] WLOG, we continue to assume | M| = 1 in all proof. Also,
when it’s clear from the context, we use & to specifically to represent x(M). Then o, (M) = 1

Also in this section, we always denote SVD(M) = XSX T, and SVD(UUT) = WDW T, l
The most essential part to prove Theorem 3.1]is proving following Theorem:

Theorem B.1 (restatement of Theorem n Let f(U) = |[UUT — MH?, and g;(U) = HeiTU||2.
Suppose after initialization, we have:

1 \?2 10pkk?
< (— , <
f(Up) < (20/1) , mlang(UO) < 7

. ; c ;
Then, there exist some absolute constant c such that for any learning rate n < TdkndTog 4’ with at

least 1 — d% probability, we will have for all t < T that:

2 2
N\t 1 20ukk

Theorem|B.T|says once initialization algorithm provides Uy in good local region, with high probability
U, will always stay in this good region and f(Uy) is linear converging to 0. With this theorem, we
can then immediately conclude Theorem 3.1 from Theorem [B.T|and Lemma[4.1]

The rest of this section all focus on proving Theorem [B.1] First, we prepare with a few lemmas about
the property of objective function, and the spectral property of U in a local Frobenius ball around
optimal. Then, we prove Theoremby constructing two supermartingales related to f(Uy), g;(Uy)
each, and applying concentration argument.

For symmetric PSD case, we denote the stochastic gradient as:
SG(U) =2d*(UU" — M);j(ee] +eje/)U
The update in Algorithm[I]can be now written as:
U1 + Uy —nSG(Uy) ®)
We immediately have the property:
ESG(U) = Vf(U) =4(UU" —M)U

14



B.1 Geometric Properties in Local Region

First, we prove two lemmas w.r.t the smoothness and property similar to strongly convex for objective
function:

Lemma B.2. (restatement of Lemma{.2) Within the region D = {U| ||U|| < T'}, we have function
f(U) = |[M — UU" |2 satisfying for any U, Uy € D:
IVF(U1) = Vf(Uo)llr < Bl[Ur — Uzl

where smoothness parameter 3 = 16 max{I'?, || M]||}.

Proof. Inside region D, we have:
[Vf(U1) = Vf(U2)llr

=[14(U U] —M)U; —4(UyU; — M) Us|lg

<4|U, U] U; — UsU; Uzl + 4| M(U,; — Uy)|r

=40, U] (U; - Uy) + Uy (Uy = Uz) "Us + (U = Uz)Uy Usfr + 4| M(U; — Us) |

<12max{[|Us |, [Us|*}[[Us — Us[le + 4[|M]| | U1 — Us e

<16 max{I'?, | M| }||U; — Us||r

O
Lemma B.3. (restatement of Lemma Within the region D = {U|owin(XTU) > v}, then we
have function f(U) = |[M — UU || satisfying:
IVF(U)|E > af(U)

where constant o = 4~

Proof. Inside region D, recall we denote WDW I = SVD(UU "), thus we have:
IVF(U)[IF = 16|(UUT — M)UE
=16[|Pw (UU" = M)U[Et + |[Pw, (UUT — M)UJl§
16[0min(D) [ Pw (UU T — M)Pw | + [|Pw . MU][]

>
>16[0min(D)|[UU" — PwMPw/|; + [|Pw, MUJ[]

On the other hand, we have:

IPw. MU = |[Pw, XEX U > 07, (XTU) | Pw, XZ|7
=0 in (X U)tr(Pw, M*Pw ) = 01, (X T U) [ P, MJ7
and
Umitl(D) == Alnin(UTU) Z )\min(UTPXU) = 0'2 (XTU)

min

Therefore, combine all above, we have:
IVF(U)|f > 1607, (X U)[|[UU" — PwMPw [ + |Pw, M||}]
>407,(XTU)[|UUT — PwMPw [} + |[Pw, MPw || + [PwMPw_ || + | Pw, MPw |]
=402, (X" U)[UUT — M|}
O

Next, we show as long as we are in some Frobenious ball around optimum, then we have good
spectral property over U which guarantees the preconditions for Lemma[B.2)and Lemma [B.3]

Lemma B.4. (restatement ofLemma Within the region D = {U|||[M — UU" HF < sor(M)},

we have: .
||U|| S 2 HMH1 UIIlin(X U) Z O'k(M)/Q

15



Proof. For spectral norm of U, we have:
U < M|+ M - UUT || < [M]| + [[M - UUT||, <2|M]|
For the minimum singular value of UTU, we have:
Tmin(UTU) =04 (UUT) > 04,(M) — |[M - UU ||
>0, (UU") > op(M) — [M-UUT||, > %ak(M)

On the other hand, we have:

9
167+ M) XL W? <omn(D) [X W[ < [XITWEW X ||

<|XIUUTXL|, = ||Px, M -UU")Px ||,

<M-UUT|, < Sonv)

Let the principal angle between X and W to be 6. This gives sin®§ = HXIVVH2 < %. Thus
cos? 0 = 02, (XTW) > 3. Therefore:

min

Tin(X'U) > 07, (XT W)oin (UTU) > 07,(M) /2

min

B.2 Proof of Theorem B.1]

Now, we are ready for our key theorem. By Lemma|B.2} Lemma[B.3] and Lemma [B.4] we already
know the function has good property locally in the region D = {U[[[M — UU || . < 5o (M)}
which alludes linear convergence. Then, the work remains and also the most challenging part is to
prove that once we initialize inside this region, our algorithm will guarantee U never leave this region
with high probability even with relatively large stepsize. The requirement for tight sample complexity
and near optimal runtime makes it more challenging, and require us to further control the incoherence

of Uy, over all iterates in addition to the distance ||M —-uUu’T H o=

Following is our formal proof.

Proof of Theorem[B_1) Define event ¢, = {vr < t, f(U;) < (1 — 3L)"(14-)% max; ;(U;) <

M}. Theorem is equivalent to prove event € happens with high probability. The proof
achieves this by contructing two supermartingales for f(U;)le, and g;(U;)1e, (where 1(.) denote
indicator function), applies concentration argument.

