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In this supplementary material, we give the comprehensive proof of the theorems in the main text and
give more detailed and precise statements of the theorems.

A Proof of linear convergence of the alternating minimization procedure

Suppose that we have got an estimator f̃ = (f̃(r,k))r,k, ṽ = (ṽr)r and now we are updating the
(r, k)-th element as f̃ ′(r,k) ← f̃(r,k) and ṽ′r ← ṽr.

A.1 Convergence analysis

Let {f̂(r′,k′)}r′,k′ be any functions such that
∏K
k′=1 f̂(r′,k′) = ṽr′

∏K
k′=1 f̃(r′,k′), and, as a par-

ticular choice of such functions, we set f̂(r′,k′) = f̃(r′,k′) (∀k′ 6= k, ∀r′ ∈ [d]) and f̂(r′,k) =

ṽr′ f̃(r′,k) (∀r′ 6= r). Let f̄(r′,k′) = f̃(r′,k′)/‖f̃(r′,k′)‖L2 = f̂(r′,k′)/‖f̂(r′,k′)‖L2 (∀(r′, k′) ∈
[d] × [K]) and v̄r′ =

∏K
k′=1 ‖f̂(r′,k′)‖L2

= ṽr′
∏K
k′=1 ‖f̃(r′,k′)‖L2

(∀r′ ∈ [d]). The newly up-
dated (r, k)-th element is denoted by f̃ ′(r,k) (see Eq. (4)) and we denote by v̄′r the updated value of v̄r
correspondingly: v̄′r = ‖f̃ ′(r,k)‖L2

∏
k′ 6=k ‖f̃(r,k′)‖L2

. We also denote by f̄ ′(r,k) = f̃ ′(r,k)/‖f̃
′
(r,k)‖L2

.

For the simplicity of the notation, we denote by fr :=
∏K
k=1 f(r,k). Similarly, we use notations like

f∗r , f̂r, f̃r to express the r-th component.

Define Pf =
∫
f(X)dPX (X) and Pnf := 1

n

∑n
i=1 f(xi) for a function f : X → R. For the

estimator f̂ = {f̂(r,k)}r,k, define

d∞(f̂) := max
(r′,k′)

{vr′‖f̄(r′,k′) − f∗∗(r′,k′)‖L2
+ |vr′ − v̄r′ |},

where f̄ and v̄ are Note that d∞(f̂) is uniquely defined by f̂ . This is equivalent to d∞(f̃ , ṽ) in the
main text, but we employ the above notation because of the notational simplicity.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



For λ1,n > 0 and λ2,n > 0, we define

ζn = ζn(λ1,n) = max{Cs, C̃s}
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λ− s22,n√
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λ
1
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2,nn
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where Cs, C̃s, C ′s are constants depending on s, s2, c, c2 that will be given in Lemma A.9, Lemma
A.11 and Lemma A.15 respectively.

Let Tr := {f − g | f =
∏K
k=1 fk, g =

∏K
k=1 gk where fk, gk ∈ Hr,k, ‖fk‖Hr,k ≤

1, ‖gk‖Hr,k ≤ 1 (k ∈ [K])}, and T ′r,k = {(f(r,k)(x)−f ′(r,k)(x))
∏
k′ 6=k f

∗∗
(r,k′)(x) | f(r,k), f ′(r,k) ∈

Hr,k, ‖f(r,k)‖Hr,k ≤ 1, ‖f ′(r,k)‖Hr,k ≤ 1}. Then Corollary A.13 and Lemma A.16 yield that there
exist universal constants C and C̃ such that

maxr,r′ supf∈Tr,f ′∈Tr′

∣∣∣∣∣(P − Pn)

(
ff ′

‖ff ′‖L2
+λ

1
2
1,n

)∣∣∣∣∣ ≤ C log(d)ζn max{1, τ} (S-1)

holds with probability 1− exp(−τ) for all τ > 0, and all of the following inequalities are simultane-
ously satisfied with probability 1− exp(−τ) for all τ > 0:

max
1≤r≤d,1≤k≤K

sup
f∈T ′

r,k

∣∣∣∣∣∣(P − Pn)

 f2

‖f2‖L2 + λ
1
2
2,n

∣∣∣∣∣∣ ≤ C̃ log(dK)ζ′n max{1, τ}, (S-2a)

max
1≤r≤d,1≤k≤K

sup
f∈T ′

r,k

∣∣∣∣∣∣ 1n
n∑

i=1

 εif(xi)

‖f‖L2 + λ
1
2
2,n

∣∣∣∣∣∣ ≤ C̃L log(dK)ζ′n max{1, τ}, (S-2b)

max
1≤r≤d,1≤k≤K

sup
f∈Hr,k,‖f‖Hr,k≤1

∣∣∣∣∣∣(P − Pn)

 f2

‖f‖L2 + λ
1
2
2,n

∣∣∣∣∣∣ ≤ C̃ log(dK)ζ′n max{1, τ}. (S-2c)

Let T̃r,k = {(f(r,k) − f ′(r,k))(
∏
k′ 6=k f(r,k′) −

∏
k′ 6=k f

′
(r,k′)) | f(r,k′), f

′
(r,k′) ∈

Hr,k′ , ‖f(r,k′)‖Hr,k′ ≤ 1, ‖f ′(r,k′)‖Hr,k′ ≤ 1 (k′ ∈ [K])}. Then Lemma A.14 indicates that
there exists a universal constant C̃ ′ > 0 such that, for any 0 < λ, all of the following two inequalities
simultaneously hold with probability 1− exp(−τ):

max
1≤r≤d,1≤k≤K

sup
f∈T̃r,k

∣∣∣∣∣∣ 1n
n∑
i=1

 εif(xi)

