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1 Parameterizations of the () matrix

As observed in the main paper, if we parametrize () with pairwise probabilities from a BTL model

with parameters v = {~; }7, i.e. ¢;j = pj; = v-jrjv , the resulting PCMC model is equivalent to an
; T

MNL model with parameters ~y. In this section we explore some other ways of parameterizing @) via

a pairwise probability matrix P with entries p;; and setting Q = P7.

Blade-Chest models [2] are based on geometric d-dimensional embeddings of alternatives, where
each alternative ¢ is parameterized with a blade vector b; € R< and a chest vector ¢; € R<, in
addition to a BTL-like quality parameter ; > 0. The Blade-Chest model comes in two variations:
the Blade-Chest distance model, where

pij(b,c,v) = S(||bs — ¢;l[5 — I1bj — cill3 + 7 — 7))

where S(z) = (1+exp(—x))~ ! is the sigmoid/logistic function, and the Blade-Chest inner product
model, where

pij(bye,y) = S(bi-cj —bj - ci +7i —5)-
The quality parameters y; serve to connect the models to the BTL model, but do not meaningfully in-
crease their expressiveness, so we disregard them in our use of the Blade-Chest model here. These two
Blade-Chest models provide useful parameterizations of non-transitive pairwise probability matrices,
P(6), with 6 = {b, ¢} consisting of the 2dn parameters of the “blade” and “chest” embeddings.

Another technique for parametrizing () involves representing ¢;; as a function of features of ¢ and
j, ie. q; = f(Xi,X;;6) where X; gives the salient features of 4, and 6 represents parameters
that, for instance, give weights to these features. We can also formulate such analysis as a factoring
Q= WTF — D, where W is a weight matrix,F’ a feature matrix, and D a diagonal matrix ensuring
that the row sums of ) are zero. We do not explore such parameterizations in this work, but merely
highlight the potential to employ latent features of objects in a straight-forward manner, an approach
closely related to conjoint analysis [4]. Such extensions would be similar to Chen and Joachims’s
work exploiting features of pairwise matchups by parametrizing the blades and chests as functions of
those features [3]].

2 Inference with synthetic data

We now evaluate our inference procedure’s performance in three synthetic data regimes: (i) choice
data generated from a PCMC model with g;; drawn i.i.d. uniformly from [0, 1], (ii) choice data
generated for a simple MNL model with qualities v drawn uniformly on the simplex, and (iii)
choice data generated from a PCMC model with ) parameterized by a two-dimensional Blade-Chest
distance model. In order to create a strongly non-transitive instance of the Blade-Chest distance
model, we draw the blades b; and chests ¢; uniformly at i.i.d. points along the two-dimensional unit
circle, naturally producing many triadic impasses.
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Figure 1: Learning error for PCMC, I-LSR, and Blade-Chest PCMC on synthetic data generated
from (i) Arbitrary @, (i) MNL, and (iii) Blade-Chest models.

The PCMC model’s () matrix has n(n— 1) parameters in general. When () is parameterized according
to BTL we have just n parameters, and when it is parameterized according to a Blade-Chest distance
model in d dimensions, we have 2dn parameters.

We evaluate each parameterization (arbitrary, MNL, Blade-Chest distance) for each synthetic regime.
We employ the Iterative Luce Spectral Ranking (I-LSR) algorithm to learn the model under the BTL
parameterization of (), where the PCMC model is equivalent to an MNL model. When the data is
generated by MNL, we expect MNL to outperform inference under the general parameterization.
When the data is generated by a non-MNL PCMC model, we expect MNL to exhibit restricted
performance compared to a general parameterization, since the data is not generated by a model that
MNL can capture.

2.1 Synthetic data results

We generate training data Ty, and test data Ti.s from each model using 25 randomly chosen triplets
as choice sets. We then follow the inferential procedure in the main paper to evaluare the inferential
efficacy of each of the three models on data generated according to each.

Figure [I] shows our error performance as the data grows, averaged across 10 instances, for each data
generating process and each inference parameterization. We generate 5000 samples, assign 1000
of these to be testing samples, and incrementally add the other 4000 samples to the training data,
tracking error on the testing samples as we increase the size of the training data set.

The inference is applied to a set U with n = 10 objects, meaning that MNL has 20 parameters,
the PCMC model with arbitrary @ has n(n — 1) = 90 parameters, and the PCMC model with the
Blade-Chest distance parameterization in R? uses 2dn = 40 parameters. Overall we examine 9
data—model pairs, trained sequentially in 5 episodes, averaged across 10 instances. The figure thus
represents 450 trained models.

As expected, the inferred PCMC models outperform MNL on data exhibiting ITA violations, while
the MNL model learns the MNL data better, though PCMC is not far behind. More significantly,
the Blade-Chest parametrization of the PCMC model performs very similarly to the general PCMC
model in all three scenarios, despite having far fewer parameters. This is promising in domains where
the O(n?) parameters of a general PCMC model is infeasible but a O(n) parameterization using a
Blade-Chest representation may be feasible.