The proofs follow the structure of:

1. The constructions of supermartingales
2. Their probability 1 bound and variance bound in order to apply Azuma-Bernstein inequality

3. Final combination of concentration results to conclude the proof

First, let filtration §; = o{SG(Uy), - , SG(U;_1)} where o{-} denotes the sigma field. Note by
definiton of &;, we have &; C §;. Also €; 1 C &, and thus 1¢,,, < 1g,. Note &; denotes the event
which up to time ¢, U always stay in a local region which both close to M and incoherent.

By Lemma we immediately know that conditioned on €;, we have || U;|| < v/2, 0pin (X TU;) >
1/v/2k and 0,1, (U, Uy) > 1/2k. We will use this fact throughout the proof.
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Construction of supermartingale G: Since g;(U) = e;r UU e, is a quadratic function, we know
for any change AU, we have:

9:(U + AU) = g,(U) + 2¢] (AU)U e, + |[e] AU|?
We know for any [ € [d]:
Elle/ SG(U)[1e, < E16d*6;(u u; — M;;)? max [[e] U 1e,

—16d” ||e] (UUT — M) || max [[e] U 1e, < O(12k*k*)1e,
K3

Therefore, by update Eq.(8), and ESG(U) = Vf(U) = 4(UU"T — M)U, we know:
E[gi(Uts1)le, |84

2
=[g:(U;) — 2ne/ [ESG(U,)|U/ e; + %E HeiTSG(Ut)HQ]let

2
=[tr(U] e;e;] [I— 85(U, U] — M)]U;) + %E el SG(UL|"1e,
[tr(U;reieZTUt(I — 877U:Ut)) + 8ntr(U;reieZTMUt) + 7720(/1,2]62#;4)]1@,[
[(1 = 810min (U] Uy))gi(Uy) + 8nir(U/ eje] MU,) + n*O(1°k*k*)]1e,

4 k
(1= =D)gi(Us) + 16VI0EE + 20 (uk?w )L,

IA I

IA

IA

e,

The last step is true by choosing constant c in learning rate 7 to be small enough.

an, npks
(1 H)gz(Ut)+60 p

2
Let Gy = (1 — 22)7%(g;(Uy)le, , — 15455 ). This gives:

2

4 kr
EGit41) < (1 — ;n)*t(gi(Ut)let - 15ud ) < Ga

That is G;; is supermartingale.
Probability 1 bound for G: We also know
4n. _
Git — E[Git|Fe1] =(1 — ;”) t [—ne/ [SG(U;) — ESG(U,)| U/ e;

2
+ %HI@?SG(UOIF ~Ele/ SG(U)|?)| Le,, ©)

Since when sample (i, j) entry of matrix M, for any [ € [d], we have:

e/ [SG(U)|U/ e - 1e,_, = O()ir(UTeje] SG(U))1e,_,
=0(1)d*(Uu’ — M)ijtr[UTelelT(eiujT + ejuiT)]lgtf1
<0(1)d* [UUT — M| _ max e/ U|[* 1e, , < Ok k*)1e,

and

el SG(UY|Le,, = O(1) o] SG(U)|" Le,
:O(l)d‘l(UU—r — M)ZZJ Hel—r(eiu;r + eju;'—)H2 le,_,
<oyd*|[uuT - M|, max e/ U|* 1e, , < O(iPdk*k5)1e,

Therefore, by Eq.(9), we have with probability 1:

4
Gt = E[Gul§e1]l < (1 = =)0k x")Le, (10)
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Variance bound for G: For any [ € [d], we also know
Var(e] [SG(UL)|U/ e - Le, ., [§e-1) < E[(Vgi(Ur), SG(Uy))*Le,_, [Fe-1]
1
:O(l)ﬁ Z cl4(UUT — M)?jtr[UTelelT(eiujT + ejuj)]ngh1
j
<O(1)d*>>» (UUT - M)j;u[U"eu] P 1e, ,
J
W3

<0(1)d? ||e; (UUT = M)||” max [|e] U||" 1¢, , < O e, .

and
Var(|le] SG(U)|*1e,_,[§:-1) < E[VZgr(SG(U,), SG(Uy))*1e,_, |T1-1]
1 4
:O(l)ﬁ z:dS(UUT - M)} |lef (eiu] +eul)| le,_,
ij
<O(1)d® Y (UUT = M)}, luy]* 1e,_,
J
<oM)d* |[UUT = M|, ||ef (UUT = M)||” max ||e] U||" le, , < O(uPdk®k")1e,

Therefore, by Eq.(9), we have

4n 3E3K6
Var(Gal§i-1) < (L= 1) 2 O( =) le an
Bernstein’s inequality for G: Let 02 = Zj—:l Var(G;.|§-—1), and R satisfies, with probability 1
that |G, — E[G;r|§--1]] < R, 7 =1,--- ,t. Then By standard Bernstein concentration inequality,
we know:
PG> Gio + 5) < exp(— L2 )
, . exp(— 12
it i0 S) > p0'2+R8/3

Since Gp = g;(Up) — 15“kf2, let s’ = O(1)(1 — 22)![\/o2logd + Rlog d], we know

pkr? 4n ., pkr? 1
P (sUte, 2 5255 4 (1= Pyt - 15255 ) <

By Eq.(I0), we know R = (1 — 4)~'nO(u2k?k?) satisfies that |Gir — E[Gir|§r—1]] < R, 7 =
1,---,t. Also by Eq. (TT)), we have:

4 [13k3kS logd . | 4 [13k3KT log d
(1_£)t /o2 Tog d < nO( %) Z(l_%)%—QTS\/ﬁO( %)

T=1

by n < m and choosing c to be small enough, we have:

3k3K71 2
J = oy L log d - 08dy | 10 (u2k2 og d) < “";””

10pkr>

Since initialization gives max; g;(Ug) < 45, therefore:
pkr? 1
P(g;(Ui)le, , > 20 ) < ST
That is equivalent to:
ukr? 1
P(€&—1 N{g:(Uy) > 20 ] B < odiT (12)