‖f‖L2
+ λ

1
2
1,n

∣∣∣∣∣∣ ≤ C̃ ′L log(dK)ζn max{1, τ}, (S-3a)

max
1≤r≤d,1≤k≤K

sup
f,f ′∈T̃r,k

∣∣∣∣∣∣(P − Pn)

 ff ′

‖ff ′‖L2
+ λ

1
2
1,n

∣∣∣∣∣∣ ≤ C̃ ′ log(dK)ζn max{1, τ}. (S-3b)

We define an event E1 so that all inequalities in Eq. (S-1), Eq. (S-2) and Eq. (S-3) are satisfied. Then
P (E1) ≥ 1− 3 exp(−τ) by the argument given above. Based on ζn(λ1,n) and ζ ′n(λ2,n), define

ξn = ξn(λ1,n, τ) := max{C, C̃ ′, C̃ ′L} log(dK)ζn(λ1,n) max{1, τ},

and
ξ′n = ξ′n(λ2,n, τ) := C̃ max{1, L} log(dK)ζ ′n(λ2,n) max{1, τ}.

Let R̃ = 2R and R̂ = 8R̃/min{vmin, 1}. The following theorem is a detailed version of Theorem 2
in the main text.

Theorem A.1. Suppose that Assumptions 1–4 are satisfied. We also assume the the following
conditions.
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• d∞(f̂) and µ∗ are sufficiently small so that there exists µ > 0 such that

1 > µ ≥ 2
d∞(f̂)

vmin
+ µ∗. (S-4)

Correspondingly, we define

cµ = (d− 1)

(
4

3
K + µ

)(
3

2

)K−1
µK−2. (S-5)

• Let

Qn =
2K(1 + 2R̂K)ξn

vmin
+3(d−1)(K−1)ξnR̂

K+4KR̂Kξn+cµ+
4R̂K2

v2min

d∞(f̂)+

√
1− s2

8
.

and

Sn =4ξ′nλ
1/2
2,n + (d+ 2)ξnλ

1/2
1,n + 12ξ′

2
n

+ s2
481/s2

8
[(d− 1)c2]2/s2(1 + 2vmax)2R̂2(K−1)(1−s2)/s2ξ2/s2n .

• n is sufficiently large so that

ξ′nR̂
2(1 + λ

1/2
2,n ) ≤ 2

1
K − 1

21+
1
K − 1

.

• The RKHS-norms of the functions {f̄(r′,k′)} are bounded as

‖f̄(r′,k′)‖Hr′,k′ ≤
1

2
R̂ (∀(r′, k′) 6= (r, k)). (S-6)

Then, in the event E1, we have that(
vr‖f̄ ′(r,k) − f

∗∗
(r,k)‖L2 + |v̄′r − vr|

)2
≤ 27Q2

nd∞(f̂)2 + 18SnR̂
2K .

In particular, for a sufficiently large n and small cµ such that Q2
n ≤ 1/54, we have(

vr‖f̄ ′(r,k) − f
∗∗
(r,k)‖L2 + |v̄′r − vr|

)2
≤ 1

2
d∞(f̂)2 + 18SnR̂

2K .

Moreover, if we denote by ηn the right hand side of the above inequality, then it holds that

‖f̄ ′(r,k)‖Hr,k ≤
2

vr −
√
ηn
R̃.

This theorem immediately gives the following corollary.

Corollary A.2. Let f̂[t] be the estimator after the t-th iteration. Suppose that d∞(f̂[1]) satisfies the
assumptions of Theorem A.1, Q2

n ≤ 1/54, d∞(f̂[1])
2 ≤ v2min/8 and 18SnR̂

2K ≤ v2min/8. Then it
holds that

d∞(f̂[t+1])
2 ≤ max

{(
3

4

)t
d∞(f̂[1])

2, 54SnR̂
2K

}
for all t = 2, 3, . . . in the event E1.

By substituting λ1,n = K−
1+s
1−s d−

2
1−sn−

1
1+s and λ2,n = n−

1
1+s , we have that

Sn = O
(
n−

1
1+s ∨

(
n
− 1

1+s−(1−s2)min{ 1−s
4(1+s)

, 1
s2(1+s)

}
poly(d,K)

))
Thus, for s2 < 1, we have Sn ≤ Cn−

1
1+s for sufficiently large n with a constant C. Since Lemma

A.5 states that {f̄(r,k)}r,k are µ-incoherent under the assumptions of Theorem A.1, thus Lemma A.7
gives that

‖f̂ − f∗‖2L2
≤ dKd∞(f̂)2 +

dK2

v2min

d∞(f̂)4 + d2K2µd∞(f̂)2.

By applying this inequality to f̂ = f̂[t], we obtain the following theorem.
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Theorem A.3. In addition to the conditions in Corollary A.2, if d∞(f̂[1]) ≤ 1/
√
K and µ ≤ 1/(dK),

then we have

‖f̂[t] − f∗‖2 = O
(
dKn−

1
1+s log(dK) + dK(3/4)t

)
,

for sufficiently large n and all t = 2, 3, . . . with probability 1− 3 exp(−τ).

This means that after T ≥ 1
ν log(n) iterations, we obtain the estimation accuracyO(dKn−

1
1+s ). This

computational complexity is quite advantageous. The estimation accuracy is d×K times the optimal
rate n−

1
1+s to estimate one function f∗(r,k). This is intuitively natural because we are estimating

d×K functions {f∗(r,k)}r,k. Indeed, it has been shown that this accuracy bound is minimax optimal.

