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Abstract

Determinantal Point Processes (DPPs) are probabilistic models over all subsets
a ground set of N items. They have recently gained prominence in several ap-
plications that rely on “diverse” subsets. However, their applicability to large
problems is still limited due to O(N3) complexity of core tasks such as sampling
and learning. We enable efficient sampling and learning for DPPs by introducing
KRONDPP, a DPP model whose kernel matrix decomposes as a tensor product of
multiple smaller kernel matrices. This decomposition immediately enables fast
exact sampling. But contrary to what one may expect, leveraging the Kronecker
product structure for speeding up DPP learning turns out to be more difficult. We
overcome this challenge, and derive batch and stochastic optimization algorithms
for efficiently learning the parameters of a KRONDPP.

1 Introduction
Determinantal Point Processes (DPPs) are discrete probability models over the subsets of a ground
set of N items. They provide an elegant model to assign probabilities to an exponentially large
sample, while permitting tractable (polynomial time) sampling and marginalization. They are often
used to provide models that balance “diversity” and quality, characteristics valuable to numerous
problems in machine learning and related areas [17].

The antecedents of DPPs lie in statistical mechanics [24], but since the seminal work of [15] they
have made inroads into machine learning. By now they have been applied to a variety of prob-
lems such as document and video summarization [6, 21], sensor placement [14], recommender
systems [31], and object retrieval [2]. More recently, they have been used to compress fully-
connected layers in neural networks [26] and to provide optimal sampling procedures for the Nys-
tröm method [20]. The more general study of DPP properties has also garnered a significant amount
of interest, see e.g., [1, 5, 7, 12, 16–18, 23].

However, despite their elegance and tractability, widespread adoption of DPPs is impeded by the
O(N3) cost of basic tasks such as (exact) sampling [12, 17] and learning [10, 12, 17, 25]. This
cost has motivated a string of recent works on approximate sampling methods such as MCMC
samplers [13, 20] or core-set based samplers [19]. The task of learning a DPP from data has received
less attention; the methods of [10, 25] cost O(N3) per iteration, which is clearly unacceptable for
realistic settings. This burden is partially ameliorated in [9], who restrict to learning low-rank DPPs,
though at the expense of being unable to sample subsets larger than the chosen rank.

These considerations motivate us to introduce KRONDPP, a DPP model that uses Kronecker (tensor)
product kernels. As a result, KRONDPP enables us to learn large sized DPP kernels, while also
permitting efficient (exact and approximate) sampling. The use of Kronecker products to scale
matrix models is a popular and effective idea in several machine-learning settings [8, 27, 28, 30].
But as we will see, its efficient execution for DPPs turns out to be surprisingly challenging.

To make our discussion more concrete, we recall some basic facts now. Suppose we have a ground
set of N items Y = {1, . . . , N}. A discrete DPP over Y is a probability measure P on 2Y
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parametrized by a positive definite matrix K (the marginal kernel) such that 0 ⪯ K ⪯ I , so that for
any Y ∈ 2Y drawn from P , the measure satisfies

∀A ⊆ Y, P(A ⊆ Y ) = det(KA), (1)

where KA is the submatrix of K indexed by elements in A (i.e., KA = [Kij ]i,j∈A). If a DPP
with marginal kernel K assigns nonzero probability to the empty set, the DPP can alternatively be
parametrized by a positive definite matrix L (the DPP kernel) so that

P(Y ) ∝ det(LY ) =⇒ P(Y ) =
det(LY )

det(L+ I)
. (2)

A brief manipulation (see e.g., [17, Eq. 15]) shows that when the inverse exists, L = K(I −K)−1.
The determinants, such as in the normalization constant in (2), make operations over DPPs typically
cost O(N3), which is a key impediment to their scalability.

Therefore, if we consider a class of DPP kernels whose structure makes it easy to compute determi-
nants, we should be able to scale up DPPs. An alternative approach towards scalability is to restrict
the size of the subsets, as done in k-DPP [16] or when using rank-k DPP kernels [9] (where k ≪ N ).
Without further assumptions, both approaches still requireO(N3) preprocessing for exact sampling;
another caveat is that they limit the DPP model by assigning zero probabilities to sets of cardinality
greater than k.