18



Construction of supermartingale ':  On the other hand, we also have
E|SG(UIIH1e, < E16d*(u] u; — M) max e U|" Te,
<16d%|U, U] — M|} max el UL Le, < O(udkr?) f(U)1e,
Therefore, by update function Eq.(8)),

E[f(Ut1)le, |5
<[f(U,) = E(Vf(U,),nSG(U,)) + 7°E | SG(U,)| 3] 1e,
=[f(U) = n|IVF(U)|F + n’E[|SG(U,) | F]1e,

<[ = 2 (U + POk {(U) e,

<= Df(ULe,

Let Fy = (1 — 1)7" f(Uy)1le,_,, we know Fj is also a supermartingale.
Probability 1 bound for F': With probabilty 1, we also have:

F, = E[F[§i-1] =(1 = 1)~ [-n(V/(U), SG(U,) ~ ESG(UY))

2
+ %(VQf(Ct)(SG(Ut)y SG(Uy) —EV?f(¢)(SG(Uy), SG(U))Le, _,
(13)
where (; depends on SG(Uy).
First, recall we denote SVD(M) = XSX T, and SVD(UU ") = WDW ' , and observe that:

||~U‘UT - MHoo 1€t—1 = max |tr(eiT(UUT - M)ej)u@tfl
€]
=max|tr(e] (Px +Px,)(UUT —M)e;)|le,_,
ij
<max|u(e] Px(UUT —M)e;)|le, , + max|u(e/ Px, UU "ej)|le, ,
1] 9

<ma o] X [UUT M|, T, , +max o] W[ [UUT ~ M| e, ,

<o(\/ ") /(0]

Then, when sample (i, j) entry of matrix M, we have:
(Vf(Uy), SG(Up))le, , < OM) V(U ISG(U)| g Le,
<O()d*/FT)(UUT — M), [leiu] +euf |2 1e,
<O /FT0)[UUT = M| _ max [e] Ul Te,., < O(udkn) f(UpLe, ,
and
V2f(G)(SG(UL), SG(U))Te, , < O(1)[|SG(UL)|3
<0(1)d* [UUT = M| max|e] U|* le, , < O(2dK>*s") f(U)le, ,
Therefore, by decomposition Eq.(T3), we have with probability 1:

Fe=EIRISe1]] < (1= 1)~ n0(udkr®*) f(Us-1)Te, -, < (1= 1)~ (1=55) O udhn®)le,
(14)
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Variance bound for F': We also know
Var((Vf(Uy), SG(Un))le,_,[8i-1) < E[(Vf(Ur), SG(Uy))*1e,_, [§e-1]
<[VFUDI3 EIISGUI5 e, < O(1)d? max [le] U|* f2(Up-)le,
<O(pdkr?) f2(Us-1)le, ,
and
Var(V2 () (SG(U,), SG(U)le, ,|Fe-1) < E[VZf(G)(SG(UL), SG(UL)) e, , [Fi-1]
OME ||SG(U)|[5 = O(1)ES(UUT — M), max e/ U||" 1e,

iJ
Hd [ouT — M| |[uuT —Muimﬁxuei Ul te, ..

SO(MdddkS‘%’?)fz (Ut_l)let,—l
Therefore, by decomposition Eq.(T3), we have:

udk

)Qt 20( )1@t 1

15)

Var(F[§i-1) < (1) 2 O(udkn®) f(Upi) e, , < (1=~ (1= -

Bernstein’s inequality for F':  Let 02 = Ztr:1 Var(F;|§--1), and R satisfies, with probability 1
that |- — E[F;||§,-1]| < R, 7 =1,--- ,t. Then By standard Bernstein concentration inequality,
we know:

s2/2

02+ Rs/3
Let s' = O(1)(1 — )'[\/0?log d + Rlog d], this gives:
Y
P(f(Ut)qut—l > (17;) f(U )+8)_ 2d10

By Eq.(T4), we know R = (1 — 1)~ (1 — L )inO(udkr®®) satisfies that |F, — E[F;|§,—1]] <
R, 7=1,---,t Also by Eq. (I3), we have:

dklogd. |«
(1—3) VoZlogd < no(y/ B85 = $Z Dyat- 27(1—%)%

P(Fy > Fy + s) < exp( )

=1
t
n .\t pdklog d M \or M \or_ URY pdklogd
<(1 — — r— e — Iy2t—27(1 — L2712t < _
<(1 2,9 n0( 2 ) ;:1(1 H) (1 2/@) <(1 2/{) ViO(y/ - )

by n < m and choosing c to be small enough, we have:

=1~ 21)%/170(\/@) +n0(udkr®®)) < (1 — %)t(%%y

Since Fy = f(Ug) < (55-)?, therefore:

n
P(f(U)le, , = (1— E)t(
That is equivalent to:
n 1
5

) 1
5:) (10071 =

P& n{f(Us) = (1 - < 5g10 (16)
Probability for event ¢7: Finally, combining the concentration result for martingale G (Eq.(12))

and martingale F' (Eq.(16)), we conclude:

Plein€) = P e (Ula(U) 2 2025 U (g0 2 (1= (o)
S (U) =203 L p U > (1 Lyt < 2
; (€ -1N{g:(Ug) >20 d D+ P& 1 n{f(U) > (1 *ﬂ)(m)})_T@
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Since

We finishes the proof. O

C Proof of General Asymmetric Case

In this section, we first prove Lemma3.2] set up the equivalence between Algorithm[2and Algorithm[3]
Then we prove the main theorem for general asymmetric matrix (Theorem [3.3). WLOG, we continue
to assume || M|| = 1 in all proof. Also, when it’s clear from the context, we use « to specifically to
represent 1 (M). Then o, (M) = L. Also in this section, we always use d = max{d;,d>} and

denote SVD(M) = XSY ", and SVD(UV ") = Wy DW/..