Proof. (Theorem A.1) Throughout the proof, we fix (r, k). There is a freedom of the scaling factor
to define f∗(r,k′) (k′ = 1, . . . ,K). Thus, we may set the scaling factor of f∗ as

f∗(r,k′) = f∗∗(r,k′)‖f̃(r,k′)‖L2
for k′ 6= k, f∗(r,k) = vrf

∗∗
(r,k)/

∏
k′ 6=k ‖f̃(r,k′)‖L2

.

Note that f∗r =
∏K
k′=1 f

∗
(r,k′) = vr

∏K
k′=1 f

∗∗
(r,k′).

Since ‖f̃(r,k′)‖n = 1, the L2-norm of ‖f̃(r,k′)‖L2
is evaluated as

‖f̃(r,k′)‖L2
= ‖f̃(r,k′)‖L2

/‖f̃(r,k′)‖n = ‖f̄(r,k′)‖L2
/‖f̄(r,k′)‖n = 1/‖f̄(r,k′)‖n. (S-7)

By the assumption (S-6) that ‖f̄(r,k′)‖Hr,k′ ≤ R̂ (k′ 6= k), Eq. (S-2c) gives that

|‖f̄(r,k′)‖2n − ‖f̄(r,k′)‖2L2
| ≤ ξ′nR̂2(1 + λ

1/2
2,n ).

By the definition of f̄(r,k′), we have ‖f̄(r,k′)‖L2
= 1. Therefore, |‖f̄(r,k′)‖2n − 1| ≤ ξ′nR̂2(1 + λ

1/2
2,n ).

Then, by the assumption that ξ′nR̂
2(1 + λ

1/2
2,n ) ≤ 2

1
K −1

21+
1
K −1

, we have

2−1/K ≤ 1

‖f̄(r,k′)‖2n
≤ 21/K . (S-8)

This and Eq. (S-7) give that 2−1/K ≤ ‖f̃(r,k′)‖L2 ≤ 21/K for k′ 6= k, and concludes that

1/2 ≤
∏
k′ 6=k

‖f̃(r,k′)‖L2
≤ 2.

Therefore, by the assumption (A1-2), we have that

‖f∗(r,k)‖Hr,k =
vr‖f∗∗(r,k)‖Hr,k∏
k′ 6=k ‖f̃(r,k′)‖L2

≤ 2R = R̃. (S-9)

Moreover, by the assumption Eq. (S-6), we have that, for all k′ 6= k,

‖f̃(r,k′)‖Hr,k′ =
‖f̄(r,k′)‖Hr,k′
‖f̄(r,k′)‖n

≤ 21/K

2
R̂ ≤ R̂. (S-10)

We denote by F (f) the objective function of the optimization problem (4) for the update of f̃ ′(r,k) on

fixed (r, k). Then by the optimality condition, for the Fréchet derivative ∇F (f̃ ′(r,k)) in the RKHS

Hr,k, it holds that 〈∇F (f̃ ′(r,k)), f̃
′
(r,k) − f

∗
(r,k)〉Hr,k ≤ 0. That is,

1

n

n∑
i=1

(
f̃ ′(r,k)(xi)

∏
k′ 6=k

f̃(r,k′)(xi) +
∑
r′ 6=r

ṽr′ f̃r′(xi)− yi
) ∏
k′ 6=k

f̃(r,k′)(xi)(f̃
′
(r,k)(xi)− f

∗
(r,k)(xi))

≤ 0, (S-11)
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where we used that f∗(r,k) is in the feasible set because ‖f∗(r,k)‖Hr,k ≤ R̃ (see Eq. (S-9)). By using
the relation yi = f∗(xi) + εi and arranging the terms in Eq. (S-11), we obtain that

Pn

(f̃ ′(r,k) − f∗(r,k))2( ∏
k′ 6=k

f̃(r,k′)
)2

≤ 1

n

n∑
i=1

εi
∏
k′ 6=k

f̃(r,k′)(xi)(f̃
′
(r,k)(xi)− f

∗
(r,k)(xi))

− Pn

∑
r′ 6=r

(f̂r′ − f∗r′) + f∗(r,k)
( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
) ∏

k′ 6=k

f̃(r,k′)

(
f̃ ′(r,k) − f

∗
(r,k)

) .
(S-12)

Now, let g̃ :=
∏
k′ 6=k f̃(r,k′)

(
f̃ ′(r,k) − f

∗
(r,k)

)
, and define E1 to E6 as

E1 := (P − Pn)(g̃2), E2 :=
1

n

n∑
i=1

εig̃(xi),

E3 = (P − Pn)

(∑
r′ 6=r

(f̂r′ − f∗r′)
)
g̃

 , E4 := (P − Pn)

f∗(r,k)( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

)
g̃

 ,
E5 = −P

[∑
r′ 6=r

(f̃r′ − f∗r′)g̃
]
, E6 := −P

[
f∗(r,k)(

∏
k′ 6=k

f̃(r,k) −
∏
k′ 6=k

f∗(r,k))g̃

]
.

Then, we can easily see that Eq. (S-12) gives

P (g̃2) ≤
6∑
j=1

Ej ≤ |E1|+ |E2|+ |E3|+ |E4|+ |E5|+ |E6|.

From now on, we are going to bound each term Ej (j = 1, . . . , 6).