In contrast, KRONDPP uses a kernel matrix of the form L = L1 ⊗ . . . ⊗ Lm, where each sub-
kernel Li is a smaller positive definite matrix. This decomposition has two key advantages: (i) it
significantly lowers the number of parameters required to specify the DPP from N2 to O(N2/m)
(assuming the sub-kernels are roughly the same size); and (ii) it enables fast sampling and learning.

For ease of exposition, we describe specific details of KRONDPP for m = 2; as will become clear
from the analysis, typically the special cases m = 2 and m = 3 should suffice to obtain low-
complexity sampling and learning algorithms.

Contributions. Our main contribution is the KRONDPP model along with efficient algorithms for
sampling from it and learning a Kronecker factored kernel. Specifically, inspired by the algorithm
of [25], we develop KRK-PICARD (Kronecker-Kernel Picard), a block-coordinate ascent procedure
that generates a sequence of Kronecker factored estimates of the DPP kernel while ensuring mono-
tonic progress on its (difficult, nonconvex) objective function. More importantly, we show how
to implement KRK-PICARD to run in O(N2) time when implemented as a batch method, and in
O(N3/2) time and O(N) space, when implemented as a stochastic method. As alluded to above,
unlike many other uses of Kronecker models, KRONDPP does not admit trivial scaling up, largely
due to extensive dependence of DPPs on arbitrary submatrices of the DPP kernel. An interesting
theoretical nugget that arises from our analysis is the combinatorial problem that we call subset clus-
tering, a problem whose (even approximate) solution can lead to further speedups of our algorithms.

2 Preliminaries

We begin by recalling basic properties of Kronecker products needed in our analysis; we omit proofs
of these well-known results for brevity. The Kronecker (tensor) product of A ∈ Rp×q with B ∈
Rr×s two matrices is defined as the pr × qs block matrix A⊗B = [aijB]p,qi,j=1.

We denote the block aijB in A⊗B by (A⊗B)(ij) for any valid pair (i, j), and extend the notation
to non-Kronecker product matrices to indicate the submatrix of size r × s at position (i, j).
Proposition 2.1. Let A,B,C,D be matrices of sizes so that AC and BD are well-defined. Then,

(i) If A,B ⪰ 0, then, A⊗B ⪰ 0;

(ii) If A and B are invertible then so is A⊗B, with (A⊗B)−1 = A−1 ⊗B−1;

(iii) (A⊗B)(C ⊗D) = (AC)⊗ (BD).

An important consequence of Prop. 2.1(iii) is the following corollary.
Corollary 2.2. Let A = PADAP

⊤
A and B = PBDBP

⊤
B be the eigenvector decompositions of A

and B. Then, A⊗B diagonalizes as (PA ⊗ PB)(DA ⊗DB)(PA ⊗ PB)
⊤.
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We will also need the notion of partial trace operators, which are perhaps less well-known:
Definition 2.3. Let A ∈ RN1N2×N1N2 . The partial traces Tr1(A) and Tr2(A) are defined as
follows:

Tr1(A) :=
[
Tr(A(ij))

]
1≤i,j≤N1

∈ RN1×N1 , Tr2(A) :=
∑N1

i=1
A(ii) ∈ RN2×N2 .

The action of partial traces is easy to visualize: indeed, Tr1(A⊗B) = Tr(B)A and Tr2(A⊗B) =
Tr(A)B. For us, the most important property of partial trace operators is their positivity.
Proposition 2.4. Tr1 and Tr2 are positive operators, i.e., for A ≻ 0, Tr1(A) ≻ 0 and Tr2(A) ≻ 0.

Proof. Please refer to [4, Chap. 4].