3 Additional empirical data results and analysis

3.1 Optimization and smoothing

The MNL models were trained using I-LSR, a specialized algorithm for training Multinomial Logit
models. Meanwhile, the PCMC likelihood was optimized using SQSLP [3]] while the Mixed MNL
models were trained using L-BFGS-B [1]], which are both general purpose optimization algorithms
available as part of the scipy.optimize.minimize software package. The reason for the
different choices is that L-BFGS-B does not support the linear constraints that are part of the PCMC
model likelihood. We choose to use L-BFGS-B for the MMNL model because it outperformed
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Figure 2: Prediction error on SFshop data for the PCMC, MNL, and MMNL models. There are
improvements of 31.3% and 19.2% in prediction error over MNL and MMNL respectively when
training on 75% of the data.

SQSLP on SFtravel data, and we wanted to ensure that we were affording it the best possible
chance to do well against the new model we contribute in this work.

The additive smoothing applied was o = 0.1 for SFwork and o = 5 for SFshop, where « is added
to each C;g appearing in the likelihood function. The major motivator for the additive smoothing
is that SQSLP occasionally goes awry on some of the permutations of the data, maintaining high
error after a bad step. Even as currently formulated, the mean error improvement is somewhat
underestimating the efficacy of the PCMC model, as a few bad runs out of 1000 will skew the
distribution. Bad runs are easy to identify using cross-validation. Additionally, the implementation
of SQSLP would try to compute numerical gradients through function evaluation at points outside
the feasible space, which sometimes involved g;; + g;; = 0, violating the irreducibility of the chain.
Additive smoothing prevents these issues at the cost of some efficacy of the model. We find the
improvement in error of the PCMC model to be even more significant in light of the optimization
issues involved, and find that it reinforces development of PCMC training algorithms as an interesting
research area. Refining the optimization routines for learning PCMC models should be seen as
important future work.

3.2 Empirical results for SFshop data

Figure [2] analyzes the SF'shop dataset, repeating the analysis of SFwork found in the main paper.
The indexing of Q is again according to the estimated selection probabilities on the full set of
alternatives, which were: (1) drive alone both directions, (2) share a ride with one person in both
directions, (3) share a ride with one person in one direction and drive alone in the other direction, (4)
walk, (5) share a ride with more than one person in both directions, (6) share a ride with one person
in one direction and more than one in the other direction, (7) bike, and (8) take public transit. The
MMNL model here mixes k£ = 6 models, giving it 48 parameters while PCMC has 56 and MNL has
8. When using the full training set, PCMC performs 31.3% better than MNL and 19.2% better than
MMNL.

3.3 Inferred Q matrices

The numerical values of the learned Q matrices, trained 100% of the data, are given below.

—3.875 2.314 0.557 0. 0. 1.004
18.17  —29.571 0.776 1.836 2.075 6.713
A | 484 7.752 —35.994 1.042 14.476 7.884
Qo = 1. 0.105 0.456 —13.147  3.65 7.937
21.201 9.108 3.323 7.363 —47.7 6.704

11.459 3.014 0.117 5.67 12.334 —32.594



[—35.264 1. 0. 1. 0. 0. 5.142 28.122 7
0. —12.959 3.363 0. 0. 2.03 2.433 5.133
1.635 0. —22.945 0.637 0.243 0. 4.877 15.553
A - 0. 12.73 5.95 —24.455 2.174 0. 1. 2.601
Qshop = 1. 3.487 4.458 0.194 —15.366 0. 5.227 1.
1. 1.143 5.788 6.841 6.344 —31.747 6.15 4.482
1.331 1.305 0.136 0. 0.226 0. —30.693  27.695
L 0. 0. 0.402 10.521 0. 0. 1.602 —12.526

3.4 Count matrices

Here we present data about the frequency with which pairs of alternatives appear in the same choice
set. Matrices Ayo and Agyop have as their (i, ) entry the number of choice sets which contained
both ¢ and j in the SFwork and SFshop datasets respectively:

1323 4755 3729 1658 4755
1479 1395 797 1479
A — — 4003 1738 5029
vork = 13729 1395 4003  — 1611 4003
1658 797 1738 1611 - 1738

4755 1479 5029 4003 1738 @ —

r— 3075 3075 3075 1844 3075 2069 29167
3075  — 3157 3157 1908 3157 2136 2997
3075 3157  — 3157 1908 3157 2136 2997
3075 3157 3157 @ — 1908 3157 2136 2997
1844 1908 1908 1908  — 1908 1908 1876
3075 3157 3157 3157 1908 — 2136 2997
2069 2136 2136 2136 1908 2136 — 2094

12916 2997 2997 2997 1876 2997 2094 — |

1323 —
4755 1479

Ashop =

The relative frequencies of choice sets of different sizes in the two datasets are given in Table 1.

Table 1:

S|= | 3 4 5 6 7 8
SFwork | 948 1918 1461 702 - -
SFshop | 0 1 131 902 311 1812
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