Proof of Lemma[3.2] Let us always denote the iterates in Algorithm 2]by U, V,, and denote the
corresponding iterates in Algorithm by U}, V; using prime version. We use induction to prove the
equivalence. Assume at time ¢ we have U, V,| = U,V . Recall in Algorithm we renormalize
U,, V, to Uy, V,, this set up the correspondence:
U, = U;R; Dy, QD'
Vi =ViR,D, iQ D'}
Denote P}, = R;;D},~2Q}, D'z, and P, = V{R{ D}, ~2Q},D'z. Clearly P;P{," = L Then
we have U, = U;Py;, V, = P/, and thus:
U1V,
Z(fjt — 2nd1d2(I~Jt\7tT — M)ijeiejTVt)(Vt — 2nd1d2(I~Jt\7tT — M)ijeje;rﬁt)—r
=(UiPy — 2pdida(ULV, T — M)jjeie] ViPy)(ViPy — 2pdidz (U VT — M)jjeje] UiPy)
=(U} — 2nd1d2(U V" — M);je;e] VPP,
(Vy = 2pdida (U3 VT — M)jje5ef UPLPL )T
:U;HV;HT
Clearly with same initialization algorithm, we have UV ] = U,V T, by induction, we finish the

proof. O

Now we proceed to prove Theorem[3.3] Since Algorithm [2]and Algorithm 3]are equivalent, we will
focus our analysis on Algorithm [2] which is more theoretical appealing. As for the symmetric PSD
case, we first present the essential ingradient:

Theorem C.1. Ler f(U,V) = |[UVT — M| i 9i(U, V) = |lefUVT
||e;»'—VUT H2,fori € [d1] and j € [da]. Suppose after initialization, we have:

® and hi(U, V) =

1
20K

10pkk? 10pkk?

d1 ’ d2
Then, there exist some absolute constant c such that for any learning rate n < m, with at
least 1 — d% probability, we will have for all t < T that:

f(Uo, Vo) < (

)% max g;(Up, Vo) < max h;(Up, Vg) <
7 J

ULV < (- (S maxg (UL V)

< " maxh]([]t7 \/t) < 7“‘!

STao ™ =4

Theorem [3.3|can easily be concluded from Theorem|[C.I]and Lemma[A.T] Theorem [C.T]also provides
similar guarantees as Theorem in symmetric case. However, due to the additional invariance
between U and V, Theorem need to keep track of more complicated potential function ¢; (U, V)
and h; (U, V) to control the incoherence, which makes the proof more involved.
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The rest of this section all focus on proving Theorem|[C.1I] Similar to symmetric PSD case, we also
first prepare with a few lemmas about the property of objective function, and the spectral property of
U, V in a local Frobenius ball around optimal. Then, we prove Theorem|[C.I]|by constructing three
supermartingales related to f(Uy, V), g:(Uy, Vi), hj(Uy, Vi) each, and applying concentration
argument.

To make the notation clear, denote gradient V f(U, V) € R(d1+d2)xk;

_ (ap/(U,V)
viw.v) = (B0 )
Also denote the stochastic gradient SG(U, V) by (if we sampled entry (i, j) of matrix M)
T
SG(U, V) = 2d1d(UVT — M), (e i V)

ESG(U, V) = Vf(U,V) =2 ( CAA )>T )

Uprr) _ (U .
(Vt+1) (Vt) nSG(Us, Vi)

and thVtT = U,V is the renormalized version of U;V, .

By update function, we know:

C.1 Geometric Properties in Local Region

Similar to symmetric PSD case, we first prove two lemmas w.r.t the smoothness and property similar
to strongly convex for objective function:

Lemma C.2. Within the region D = {(U, V)| ||U|| < T, || V] <T}, we have function f(U, V) =
IM — UV |2 satisfying:

IV£(U1, Vi) = VF(Us, Vo) < B2([Ur = U + [ V1 = Va|7)
where smoothness parameter 3 = 8 max{I'?, || M]||}.

Proof. Inside region D, we have:
IV f(U1, V1) — Vf(Usz, V)lI

0 0 0
Han(Ul’Vl) 8Uf(U27V2)HF+H f(UL, V1) = an(U27V2)HF

=4([(UV{ =M)V; = (UsVy = M)V + [[(U1 V] = M) U; = (UsVy — M) ' Us|?)
<64max{T, | M|*}(|[Uy = Ul + V1 = Val[f)
The last step is by similar technics as in the proof of Lemma [B.2] by expanding
UV V= UV, Vo= (Up = Up)V{ Vi + Us(Vi = Vo) TV + UV (Vi = Vy)
O

Lemma C.3. Within the region D = {(U, V)|owin(XTU) > 7, omin(Y V) > v}, then we have
function f(U, V) = |[M — UV |2 satisfying:

IVF(U.V)[% = af(U,V)
where constant o = 42,

Proof. Let fI, V be the left singular vectors of U, V. Inside region D, we have:
IOV - M)V
=||Pg(UVT = M)V + [Py (UVT - M)V
>01(V)?![Pg(UV' = M)Py|[f + [Py, MV
>01(V)?[Pg(UVT = M)Pg [l + omin (Y V)?|[ Py X7
=01(V)?[Pg(UVT = M)Py [[f + omin(Y " V)?|[ Py, M§
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Therefore, by symmetry, we have:
IVFU, V)| =4(I(UVT = M)V +[[(UVT -~ M)TUJ[)
247 (2P (UVT = M)Py [ + [Pg, ME + [MPy,_[?)
>4 |UVT — M
O

Next, we show as long as we are in some Frobenious ball around optimum, then we have good
spectral property over U, V which guarantees the preconditions for Lemma|[C.2]and Lemma|C.3]

Lemma C.4. Within the region D = {(U,V)|||M — UVTHF < f50k(M)}, and for U =
WyD2,V = Wy D2 where WyDWy, = SVD(UV '), we have:

U <V2[M[l,  0min(XTU) > Vor(M)/2

IVI<V2(M[l,  omin(YTV) > Vor(M)/2

Proof. For spectral norm of U, we have:
IO = DIl = [[OVT] < M| + [M-UVT| < [M]|+ [M-UVT| . <2|M]|
For the minimum singular value of UTU, we have:
Tmin(UTU) =03,(D) = 0, (UV") > 04, (M) — [M - UV |
>op(M) — [M-UUT|, > %ok(M)
By symmetry, the same holds for V. On the other hand, we have:

1
Lo M) 2 M- UVT > [P, (M - UV, = [P, UVT . = [Px, WuDl

9
2 [Px, WuD|| 2 150:(M) X Wy

Let the principal angle between X and Wy to be 6. This gives sin® 6 = ||XIWU ||2 < 5. Thus

cos? 0 = o2, (XTWy) > . Therefore:
02 (XTU) > 02, (XTWy)omin(UTU) > 04(M) /2

min min

1
5

C.2 Proof of Theorem

Now, we are ready for our key theorem. By Lemma Lemma and Lemma we al-
ready know the function has good property locally in the region D = {(U, V)| HM -Uv’ H P <

Tlook(M)} which alludes linear convergence. Similar to the symmetric PSD case, the work remains
is to prove that once we initialize inside this region, our algorithm will guarantee U, V never leave
this region with high probability even with relatively large stepsize. Again, we also need to control
the incoherence of U, V, over all iterates additionally to achieve tight sample complexity and near
optimal runtime.

Following is our formal proof.
Proof of Theorem[C.1] For simplicity of notation, we assume d = d; = ds, and do not distinguish

d; and dy. However, it is easy to check our proof never use the property M is square matrix. The
proof easily extends to d; # ds case by replacing d in the proof with suitable d, ds.

Define event ¢ = {vr < ¢ f(U;,V,) < (1 — L) ()% max; g;(U,, V,) <
%f”z,maxﬁ- hij(U;,V;) < %} Theorem is equivalent to prove event & happens

with high probability. The proof achieves this by contructing two supermartingales for f(U,;, V)1g¢,,
9i(Uy¢, Vi)le, and hi(Uy, Vi)le, (where 1.y denote indicator function), applies concentration
argument.

The proofs also follow similar structure as symmetric PSD case:
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1. The constructions of supermartingales
2. Their probability 1 bound and variance bound in order to apply Azuma-Bernstein inequality
3. Final combination of concentration results to conclude the proof

Then let filtration §; = c{SG(Uy, Vo), -+ , SG(U;_1, Vi_1)} where o{-} denotes the sigma field.
Also let event , note &; C §;. Also €41 C &, and thus 1¢,,, < lg,.

By Lemma we immediately know that conditioned on &;, we have ||Uy|| < v/2, ||[V:]| < V2,
Omin(XTUs) > 1/V25, omin(Y T V) > 1/4/2k. We will use this fact throughout the proof.

For simplicity, when it’s clear from the context, we denote:
Avu S Uiiq U,
= — = — ~
( z V) nSG (U, Vi) <Vt+1 v,

Construction of supermartingale G: First, since potential function ¢;(U, V) is forth-order poly-
nomial, we can expand:

9(Ui41, Vis1) = gi(Uii1, Vis1) = (U + Ay, Vi + Ay)

ezT(th + AU)(Vt + AV)T(Vt + AV)(th +Au) e

= gl(fjt, \7,5) + QeTAUV;thfJ:el + QeZTthVtTAvatel + Ry
= gl<ﬁtavt> + Ry

Where we denote R, as the sum of first order terms and higher order terms (all second/third/forth
order terms), and Rs as the sum of second order terms and higher order terms.

We now give a proposition about properties of R; and Ry which involves a lot calculation, and
postpone its proof in the end of this section.

Proposition C.5. With above notations, we have following inequalities hold true.
E[Role, [3:] < n°O(u’k?k*)1e,
|Ri[le, < nO(1*k*k°)1e, wp 1
133 RS
d

E[R{le, |8t < n”O( e,

Then by taking conditional expectation, we have:

Elg(Uss1, Vizr)le, |8 = Elgi(Uss1, Vir)le, 5
SE[gl(ﬁt,vt) + QeZFAUV;thﬁ:eZ + QeTthV:Avfjtel + Rolle,

The first order term can be calculated as:

[~E2e] AuV,] V.U e +2¢] U, V] AvU,e]le,
e (U, V] — M)V, VTV, U7 e, — 4] U, 07 (T, V] — MT)V, 07 el]le,
=[-4e/ U, V]V, V]V, U/ e; + 4¢/ MV, V]V, U/ e, — 4¢/ U, U] (U, V] —M")V, U/ e/|1¢,

- - . 2 -~
<[~ A[omin(VIV) lef T, V] H + HeZTUtVtT H

Vo7 e

n Heffjtﬁj e,

o -, oy

2 . . kk 4 S
<[-=g(0 Vi) + 8055 4 = 0i(U,, Vi)lLe,

1 -~ =~ kk
S[—;gl(Uta V) + 805501,
In second last inequality, we use key observation:

HeQUtVtT

— el WuDWY | = [ef WuDW{ || = [ef G107
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By Proposition we know E[Ry1¢,|:] < n?O(u?k%k*)1¢,. Combine both facts and recall

C .
n < kRS Togd W have:

~ ~ -~ 80nukk
Elg(Ursr, Vi) Le, [§e] < [(1 = D)gi(Ur, Vi) + =125 + 0Pk Le,
-~ 90nukk
< [(1 = Dgi (0, Vi) + =2 e,
The last inequality is achieved by choosing ¢ small enough.
Let Gy = (1— 2)7*(g; (T, Vi) le, , — 90L552) This gives:
_ CE kr?
E[Gie8i) < (1= 1)~ (g:(Up, V)L, — 9052) < Gy

The right inequality is true since 1¢, < l¢, ,. This implies G;; is supermartingale.