3 Learning the kernel matrix for KRONDPP

In this section, we consider the key difficult task for KRONDPPs: learning a Kronecker product
kernel matrix from n observed subsets Y1, . . . , Yn. Using the definition (2) of P(Yi), maximum-
likelihood learning of a DPP with kernel L results in the optimization problem:

argmax
L≻0

ϕ(L), ϕ(L) =
1

n

n∑
i=1

(log det(LYi)− log det(L+ I)) . (3)

This problem is nonconvex and conjectured to be NP-hard [15, Conjecture 4.1]. Moreover the
constraint L ≻ 0 is nontrivial to handle. Writing Ui as the indicator matrix for Yi of size N × |Yi|
so that LYi = U⊤

i LUi, the gradient of ϕ is easily seen to be

∆ := ∇ϕ(L) = 1

n

∑n

i=1
UiL

−1
Yi

U⊤
i − (L+ I)−1. (4)

In [25], the authors derived an iterative method (“the Picard iteration”) for computing an L that
solves ∆ = 0 by running the simple iteration

L← L+ L∆L. (5)
Moreover, iteration (5) is guaranteed to monotonically increase the log-likelihood ϕ [25]. But these
benefits accrue at a cost of O(N3) per iteration, and furthermore a direct application of (5) cannot
guarantee the Kronecker structure required by KRONDPP.

3.1 Optimization algorithm

Our aim is to obtain an efficient algorithm to (locally) optimize (3). Beyond its nonconvexity, the
Kronecker structure L = L1 ⊗ L2 imposes another constraint. As in [25] we first rewrite ϕ as a
function of S = L−1, and re-arrange terms to write it as

ϕ(S) = log det(S)︸ ︷︷ ︸
f(S)

+
1

n

∑n

i=1
log det

(
U⊤
i S−1Ui

)
− log det(I + S)︸ ︷︷ ︸

g(S)

. (6)

It is easy to see that f is concave, while a short argument shows that g is convex [25]. An appeal to
the convex-concave procedure [29] then shows that updating S by solving∇f(S(k+1))+∇g(S(k)) =
0, which is what (5) does [25, Thm. 2.2], is guaranteed to monotonically increase ϕ.

But for KRONDPP this idea does not apply so easily: due the constraint L = L1 ⊗ L2 the function

g⊗ : (S1, S2)→ 1
n

∑n

i=1
log det

(
U⊤
i (S1 ⊗ S2)

−1Ui

)
− log det(I + S1 ⊗ S2),

fails to be convex, precluding an easy generalization. Nevertheless, for fixed S1 or S2 the functions{
f1 : S1 7→ f(S1 ⊗ S2)

g1 : S1 7→ g(S1 ⊗ S2)
,

{
f2 : S2 → f(S1 ⊗ S2)

g2 : S2 → g(S1 ⊗ S2)

are once again concave or convex. Indeed, the map ⊗ : S1 → S1 ⊗ S2 is linear and f is concave,
and f1 = f ◦ ⊗ is also concave; similarly, f2 is seen to be concave and g1 and g2 are convex. Hence,
by generalizing the arguments of [29, Thm. 2] to our “block-coordinate” setting, updating via

∇fi
(
Si

(k+1)
)
= −∇gi

(
Si

(k)
)
, for i = 1, 2, (7)

should increase the log-likelihood ϕ at each iteration. We prove below that this is indeed the case,
and that updating as per (7) ensure positive definiteness of the iterates as well as monotonic ascent.
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3.1.1 Positive definite iterates and ascent

In order to show the positive definiteness of the solutions to (7), we first derive their closed form.
Proposition 3.1 (Positive definite iterates). For S1 ≻ 0, S2 ≻ 0, the solutions to (7) are given by
the following expressions:

∇f1(X) = −∇g1(S1) ⇐⇒ X−1 = Tr1((I ⊗ S2)(L+ L∆L)) /N2

∇f2(X) = −∇g2(S2) ⇐⇒ X−1 = Tr2 ((S1 ⊗ I)(L+ L∆L)) /N1.

Moreover, these solutions are positive definite.

Proof. The details are somewhat technical, and are hence given in Appendix A. We know that
L ≻ 0 =⇒ L + L∆L ≥ 0, because L − L(I + L)−1L ≻ 0. Since the partial trace operators are
positive (Prop. 2.4), it follows that the solutions to (7) are also positive definite.

We are now ready to establish that these updates ensure monotonic ascent in the log-likelihood.