(1) (Bounding E1 and E2) Since ‖f̃(r,k′)‖Hr,k′ ≤ R̂ (∀k′ 6= k) (Eq. (S-10)), ‖f∗(r,k)‖Hr,k ≤ R̂ (Eq.

(S-9)), ‖f̃ ′(r,k)‖Hr,k ≤ R̂ by the construction, Lemma A.4 gives upper bounds of |E1| and |E2| as

|E1| ≤ 2R̂Kξ′n
(
‖g̃‖L2

+ λ
1/2
2,n R̂

K
)

+ R̂Kξn(2K‖g̃‖L2
d∞(f̂)/vmin + λ

1/2
1,n R̂

K),

|E2| ≤ 2ξ′n
(
‖g̃‖L2

+ λ
1/2
2,n R̂

K
)

+ ξn(2K‖g̃‖L2
d∞(f̂)/vmin + λ

1/2
1,n R̂

K).

(3) (Bounding E3) Eq. (S-1) gives an upper bound of E3 as

|E3| ≤
∑
r′ 6=r

|(P − Pn)[(f̂r′ − f∗r′)g̃]| ≤
∑
r′ 6=r

ξn(‖(f̂r′ − f∗r′)g̃‖L2 + λ
1/2
1,n R̂

2K).

Now we evaluate the term ‖(f̃r′ − f∗r′)g̃‖L2 . By a slight abuse of notation, we change the scaling
of f̃ as f̃(r′,k′) = f̄(r′,k′) (∀k′ 6= k, r′ 6= r) and f̃(r′,k) = ‖f̂r′‖L2

f̄(r′,k) = v̄r′ f̄(r′,k) (∀r′ 6= r),
in particular, f̂r′ =

∏K
k′=1 f̃(r′,k′). Similarly, we set f∗(r′,k′) = f∗∗(r′,k′) (∀k′ 6= k, r′ 6= r) and

f∗(r′,k) = vr′f
∗∗
(r′,k) (∀r′ 6= r). Then, by the assumption (S-6), it holds that

‖f̃(r′,k)‖Hr′,k = v̄r′‖f̄(r′,k)‖Hr′,k ≤ v̄r′
R̂

2
≤ (vr′ + d∞(f̂))

R̂

2
. (S-13)

Hence, the term ‖(f̂r′ − f∗r′)g̃‖L2
is bounded as

‖(f̂r′ − f∗r′)g̃‖2L2
= P [(f̂r′ − f∗r′)2g̃2]
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=P


(f̃(r′,k) − f∗(r′,k))

∏
k′ 6=k

f∗(r′,k′) + f̃(r′,k)(
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))

2

(f̃ ′(r,k) − f
∗
(r,k))

2(
∏
k′ 6=k

f̃(r,k′))
2


≤2P

{
(f̃(r′,k) − f∗(r′,k))

2(
∏
k′ 6=k

f∗(r′,k′))
2(f̃ ′(r,k) − f

∗
(r,k))

2(
∏
k′ 6=k

f̃(r,k′))
2

+ f̃2(r′,k)(
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))
2(f̃ ′(r,k) − f

∗
(r,k))

2(
∏
k′ 6=k

f̃(r,k′))
2
}

(a)
≤2‖f̃(r′,k) − f∗(r′,k)‖

2
∞P [g̃2(

∏
k′ 6=k

f∗(r′,k′))
2] + 4v̄2r′R̂

2KP (g̃2)‖
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′)‖
2
L2

(b)
≤2‖f̃(r′,k) − f∗(r′,k)‖

2
∞P [g̃2(

∏
k′ 6=k

f∗(r′,k′))
2] + 4R̂2KP (g̃2)v̄2r′

( ∑
k′ 6=k

‖f̃(r′,k′) − f∗(r′,k′)‖L2

)2

(c)
≤2‖f̃(r′,k) − f∗(r′,k)‖

2
∞P [g̃2(

∏
k′ 6=k

f∗(r′,k′))
2] + 4R̂2KP (g̃2)

[
2(K − 1)d∞(f̂)

]2
,

where the inequalities (a), (b) and (c) are shown as follows: (a) first, we notice that ‖f̃(r′,k)‖∞ ≤
‖f̃(r′,k)‖Hr′,k = v̄r′‖f̄(r′,k)‖Hr′,k ≤ v̄r′R̂ by the assumption (S-6), ‖f̃(r,k′)‖∞ ≤ ‖f̃(r,k′)‖Hr,k′ ≤
R̂ by Eq. (S-10), and then we obtain

P
{
f̃2(r′,k)(

∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))
2(f̃ ′(r,k) − f

∗
(r,k))

2(
∏
k′ 6=k

f̃(r,k′))
2
}

≤‖f̃(r′,k)‖2∞
∏
k′ 6=k

‖f̃(r,k′)‖2∞P
[
(f̃ ′(r,k) − f

∗
(r,k))

2
]
P

(
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))
2


≤v̄2r′R̂2KP

(f̃ ′(r,k) − f
∗
(r,k))

2
∏
k′ 6=k

f̃2(r,k′)

 1

P (
∏
k′ 6=k f̃

2
(r,k′))

P

(
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))
2


≤v̄2r′R̂2K‖g̃‖2L2

P

(
∏
k′ 6=k

f̃(r′,k′) −
∏
k′ 6=k

f∗(r′,k′))
2

 .
(b) is shown by the equalities ‖f̃(r′,k′)‖L2 = ‖f∗(r′,k′)‖L2 = 1 and v̄r′ = ‖f̃(r′,k)‖L2 . (c) is
shown as v̄r′‖f̄(r′,k′)− f∗(r′,k′)‖L2