Probability 1 bound for G: We also know:
Gi+1) — ElGi41) I8 =(1 = g)_(t+1)[R1 —ERi]le,
By Proposition|C.5] we know with probability 1 that |R;|le, < nO(12k?k°)1e,. This gives with
probability 1:
Git = ElGul§i-]l < (1= D) ™nO(2k k") Le, (17

Variance bound for G: We also know
Var (G 41)|8¢) = (1 — g)_Q(tH)[ERflet — (ERy1¢,)’] < E[Rile,|3]

By Proposition we know that E[R31¢, |§:] < 7720(%)1@. This gives:

3]€3K6
EEE e, (18)

Var(Gul§i1) < (1= ) 205

Bernstein’s inequality for G: Let 02 = Zizl Var(G;-|§-—1), and R satisfies, with probability 1
that |G, — E[G|§--1]] < R, 7 =1,--- ,t. Then By standard Bernstein concentration inequality,
we know:

s2/2

P(Gi > Gip+s) < eXp(m

)

Since Gio = ¢:(Uo, Vi) — 90“]“;2, let s’ = O(1)(1 — 2)'[\/0?log d 4+ Rlog d], we know
pkr?

P (gi(fjtavt)letl > 90

n - pkk? 1
+01- ;)t(gz‘(UmVO) - 907) + SI) < o

By Eq.(T7), we know R = (1 — 1)"'nO(p*k?°) satisfies that |Gy, — E[Gi,[§-—1]| < R, 7 =
1,---,t. Also by Eq. (I8), we have:

3k3k6 log d . | o 3k357 log d
(1= 1) Vo?logd < O Fmo285) | 3o (1 = Dper < o F=——25)

T=1

by n < m and choosing c to be small enough, we have:

31.3 .7 2
s — ViiO( /%) "‘770(#2]‘72“5 logd) < 10“1{;

Since initialization gives max; g;(Ug, V) < %, therefore:
.. pkr? 1
P(gi(Uys, Vi)le, , > 100 ) < 3411
That is equivalent to:
- - pkr? 1
P(&;_1N{g:(Us, Vi) > 100 1< 311 (19)

By symmetry, we can also have corresponding result for h; (fjh Vt)
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Construction of supermartingale F: Similarly, we also need to construct a martingale for
f(Uy, V). Again, we can write f as forth order polynomial:
f(Ui1, Vigr) = f(Us1, Vi) = f(U + Au, Vi + Av)
=t ([T + Av) (Vi + Av) = MI[(T; + Ap) (Vi + Av) - M]T)
= f(U, V) +2u(Ag V] (G V] = M) ) + 2u(Av U (T, V] — M) + Q,
= F(0, Vo) + @
Where we denote ()1 as the sum of first order terms and higher order terms (all second/third/forth
order terms), and ()5 as the sum of second order terms and higher order terms.
We also now give a proposition about properties of ()1 and )2 which involves a lot calculation, and

postpone its proof in the end of this section.

Proposition C.6. With above notations, we have following inequalities hold true.

E[Qsle,|8] < n*O(udkr?) f(Uy, Vi)le,
Qilte, <nO(pdkr®) f(U, V)le,  wpl
E[Qile,|3:] < 7720(Hdk“2)f2(fjtvvt)1et

Then by Proposition we know E[Q21¢,|F:] < n?0(udks?)f(Uy, Vi)1e,. By taking condi-
tional expectation, we have:

E[f(Uss1)le, |5
<[f(U, Vi) = E(Vf(U;, Vi), nSG(Uy)) + EQa]1e,

=[f(U, Vy) — 1 va(fjuvt) i + EQ2]1le,

<[ = 2 {00, Vo) + P Olpdkn®) F(T1, Vo)L,

<= DI(0. Vi)le,

Let Fy = (1 — %)‘tf(ﬂ't, Vi)le, ,, we know Fj is also a supermartingale.

Probability 1 bound: We also know

Fiy1 —E[Fi11|8:] = (1 — g)i(Hl)[Ql —EQi]1e,

By Proposition we know with probability 1 that |Q;|le, < nO(udks®)f(U;, Vi)le,. This
gives with probability 1:

By —EFy| < (1= 1) "0 (udkr®) f(Us-1)Le,, < (1= )71 = SL)nO(udkn)le, , (20)

Variance bound: We also know

Var(Fi[§e) = (1= D)2 DEQHe, — (BEQiLe,)?) < (1 - 1) 2 VEQ] 1 [5:]

By Proposition[C.6] we know that E[Q?1¢,|F:] < n°O(udkr?)f2(Uys, Vi)1e,. This gives:
dk
Var(Fy[§i-1) < (1= 1)~ 2920 (udkn?) f2(Ur-)le, -, < (1=) 2 (1= 20220 e,
21
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t

Bernstein’s inequality: Let 0> = " _, Var(F,|§,_1), and R satisfies, with probability 1 that

T=1
|F; — E[F;||§r-1]] < R, 7 =1,--- ,t. Then By standard Bernstein concentration inequality, we
know:
s2/2
P(F, > F, < —— =
(Fe = Fot5) < exp(C5mpe7g)

Let s = O(1)(1 — 1)'[\/o?log d + Rlog d], this gives:

P(F(U, Vi)le,, 2 (1= )" f(Up) +5) < oo

By Eq ,weknow R = (1—1)7%(1— 5L)*nO(pudke) satisfies that [F, —E[F;|§,_1]| < R, 7 =
1.t Also by Eq. (Z1)), we have:

N M )2t—2r _ T yor
(1= -)"Vo2logd <nO(\| =—5==),| D (1= )21 - o)

T=1
t
M\t pdklog d N \or M \or_ Uy pdklog d
<(1 = - r— o — y2t-27(1 — L2712t < _
<(1 2K) nOo(4/ =) ;:1(1 H) 1-3.) < (=5 ) Vo ——)

byn < m and choosing c to be small enough, we have:

= (1= Ly (a0 G P L) | o(udkn)] < (1~ L) (55

Since Fy = f(Ug) < (5= )2, therefore:

T X UINTILRY 1
1 >(1— L) (—)?)< —
P(f(Ut7Vt) [ (1 2[{) (10/4/) )— 3d10
That is equivalent to:
P& N {0, V) > (1 - L) (—)2) < o (22)
’ - 2k’ “10k — 3410