Theorem 3.2 (Ascent). Starting with L
(0)
1 ≻ 0, L(0)

2 ≻ 0, updating according to (7) generates
positive definite iterates L(k)

1 and L
(k)
2 , and the sequence

{
ϕ
(
L
(k)
1 ⊗ L

(k)
2

)}
k≥0

is non-decreasing.

Proof. Updating according to (7) generates positive definite matrices Si, and hence positive definite
subkernels Li = Si. Moreover, due to the convexity of g1 and concavity of f1, for matrices A,B ≻ 0

f1(B) ≤ f1(A) +∇f1(A)⊤(B −A),

g1(A) ≥ g1(B) +∇g1(B)⊤(A−B).

Hence, f1(A) + g1(A) ≥ f1(B) + g1(B) + (∇f1(A) +∇g1(B))⊤(A−B).

Thus, if S(k)
1 , S

(k+1)
1 verify (7), by setting A = S

(k+1)
1 and B = S

(k)
1 we have

ϕ
(
L
(k+1)
1 ⊗ L

(k)
2

)
= f1

(
S
(k+1)
1

)
+ g1

(
S
(k+1)
1

)
≥ f1

(
S
(k)
1

)
+ g1

(
S
(k)
1

)
= ϕ

(
L
(k)
1 ⊗ L

(k)
2

)
.

The same reasoning holds for L2, which proves the theorem.

As Tr1((I ⊗ S2)L) = N2L1 (and similarly for L2), updating as in (7) is equivalent to updating

L1 ← L1 +Tr1
(
(I ⊗ L−1

2 )(L∆L)
)
/N2, L2 ← L2 +Tr2

(
(L−1

1 ⊗ I)(L∆L)
)
/N1.

Generalization. We can generalize the updates to take an additional step-size parameter a:

L1 ← L1 + aTr1
(
(I ⊗ L−1

2 )(L∆L)
)
/N2, L2 ← L2 + aTr2

(
(L−1

1 ⊗ I)(L∆L)
)
/N1.

Experimentally, a > 1 (as long as the updates remain positive definite) can provide faster conver-
gence, although the monotonicity of the log-likelihood is no longer guaranteed. We found experi-
mentally that the range of admissible a is larger than for Picard, but decreases as N grows larger.

The arguments above easily generalize to the multiblock case. Thus, when learning L = L1⊗ · · · ⊗
Lm, by writing Eij the matrix with a 1 in position (i, j) and zeros elsewhere, we update Lk as

(Lk)ij ← (Lk)ij +Nk/(N1 . . . Nm)Tr [(L1 ⊗ . . .⊗ Lk−1 ⊗ Eij ⊗ Lk+1 ⊗ . . .⊗ Lm)(L∆L)] .

From the above updates it is not transparent whether the Kronecker product saves us any computa-
tion. In particular, it is not clear whether the updates can be implemented to run faster than O(N3).
We show below in the next section how to implement these updates efficiently.

3.1.2 Algorithm and complexity analysis

From Theorem 3.2, we obtain Algorithm 1 (which is different from the Picard iteration in [25],
because it operates alternatingly on each subkernel). It is important to note that a further speedup
to Algorithm 1 can be obtained by performing stochastic updates, i.e., instead of computing the
full gradient of the log-likelihood, we perform our updates using only one (or a small minibatch)
subset Yi at each step instead of iterating over the entire training set; this uses the stochastic gradient
∆ = UiL

−1
Yi

U⊤
i − (I + L)−1. The crucial strength of Algorithm 1 lies in the following result:
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Algorithm 1 KRK-PICARD iteration
Input: Matrices L1, L2, training set T , parameter a.
for i = 1 to maxIter do

L1 ← L1 + aTr1
(
(I ⊗ L−1

2 )(L∆L)
)
/N2 // or update stochastically

L2 ← L2 + aTr2
(
(L−1

1 ⊗ I)(L∆L)
)
/N1 // or update stochastically

end for
return (L1, L2)

Theorem 3.3 (Complexity). For N1 ≈ N2 ≈
√
N , the updates in Algorithm 1 can be computed in

O(nκ3+N2) time andO(N2) space, where κ is the size of the largest training subset. Furthermore,
stochastic updates can be computed in O(Nκ2 +N3/2) time and O(N + κ2) space.