= vr′‖f̄(r′,k′)− f∗(r′,k′)‖L2
+ |v̄r′ − vr′ |‖f̄(r′,k′)− f∗(r′,k′)‖L2

≤
2(vr′‖f̄(r′,k′) − f∗(r′,k′)‖L2

+ |v̄r′ − vr′ |) ≤ 2d∞(f̂). Here, by Assumption 3 and Eq. (S-13), we
have

‖f̃(r′,k) − f∗(r′,k)‖∞
≤ c2‖f̃(r′,k) − f∗(r′,k)‖

1−s2
L2
‖f̃(r′,k) − f∗(r′,k)‖

s2
Hr′,k

≤ c2(‖f̃(r′,k) − vr′ f̄(r′,k)‖L2
+ ‖vr′ f̄(r′,k) − f∗(r′,k)‖L2

)1−s2‖f̃(r′,k) − f∗(r′,k)‖
s2
Hr′,k

= c2(|v̄r′ − vr′ |‖f̄(r′,k)‖L2
+ vr′‖f̄(r′,k) − f∗∗(r′,k)‖L2

)1−s2‖f̃(r′,k) − f∗(r′,k)‖
s2
Hr′,k

≤ c2d∞(f̂)1−s2 [R̂+ (vr′ + d∞(f̂))R̂]s2 ≤ c2d∞(f̂)1−s2 [(1 + 2vmax)R̂]s2 ,

where the last inequality is shown, by the assumption (S-4), 1 ≥ µ ≥ 2d∞(f̂)
vmin

≥ 2d∞(f̂)
vmax

.

Therefore, it holds that

|E3| ≤(d− 1)ξn

[
2c2(1 + 2vmax)s2d∞(f̂)1−s2R̂K−1+s2‖g̃‖L2

+ 4(K − 1)R̂Kd∞(f̂)‖g̃‖L2
+ λ

1/2
1,n R̂

2K

]
.
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(4) (Bounding E4) Eq. (S-1) gives that

|E4| ≤ ξn

∥∥∥∥∥∥f∗(r,k)
( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

)
g̃

∥∥∥∥∥∥
L2

+ λ
1/2
1,n R̂

2K

 .

The RHS is bounded as∥∥∥∥∥∥f∗(r,k)
( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

)
g̃

∥∥∥∥∥∥
L2

=
∥∥∥f∗(r,k)(f̃ ′(r,k) − f∗(r,k))∥∥∥

L2

∥∥∥∥( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

) ∏
k′ 6=k

f̃(r,k′)

∥∥∥∥
L2

≤2R̂‖g̃‖L2
× 2KR̂K−1d∞(f̂)/vmin,

where we used the following relation in the last inequality:

‖f∗(r,k)(f̃
′
(r,k) − f

∗
(r,k))‖L2 ≤ ‖f∗(r,k)‖∞‖f̃

′
(r,k) − f

∗
(r,k)‖L2

≤ ‖f∗(r,k)‖∞‖f̃
′
(r,k) − f

∗
(r,k)‖L2

(2‖
∏
k′ 6=k

f̃(r,k′)‖L2
)

= 2‖f∗(r,k)‖∞‖(f̃
′
(r,k) − f

∗
(r,k))

∏
k′ 6=k

f̃(r,k′)‖L2
≤ 2R̂‖g̃‖L2

,

and∥∥∥∥( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

) ∏
k′ 6=k

f̃(r,k′)

∥∥∥∥
L2

≤R̂K−1
∥∥∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

∥∥∥∥
L2

=R̂K−1
∥∥∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

∥∥∥∥
L2

≤ R̂K−1

∑
k′ 6=k

∥∥∥∥f̃(r,k′) − f∗(r,k′)∥∥∥∥
L2

‖f̃(r,k′)‖L2

∏
k′′ 6=k

‖f̃(r,k′′)‖L2


≤2KR̂K−1d∞(f̂)/vmin.

Therefore, we have

|E4| ≤ 4KR̂Kξnd∞(f̂)‖g̃‖L2
+ ξnλ

1/2
1,n R̂

2K .

(5) Lemma A.5 gives an upper bound of the first term of the RHS as

|E5| =

∣∣∣∣∣∣P
[∑
r′ 6=r

(f̃r′ − f∗r′)g̃
]∣∣∣∣∣∣ ≤ cµd∞(f̂)‖g̃‖L2

.

(6) Lemma A.6 bounds the second term of the RHS as

|E6| =

∣∣∣∣∣∣P
[
f∗(r,k)

( ∏
k′ 6=k

f̃(r,k) −
∏
k′ 6=k

f∗(r,k)
)
g̃

]∣∣∣∣∣∣ ≤ 4R̂K2

v2min

‖g̃‖L2
d∞(f̂)2.

Combining the results from (1) to (6), we have that

P (g̃2) ≤2(1 + R̂K)ξ′n
(
‖g̃‖L2

+ λ
1/2
2,n R̂

K
)

+ (1 + R̂K)ξn(2K‖g̃‖L2
d∞(f̂)/vmin + λ

1/2
1,n R̂

K)

+ (d− 1)ξn

[
2c2(1 + 2vmax)s2d∞(f̂)1−s2R̂K−1+s2‖g̃‖L2 + 4(K − 1)d∞(f̂)R̂K‖g̃‖L2

]
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+

[
4KR̂Kξn + cµ +

4R̂K2

v2min

d∞(f̂)

]
‖g̃‖L2d∞(f̂)

+ [(d− 1)ξnλ
1/2
1,n + ξnλ

1/2
1,n ]R̂2K

=2(1 + R̂K)ξ′n‖g̃‖L2 + 2(d− 1)ξnc2(1 + 2vmax)s2d∞(f̂)1−s2R̂K−1+s2‖g̃‖L2

+

[
2K(1 + R̂K)ξn

vmin
+ 4(d− 1)(K − 1)ξnR̂

K + 4KR̂Kξn + cµ +
4R̂K2

v2min

d∞(f̂)

]
‖g̃‖L2

d∞(f̂)

+ [2(1 + R̂K)ξ′nλ
1/2
2,n + (R̂K + (d+ 1)R̂2K)ξnλ

1/2
1,n ].