Probability for event ¢1: Finally, combining the concentration result for martingale G (Eq.(19))
and martingale F' (Eq.(22)), we conclude:

P(&,_1NE)

1

2
—p [ezt_l N <[Ui{gi(Ut,Vt) > 100“’“;

00V 2 10055 U (0 2 (1= Lyt )]

10k
d pkk? Ny, 1 19
§2ZP(€F1 N {9:(Us, V) > 100 D+ P(&_1n{f(Uy,Vy) = (1 - /{) (107) )
i=1
1
Sﬁ
Since
_ 4 T
P(€r) = ;P(et 1NE&) < -5
We finishes the proof. O

Finally we give proof for Proposition|C.5|and Proposition|[C.6 The proof mostly consistsof expanding
every term and careful calculations.
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Proof of Proposition[C.5] For simplicity of notation, we hide the term 1¢, in all following equations.
Reader should always think every term in this proof multiplied by 1¢,. Recall that:

e;e!lV
ej efrU)

(80) = oy = (35) - (V)
We first prove first three inequality. Recall that:
91(Uss1, Vig1) = 1(Ups1, Vig1) = gi(Up + Ay, Vi + Av)
= ¢/ (Ui +Au)(Vi+Av) (Vi + Av) (U + Au) Tey
g(U, V) +2¢] Ay V]V, Ul e, +2¢, U,V AyUse; + R,
= (U, Vi) + Ry
By expanding the polynomial, we can write out the first order term:
R — Ry :QeIAUVthﬁ:el + QeIthVtTAvatel
=~ 4y (U V]~ M)y (6e] ViV V0T e+ (0,V])(0,07 )a)

SG(U,V) =2d*(UV' —M),; (

Second order term:
Ry — R3

:elTAU\thTVtAEel + eleJtAI,AVthTel + ZeIAUV;AVthTel + QeIAUA\T,\?thtTel

=4n?d* (U, V] —M)?2

iJ
. (51'1

Third order term:
R4 — R3 :291—FAUV:AvAI—Sel + 29;—AUA$AV{~J:€1

=—16n°d°(U, V] — M)J;6, ((vtvt)jj(fjtvt)ij + (ﬁtvt)ij(fjtfjt)ii)

T~ 7T
ej VtVt

2 -~ -~ -~ -~
+ (U0} +260(VeV] )00 )i + 260 (0, V] )3)

Fourth order term:
Ry = e/ AuAyAvAGe = 160*d* (U, V] — M)}04(0 V)7

_ pks?
= "4

, then we know conditioned on event &;, we have:
2
< O(x). Some key inequality we need to use

For the ease of proof, we denote x
2

max; He;rUtV;rH < O(x), and max; ‘

in the proof are listed here:

He?ﬁtVZH - HefﬁtﬁZH and HelTthJZH - Hefvtv:H (23)

TN.TTT
ej VtUt

and o
[(UiVi)ij] < ‘

e/ U V/|| < 0(vx) 24
The same also holds true for:

(U0 )al <O(VX) and  [(ViV])j5] < O(/X) (25)
Another fact we frequently used is:

LeruvT P < [T < 26 e OV

This gives:
Hﬁt{/: - MH < m]?xHekat mkaxHekVt —l—mkaxHekXHmkaxHekYH ISI] < O(xk)
and recall we choose 1 < m, where c is some universal constant, then we have:
nd? Hﬁt\ﬁ - MH = O(nd*xr) < O(1) (26)

With equation (23)), (24), (23), (26), now we are ready to prove Lemma.
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For the first inequality E[Ro1¢, |T:] < n?0(p2k%k*)1e,:

E[Role,[§:] < E[|Rz — Rs[le,[:] + E[|Rs — Ralle,[Si] + E[|Ralle, [S:]

For each term, we can bound as:

E[|Rz — R[le,[8e) < n°0(d%) Y (0 V] = M), (32000 + (U0 )}

ij

~ o~ 2 ~ o~
<rP0(d®) max e (TV] = M)||" 3" (820(0) + (UO])) < n20(dx?)

E[|Ry — Ralle,|3:] < n°0(d") Y [0 V] — M[%620(x)

<nP0(d%) Hfjt\?j fMH Hef(fjtvtT H ) < 2O(d?x?)

E[|Ralle,|3:] < 7' 0(d®) Y (U V] = M)E;620(x)

ij

<n*O(d") HUtVT MH

TOVv] - H ) < 2O(d*y?)
This gives in sum that

E[Rsle,|T:] < n°O(d*x*)1e, = °O(udkr?) f2(Uy)1le,

For the second inequality |R;|1¢, < nO(u2k?k%)1e, wp 1t
|Rille, < |R1— Ralle, + Ry — R3|le, +[R3 — Rylle, + [Ralle,
For each term, we can bound as:
|R1 — Rolle, <nO(d?) HfjtvtT - MH O(x) < nO(d*x*k)
2 7.5 T 2 2 2
IRy — Ry|le, <i?O(d )HUtVt —MH O(x) < 1O(d?X2~)
376\ e T 3 2 2
Ry — Ralle, <9°0(d®) |[0,9] —M|_0(x) < n0(@**)
. 4
[Ralte, <n*0(d) [09] — M| 0(0) < 90(@*x*x)
This gives in sum that, with probability 1:

|Ri|le, < nO(d*x*k)le, = nO(1*k*k°)1e,

3k3 6

For the third inequality E[R?1¢, |F;] < nO(25")1g,:
ER?le, <4 [E(Ry — R2)*1le, + E(Ry — R3)*1e, + E(R3 — Ry)*le, + ER}1¢,]
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For each term, we can bound as:

E(Rl—&)%et<n20<d2>2<ﬁfvT—M>m (5”0( %)+ (0,V)3,(0,0))3)

<7720(d2)maXHel, o,V - H Z( 5u0(x2) + (T V])2,(0,1, )Zl) < 20(dx®)

E(Ry — Ry)*le, < *0(d%) Y (0, V] — M)}, (5i10(x2) +(0,0] )i-)

ij

<*O(d°) HU v - MH maxHel, o,V - H Z( 20(x

B(Ry — R)*le, < 1°0(d) 37 [0,97 — MIE5,0(x?)
i
-~ 4 -~
gnGO(dlo)HUth—MH HelT(UtVtT H 2y < 20(d*?)
ERle, < USO(dM)Z(ﬁtV: *M)Z 510(x%)
iJ
~ o~ 6 - . 2
<Po(@™) [TV M| |le/ @V = M) 00) < nPo(d?)
This gives in sum that:
SkSIﬁZG

ER?1e, < n20(d*x*)1e, = 12O(Y y

e,

This finishes the proof.