Indeed, by leveraging the properties of the Kronecker product, the updates can be obtained without
computing L∆L. This result is non-trivial: the components of ∆, 1

n

∑
i UiL

−1
Yi

U⊤
i and (I + L)−1,

must be considered separately for computational efficiency. The proof is provided in App. B. How-
ever, it seems that considering more than 2 subkernels does not lead to further speed-ups.

This is a marked improvement over [25], which runs in O(N2) space and O(nκ3 +N3) time (non-
stochastic) orO(N3) time (stochastic); Algorithm 1 also provides faster stochastic updates than [9]1.
However, one may wonder if by learning the sub-kernels by alternating updates the log-likelihood
converges to a sub-optimal limit. The next section discusses how to jointly update L1 and L2.

3.2 Joint updates

We also analyzed the possibility of updating L1 and L2 jointly: we update L← L+L∆L and then
recover the Kronecker structure of the kernel by defining the updates L′

1 and L′
2 such that:{

(L′
1, L

′
2) minimizes ∥L+ L∆L− L′

1 ⊗ L′
2∥2F

L′
1 ≻ 0, L′

2 ≻ 0, ∥L′
1∥ = ∥L′

2∥
(8)

We show in appendix C that such solutions exist and can be computed from the first singular value
and vectors of the matrix R =

[
vec((L−1 +∆)(ij))

⊤]N1

i,j=1
. Note however that in this case, there is

no guaranteed increase in log-likelihood. The pseudocode for the related algorithm (JOINT-PICARD)
is given in appendix C.1. An analysis similar to the proof of Thm. 3.3 shows that the updates can be
obtained O(nκ3 +max(N1, N2)

4).

3.3 Memory-time trade-off

Although KRONDPPS have tractable learning algorithms, the memory requirements remain high for
non-stochastic updates, as the matrix Θ = 1

n

∑
i UiL

−1
Yi

U⊤
i needs to be stored, requiring O(N2)

memory. However, if the training set can be subdivided such that

{Y1, . . . , Yn} = ∪mk=1Sk s.t. ∀k, |∪Y ∈Sk
Y | < z, (9)

Θ can be decomposed as 1
n

∑m
k=1 Θk with Θk =

∑
Yi∈Sk

UiL
−1
Yi

U⊤
i . Due to the bound in Eq. 9,

each Θk will be sparse, with only z2 non-zero coefficients. We can then store each Θk with minimal
storage and update L1 and L2 in O(nκ3 +mz2 +N3/2) time and O(mz2 +N) space.

Determining the existence of such a partition of size m is a variant of the NP-Hard Subset-Union
Knapsack Problem (SUKP) [11] with m knapsacks and where the value of each item (i.e. each Yi)
is equal to 1: a solution to SUKP of value n with m knapsacks is equivalent to a solution to Eq. 9.
However, an approximate partition can also be simply constructed via a greedy algorithm.

4 Sampling
Sampling exactly (see Alg. 2 and [17]) from a full DPP kernel costs O(N3 +Nk3) where k is the
size of the sampled subset. The bulk of the computation lies in the initial eigendecomposition of L;

1For example, computing matrix B in [9] (defined after Eq. 7), which is a necessary step for (stochastic)
gradient ascent, costs O(N2) due to matrix multiplications.
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the k orthonormalizations cost O(Nk3). Although the eigendecomposition need only happen once
for many iterations of sampling, exact sampling is nonetheless intractable in practice for large N .

Algorithm 2 Sampling from a DPP kernel L
Input: Matrix L.
Eigendecompose L as {(λi, vi)}1≤i≤N .
J ← ∅
for i = 1 to N do

J → J ∪ {i} with probability λi/(λi + 1).
end for
V ← {vi}i∈J , Y ← ∅
while |V | > 0 do

Sample i from {1 . . . N} with probability 1
|V |

∑
v∈V v2i

Y ← Y ∪ {i}, V ← V⊥, where V⊥ is an orthonormal basis of the subspace of V orthonormal to ei
end while
return Y

It follows from Prop. 2.2 that for KRONDPPS, the eigenvalues λi can be obtained in O(N3
1 +N3

2 ),
and the k eigenvectors in O(kN) operations. For N1 ≈ N2 ≈

√
N , exact sampling thus only costs

O(N3/2 + Nk3). If L = L1 ⊗ L2 ⊗ L3, the same reasoning shows that exact sampling becomes
linear in N , only requiring O(Nk3) operations.