Then, by using the Cauchy-Schwarz inequality and the Young’s inequality,

2(1 + R̂K)ξ′n‖g̃‖L2 + 2(d− 1)ξnc2(1 + 2vmax)s2d∞(f̂)1−s2R̂K−1+s2‖g̃‖L2

≤1

6
‖g̃‖2L2

+ 6(1 + R̂K)2ξ′
2
n +

1

6
‖g̃‖2L2

+ 6[(d− 1)ξnc2(1 + 2vmax)s2d∞(f̂)1−s2R̂K−1+s2 ]2

≤1

3
‖g̃‖2L2

+ 6(1 + R̂K)2ξ′
2
n

+
1− s2

8
d∞(f̂)2 + s261/s28(1−s2)/s2 [(d− 1)c2(1 + 2vmax)s2R̂K−1+s2 ]2/s2ξ2/s2n ,

and, we also have

1− s2
8

d∞(f̂)2+[
2K(1 + 2R̂K)ξn

vmin
+ 4(d− 1)(K − 1)ξnR̂

K + 4KR̂Kξn + cµ +
4R̂K2

v2min

d∞(f̂)

]
‖g̃‖L2

d∞(f̂)

≤1

6
‖g̃‖2L2

+
3

2
Q2
nd∞(f̂)2,

where

Qn =
2K(1 + 2R̂K)ξn

vmin
+ 4(d− 1)(K − 1)ξnR̂

K + 4KR̂Kξn + cµ +
4R̂K2

v2min

d∞(f̂) +

√
1− s2

8
.

Moreover, since it holds that

2
(1 + R̂K)

R̂2K
ξ′nλ

1/2
2,n +

(R̂K + (d+ 1)R̂2K)

R̂2K
ξnλ

1/2
1,n

+ 6
(1 + R̂K)2

R̂2K
ξ′

2
n +

1

R̂2K
s2

481/s2

8
[(d− 1)c2(1 + 2vmax)s2R̂K−1+s2 ]2/s2ξ2/s2n

≤4ξ′nλ
1/2
2,n + (d+ 2)ξnλ

1/2
1,n + 12ξ′

2
n + s2

481/s2

8
[(d− 1)c2(1 + 2vmax)s2 ]2/s2R̂2(K−1)(1−s2)/s2ξ2/s2n

=:Sn,

we have that

‖g̃‖2L2
≤ 1

2
‖g̃‖2L2

+
3

2
Q2
nd∞(f̂)2 + SnR̂

2K (S-14)

⇒ ‖g̃‖2L2
≤ 3Q2

nd∞(f̂)2 + 2SnR̂
2K . (S-15)

The left hand side is lower bounded as follows. Let c̃ =
∏
k′ 6=k ‖f̃(r,k′)‖L2

(=
∏
k′ 6=k ‖f∗(r,k′)‖L2

).

Remind that v̄′r = ‖f̃ ′(r,k)‖L2

∏
k′ 6=k ‖f̃(r,k′)‖L2

, f̄(r′,k′) = f̃(r′,k′)/‖f̃(r′,k′)‖L2
(∀(r′, k′) 6= (r, k))

and f̄ ′(r,k) = f̃ ′(r,k)/‖f̃
′
(r,k)‖L2 . Then c̃f̃ ′(r,k) = v̄′rf̄

′
(r,k). Note that vr =

∏K
k′=1 ‖f∗(r,k′)‖L2 =

‖f∗(r,k)‖L2
c̃. Thus,

‖g̃‖2L2
= ‖f̃ ′(r,k) − f

∗
(r,k)‖

2
L2
c̃2 = ‖v̄′rf̄ ′(r,k) − vrf

∗∗
(r,k)‖

2
L2
.
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Here, the RHS is lower bounded as

‖v̄′rf̄ ′(r,k) − vrf
∗∗
(r,k)‖

2
L2
≥ (v̄′r)

2‖f̄ ′(r,k)‖
2
L2
− 2v̄′rvr〈f̄ ′(r,k), f

∗∗
(r,k)〉L2

+ v2r‖f∗∗(r,k)‖
2
L2

≥ (v̄′r)
2 − 2v̄rvr + v2r ≥ (v̄′r − vr)2.

Moreover, we also have another lower bound as

‖v̄′rf̄ ′(r,k) − vrf
∗∗
(r,k)‖L2 = ‖(v̄′r − vr)f̄ ′(r,k) + vr(f̄

′
(r,k) − f

∗∗
(r,k))‖L2

≥ −‖(v̄′r − vr)f̄ ′(r,k)‖L2 + vr‖f̄ ′(r,k) − f
∗∗
(r,k)‖L2 = −|v̄′r − vr|+ vr‖f̄ ′(r,k) − f

∗∗
(r,k)‖L2

.