UtUT)zZ) < n?0(d*x?)

O

Proof of Proposition|[C.6] Similarly to the proof of Proposition [C.5] we hide the term 1¢, in all
following equations. Reader should always think every term in this proof multiplied by 1¢,. Recall

that:
f(fjt+17‘~7t+1) = f(Ust1, Vi) = f(fjt + AU,Vt + Av)

= tr ([(U + Au)(Vi + Av) = MI[(T; + Au)(Vi + Av) - M]T)
= f(U, V) + 2r(Ag V] (T, V] —M)T) + 2r(Av U] (T, V] — M) + Qs

= f(ﬁt7vt) + Ql
By expanding the polynomial, we can write out the first order term:

—— 4y (UVT = M);; (] ViVT(GV] = M) e + ] 0,07 (T V] - M)e;)

The second order term:

Q2 — Q3

=tr(AuV, VAL + (U AL AVU] ) 4 2(Au V] AvU[) + 20(Au AL (U, V] —M)T)

=4n?d*(UV'T —M)2,

]
T~x7r 7 T 2 Ty 7717 2
. Hejvtvt e/ U1,

The third order term:
Qs — Qs =2t((Ay V] AvAL) + 2u(AvAVAVU])

(V9T (007 + (D) (O V] = M), )

=—16n°d°(UV'" — M)}, ((vtvt)jj(ﬁtvt)ij’ + (fjtvt)ij(ﬁtﬁt)ii)
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The forth order term:
Qa4 = r(AUAVAVAY) = 165" d*(UVT — M)§ (T, V,)3;
Again, in addition to equation 23)), 23), (24), (23)), we also need following inequality:
(097 M| e, = max|u(e] (U,V] ~ M)ej)]Le,

i

= ma lu(e] (Px + Px, ) (T:V] —Mey)lle,

< ma fu(e] Px(U0V] ~ Me)te, + max (o] Px, UV el

gmzax HeZTXH Hﬁt\?j — MHF le, + mjax He;»rWVH Hfjt\?: — MHF le,
<O(rv/X)V f(Uy) 27

Now we are ready to prove Lemma.
For the first inequality E[Q21¢, 3] < 7?0 (udkr?)f(U;, Vi)le,:

E[QsLe, 5] < E|Q2 — Qalle, 3] +EllQs — Qulle, 5] + ElQu[Le.[]
For each term, we can bound as:

E[|Q2 — Qslle,[8:] <n?O(d) Y _(UV, = M)%,0(x) = 1°0(d*X) £ (U1, V)
ij

E[|Qs — Qalle &) <n°0(d") Y [0V, = M[}0(x)
ij

<P O(a ) O VT = M| £(0, V1) < 020(d0 £(0:, V)

E[|Q4|le,[S¢] §774O(d6)2(ﬁt\7: - M)};0(x)

j
o~ 2 - -
< 0(d™) |0V = M| F(0,, V) < 120(dx) £(01, V)
This gives in sum that

E[Q21e,|F:) < n*O0(d*x) f(Uy, Vi)le, = n*0O(udkr?) f(Uy, Vi) le,

For the second inequality |Q;|1¢, < nO(udkr®)f(U,, Vi)le, wp 1:

|Q1[le, < 1Q1 — Q2|le, + Q2 — Qs|le, +|Q3 — Qulle, +[Qulle,
For each term, we can bound as:
Q1 = Qulte, <00 [0V —M|_[[0.9] —M| 0(vx) <10 £(0:. V1)
Q2 — Qslte, <?0(@) [T ~ M| 000 < 20@*w)1(0,, V1) = nO(dxw) £(D,, V)
Qs — Qulte, <°0(@) [OVT — M| 0() < nO(xw)£(D,, V)
Qilte, <n*0()|[0VT ~M|| 000 < nO(@xn) F(0,, V)
This gives in sum that, with probability 1:

Qille, < nO(d®xk) (U, Vi)le, = nO(udkr®) f(Uy, Vi)le,
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For the third inequality E[Q?1¢, |F:] < n20(udkr?) (U, Vi) le,:
EQ7le, <4 [E(Q1 — Q2)°le, + E(Q2 — Q3)’le, + E(Q3 — Qu)*le, + EQile, |

For each term, we can bound as:

E(Q1 — Q2)*1¢,

E(Qs — Q3)*1¢,

E(Qs — Q4)*1e,

]EQiléf,

~ o~ 2 -~
V] = M|| 000 < PO £2(0,, V)

<PO(d*) Y (U, V] - M),
i

<n'0(d®) Y (T, V] = M)50(x)

)

-~ 2 -~ 2 ~ ~
< O(d%?) HUtVtT _ MHOO HUtVtT _ MHF < ' O(d\3k2) f2(0,, V)
<n?O(d*x) f3(Uy, Vi)
<n°0(d) Y [T, V] - M|50(?)
ij
-~ 4 -~ 2 - -
<@ [TV - M| [0V - M| <0200 20, V)
<n®0(d™) Y (U V] — M)¥;6:0(x%)
i

~ o~ 6 ~ o~ 2 - -
<@ [TV - M| [ GV - M| < 9?0020,V

This gives in sum that:

EQile, < n*O(d*X)f*(Uy, Vi)le, = 0O (udkr?) f(Uy, Vi) le,

This finishes the proof.
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