One can also resort to MCMC sampling; for instance such a sampler was considered in [13] (though
with an incorrect mixing time analysis). The results of [20] hold only for k-DPPs, but suggest
their MCMC sampler may possibly take O(N2 log(N/ϵ)) time for full DPPs, which is impractical.
Nevertheless if one develops faster MCMC samplers, they should also be able to profit from the
Kronecker product structure offered by KRONDPP.

5 Experimental results

In order to validate our learning algorithm, we compared KRK-PICARD to JOINT-PICARD and to
the Picard iteration (PICARD) on multiple real and synthetic datasets.2

5.1 Synthetic tests

To enable a fair comparison between algorithms, we test them on synthetic data drawn from a full
(non-Kronecker) ground-truth DPP kernel. The sub-kernels were initialized by Li = X⊤X , with
X’s coefficients drawn uniformly from [0,

√
2]; for PICARD, L was initialized with L1 ⊗ L2.

For Figures 1a and 1b, training data was generated by sampling 100 subsets from the true kernel
with sizes uniformly distributed between 10 and 190.
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Figure 1: a = 1; the thin dotted lines indicated the standard deviation from the mean.

2All experiments were repeated 5 times and averaged, using MATLAB on a Linux Mint system with 16GB
of RAM and an i7-4710HQ CPU @ 2.50GHz.
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To evaluate KRK-PICARD on matrices too large to fit in memory and with large κ, we drew samples
from a 50 · 103×50 · 103 kernel of rank 1, 000 (on average |Yi| ≈ 1, 000), and learned the kernel
stochastically (only KRK-PICARD could be run due to the memory requirements of other methods);
the likelihood drastically improves in only two steps (Fig.1c).

As shown in Figures 1a and 1b, KRK-PICARD converges significantly faster than PICARD, espe-
cially for large values of N . However, although JOINT-PICARD also increases the log-likelihood
at each iteration, it converges much slower and has a high standard deviation, whereas the standard
deviations for PICARD and KRK-PICARD are barely noticeable. For these reasons, we drop the
comparison to JOINT-PICARD in the subsequent experiments.

5.2 Small-scale real data: baby registries

We compared KRK-PICARD to PICARD and EM [10] on the baby registry dataset (described in-
depth in [10]), which has also been used to evaluate other DPP learning algorithms [9, 10, 25]. The
dataset contains 17 categories of baby-related products obtained from Amazon. We learned kernels
for the 6 largest categories (N = 100); in this case, PICARD is sufficiently efficient to be prefered
to KRK-PICARD; this comparison serves only to evaluate the quality of the final kernel estimates.

The initial marginal kernel K for EM was sampled from a Wishart distribution with N degrees of
freedom and an identity covariance matrix, then scaled by 1/N ; for PICARD, L was set to K(I −
K)−1; for KRK-PICARD, L1 and L2 were chosen (as in JOINT-PICARD) by minimizing ∥L −
L1 ⊗L2∥. Convergence was determined when the objective change dipped below a threshold δ. As
one EM iteration takes longer than one Picard iteration but increases the likelihood more, we set
δPIC = δKRK = 10−4 and δEM = 10−5.

The final log-likelihoods are shown in Table 1; we set the step-sizes to their largest possible values,
i.e. aPIC = 1.3 and aKRK = 1.8. Table 1 shows that KRK-PICARD obtains comparable, albeit
slightly worse log-likelihoods than PICARD and EM, which confirms that for tractable N , the better
modeling capability of full kernels make them preferable to KRONDPPS.