Therefore,

‖g̃‖2L2
≥ 1

9

[
vr‖f̄ ′(r,k) − f

∗∗
(r,k)‖L2

+ |v̄′r − vr|
]2
. (S-16)

Combining Eq. (S-15) and Eq. (S-16), we arrive at

1

9

(
vr‖f̄ ′(r,k) − f

∗∗
(r,k)‖L2

+ |v̄′r − vr|
)2
≤ 3Q2

nd∞(f̂)2 + 2SnR̂
2K .

This gives the first assertion.

Moreover, since f̄ ′(r,k) = c̃f̃ ′(r,k)/v̄
′
r,

‖f̄ ′(r,k)‖Hr,k =
c̃

v̄′r
‖f̃ ′(r,k)‖Hr,k ≤

2

v̄′r
‖f̃ ′(r,k)‖Hr,k ≤

2

vr −
√
ηn
R̃

which gives the second assertion.

A.2 Key lemmas

Lemma A.4. Under the same setting as in Theorem A.1, in the event E1, it holds that∣∣ 1
n

n∑
i=1

εig̃(xi)
∣∣ ≤ 2ξ′n

(
‖g̃‖L2

+ λ
1/2
2,n R̂

K
)

+ ξn(2K‖g̃‖L2
d∞(f̂)/vmin + λ

1/2
1,n R̂

K).

and

|(P − Pn)(g̃2)| ≤ 2R̂Kξ′n
(
‖g̃‖L2

+ λ
1/2
2,n R̂

K
)

+ R̂Kξn(2K‖g̃‖L2
d∞(f̂)/vmin + λ

1/2
1,n R̂

K).

Proof. First, note that

1

n

n∑
i=1

εig̃(xi) =
1

n

n∑
i=1

εi
∏
k′ 6=k

f∗(r,k′)(xi)(f̃
′
(r,k)(xi)− f

∗
(r,k)(xi))

+
1

n

n∑
i=1

εi

∏
k′ 6=k

f̃(r,k′)(xi)−
∏
k′ 6=k

f∗(r,k′)(xi)

 (f̃ ′(r,k)(xi)− f
∗
(r,k)(xi)). (S-17)

Using Eq. (S-2b), the first term is bounded by

ξ′n

(
‖f̃ ′(r,k) − f

∗
(r,k)‖L2

+ λ
1/2
2,n R̂

K

) ∏
k′ 6=k

‖f∗(r,k′)‖L2
.

Since
∏
k′ 6=k ‖f∗(r,k′)‖L2

=
∏
k′ 6=k ‖f̃(r,k′)‖L2

≤ 2 by the construction of f∗(r,k′), the right hand side

is upper bounded by 2ξ′n(‖g̃‖L2 + λ
1/2
2,n R̂

K).

On the other hand, since Eq. (S-9) and Eq. (S-10) give max{‖f∗(r,k′)‖Hr,k′ , ‖f̃(r,k′)‖Hr,k′} ≤
R̂ (∀k′ 6= k), Eq. (S-3a) gives an upper bound of the second term as

ξn

∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
∥∥
L2
‖f̃ ′(r,k) − f

∗
(r,k)‖L2 + λ

1/2
1,n R̂

K

 .
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Since ‖f̃(r,k′)‖L2 = ‖f∗(r,k′)‖L2 ≥ 1/2 (∀k′ 6= k), it holds that∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
∥∥
L2

≤
∑
k′ 6=k

 ∏
l<k′,l 6=k

‖f̃(r,l)‖L2

 ‖f̃(r,k′) − f∗(r,k′)‖L2

 ∏
l>k′,l 6=k

‖f∗(r,l)‖L2


≤2‖

∏
k′ 6=k

f̃(r,k′)‖L2
Kd∞(f̂)/vmin.

This and ‖g‖L2 = ‖f̃ ′(r,k) − f
∗
(r,k)‖L2

∏
k′ 6=k ‖f̃(r,k′)‖L2

give a bound of Eq. (S-17) as

ξn(2K‖g̃‖L2d∞(f̂)/vmin + λ
1/2
1,n R̂

K).

The second assertion is also proven by the similar argument to the first assertion by noticing∏
k′ 6=k

f̃ 2
(r,k′) −

∏
k′ 6=k

f∗(r,k′)
2

 (f̃ ′(r,k) − f∗(r,k))2

=
( ∏

k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

)
(f̃ ′(r,k) − f∗(r,k))×

( ∏
k′ 6=k

f̃(r,k′) +
∏
k′ 6=k

f∗(r,k′)

)
(f̃ ′(r,k) − f∗(r,k)),

and applying Eq. (S-2a) and Eq. (S-3b) instead of Eq. (S-2b) and Eq. (S-3a).

Lemma A.5. Suppose that the Incoherent Assumption 4 is satisfied. Then, if {f̃(r,k)} and µ∗ satisfy
Eq. (S-5), then we have that

P

[∑
r′ 6=r

(f̃r′ − f∗r′)g̃
]
≤ cµd∞(f̂)‖g̃‖L2

. (S-18)

Moreover, {f̃(r,k)}r,k are µ-incoherent where µ = 2d∞(f̂)
vmin

+ µ∗.