Table 1: Final log-likelihoods for each large category of the baby registries dataset

(a) Training set

Category EM PICARD KRK-PICARD

apparel -10.1 -10.2 -10.7
bath -8.6 -8.8 -9.1
bedding -8.7 -8.8 -9.3
diaper -10.5 -10.7 -11.1
feeding -12.1 -12.1 -12.5
gear -9.3 -9.3 -9.6

(b) Test set

Category EM PICARD KRK-PICARD

apparel -10.1 -10.2 -10.7
bath -8.6 -8.8 -9.1
bedding -8.7 -8.8 -9.3
diaper -10.6 -10.7 -11.2
feeding -12.2 -12.2 -12.6
gear -9.2 -9.2 -9.5

5.3 Large-scale real dataset: GENES

Finally, to evaluate KRK-PICARD on large matrices of real-world data, we train it on data from the
GENES [3] dataset (which has also been used to evaluate DPPs in [3, 19]). This dataset consists in
10,000 genes, each represented by 331 features corresponding to the distance of a gene to hubs in
the BioGRID gene interaction network.

We construct a ground truth Gaussian DPP kernel on the GENES dataset and use it to obtain 100
training samples with sizes uniformly distributed between 50 and 200 items. Similarly to the syn-
thetic experiments, we initialized KRK-PICARD’s kernel by setting Li = X⊤

i Xi where Xi is a
random matrix of size N1 ×N1; for PICARD, we set the initial kernel L = L1 ⊗ L2.

Figure 2 shows the performance of both algorithms. As with the synthetic experiments, KRK-
PICARD converges much faster; stochastic updates increase its performance even more, as shown in
Fig. 2b. Average runtimes and speed-up are given in Table 2: KRK-PICARD runs almost an order of
magnitude faster than PICARD, and stochastic updates are more than two orders of magnitude faster,
while providing slightly larger initial increases to the log-likelihood.
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Figure 2: n = 150, a = 1.

Table 2: Average runtime and performance on the GENES dataset for N1 = N2 = 100

PICARD KRK-PICARD KRK-PICARD (stochastic)

Average runtime 161.5 ± 17.7 s 8.9 ± 0.2 s 1.2 ± 0.02 s
NLL increase (1st iter.) (2.81± 0.03) · 104 (2.96± 0.02) · 104 (3.13± 0.04) · 104

6 Conclusion and future work

We introduced KRONDPPS, a variant of DPPs with kernels structured as the Kronecker product of m
smaller matrices, and showed that typical operations over DPPs such as sampling and learning the
kernel from data can be made efficient for KRONDPPS on previously untractable ground set sizes.

By carefully leveraging the properties of the Kronecker product, we derived for m = 2 a low-
complexity algorithm to learn the kernel from data which guarantees positive iterates and a mono-
tonic increase of the log-likelihood, and runs in O(nκ3 + N2) time. This algorithm provides even
more significant speed-ups and memory gains in the stochastic case, requiring onlyO(N3/2+Nκ2)
time and O(N + κ2) space. Experiments on synthetic and real data showed that KRONDPPS can be
learned efficiently on sets large enough that L does not fit in memory.

Our experiments showed that KRONDPP’s reduced number of parameters (compared to full kernels)
did not impact its performance noticeably. However, a more in-depth investigation of its expressivity
may be valuable for future study. Similarly, a deeper study of initialization procedures for DPP
learning algorithms, including KRK-PICARD, is an important question.

While discussing learning the kernel, we showed that L1 and L2 cannot be updated simultaneously
in a CCCP-style iteration since g is not convex over (S1, S2). However, it can be shown that g is
geodesically convex over the Riemannian manifold of positive definite matrices, which suggests that
deriving an iteration which would take advantage of the intrinsic geometry of the problem may be a
viable line of future work.

KRONDPPS also enable fast sampling, in O(N3/2 +Nk3) operations when using two sub-kernels,
and inO(Nk3) when using three sub-kernels. This speedup allows for exact sampling at comparable
or even better costs than previous algorithms for approximate sampling. However, the subset size k
is still limiting, due to the O(Nk3) cost of sampling and learning. A key aspect of future work on
obtaining truly scalable DPPs is to overcome this computational bottleneck.
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