Proof. First we show that {f̃(r,k)}r,k are µ-incoherent. This can be shown that

|〈f̄(r′,k′), f̄(r′′,k′′)〉|
=|〈f̄(r′,k′) − f∗∗(r′,k′) + f∗∗(r′,k′), f̄(r′′,k′′)〉|
=|〈f̄(r′,k′) − f∗∗(r′,k′), f̄(r′′,k′′)〉|+ |〈f

∗∗
(r′,k′), f̄(r′′,k′′) − f

∗∗
(r′′,k′′) + f∗∗(r′′,k′′)〉|

≤‖f̄(r′,k′) − f∗∗(r′,k′)‖L2
‖f̄(r′′,k′′)‖L2

+ ‖f∗∗(r′,k′)‖L2
‖f̄(r′′,k′′) − f∗∗(r′′,k′′)‖+ |〈f∗∗(r′,k′), f

∗∗
(r′′,k′′)〉|

≤2
d∞(f̂)

vmin
+ µ∗ ≤ µ.

Let ∆f(r′,k′) = f̄(r′,k′)− f∗∗(r′,k′) for k′ 6= k and ∆f(r′,k) = v̄r′ f̄(r′,k)− vr′f∗∗(r′,k). Then, for k′ 6= k,
v̄r′‖∆f(r′,k′)‖L2

= vr′‖∆f(r′,k′)‖L2
+|vr′−v̄r′ |‖∆f(r′,k′)‖L2

≤ vr′‖∆f(r′,k′)‖L2
+2|vr′−v̄r′ | ≤

2d∞(f̃), and ‖∆f(r′,k)‖L2 ≤ ‖vr′ f̄(r′,k) − vr′f∗∗(r′,k)‖L2 + |vr′ − v̄r′ | ≤ d∞(f̂). Therefore, for

sufficiently small d∞(f̂), the LHS of Eq. (S-18) is bounded by

P

[∑
r′ 6=r

(f̃r′ − f∗r′)g̃
]
≤ P

[∑
r′ 6=r

[f̃r′ − (v̄r′ f̄(r′,k) −∆f(r′,k))
∏
k′ 6=k

(f̄(r′,k′) −∆f(r′,k′))]g̃

]

≤

∣∣∣∣∣∣P
[∑
r′ 6=r

∆f(r′,k)(f̃
′
(r,k) − f

∗
(r,k))

( ∏
k′ 6=k

f̃(r,k′)

)( ∏
k′′ 6=k

(f̄(r′,k′′) −∆f(r′,k′′))

)]∣∣∣∣∣∣
+

∣∣∣∣∣∣P
[∑
r′ 6=r

(f̃ ′(r,k) − f
∗
(r,k))v̄r′ f̄(r′,k)

( ∏
k′′ 6=k

f̃(r,k′′)

)( ∏
k′′ 6=k

(f̄(r′,k′′) −∆f(r′,k′′))−
∏
k′′ 6=k

f̄(r′,k′′)

)]∣∣∣∣∣∣
10



≤
∑
r′ 6=r

‖f̃ ′(r,k) − f
∗
(r,k)‖L2

‖∆f(r′,k)‖L2

∏
k′ 6=k

‖f̃(r,k′)‖L2

∏
k′′ 6=k

(µ‖f̄(r′,k′)‖L2
+ ‖∆f(r′,k′′)‖L2

)

+
∑
r′ 6=r

∑
k′ 6=k

‖f̃ ′(r,k) − f
∗
(r,k)‖L2

v̄r′‖f̄(r′,k)‖L2
‖∆f(r′,k′)‖L2

×
∏
k′′ 6=k

‖f̃(r,k′′)‖L2

∏
k′′′ 6=k,k′

(µ‖f̄(r′,k′′)‖L2
+ ‖∆f(r′,k′′′)‖L2

)

(a)
≤(d− 1)‖f̃ ′(r,k) − f

∗
(r,k)‖L2

∏
k′ 6=k

‖f̃(r,k′)‖L2
d∞(f̂)

[(
µ+

d∞(f̂)

vmin

)K−1
+ 2K

(
µ+

d∞(f̂)

vmin

)K−2]
(b)
≤‖g̃‖L2

d∞(f̂)(d− 1)

[(
µ+

µ

2

)K−1
+ 2K

(
µ+

µ

2

)K−2]
(c)
≤cµ‖g̃‖L2

d∞(f̂),

where, in the inequality (a), we used the relation ‖∆f(r′,k)‖L2
≤ d∞(f̂), v̄r′‖∆f(r′,k′)‖L2

≤
2d∞(f̂) for k′ 6= k, and ‖∆f(r′,k′)‖L2

≤ d∞(f̂)
vmin

for k′ 6= k; in the inequality (b), we used the

assumption on µ and d∞(f̂); and, in the final inequality (c), we used the definition of cµ.

Lemma A.6. If
∏
k′ 6=k ‖f̃(r,k′)‖L2 ≥ 1/2, then

P

[
f∗(r,k)

( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
)
g̃

]
≤ 2R̂K2

v2min

‖g̃‖L2
d∞(f̂)2.

Proof. Because PX is a product measure given by PX = P1 × · · · × PK , we have that

P

[
f∗(r,k)

( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
)
g̃

]
= P

[
f∗(r,k)(f̃(r,k) − f

∗
(r,k))

( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
) ∏
k′ 6=k

f̃(r,k′)

]

= P

[
f∗(r,k)(f̃(r,k) − f

∗
(r,k))

]
× P

[( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
) ∏
k′ 6=k

f̃(r,k′)

]

≤ ‖f∗(r,k)‖∞‖f̃(r,k) − f
∗
(r,k)‖L2

P

[ ∏
k′ 6=k

f̃2(r,k′) −
∏
k′ 6=k

f∗(r,k′)
∏
k′ 6=k

f̃(r,k′)

]
,

where we used the Cauchy-Schwarz inequality in the second line. Here, by the construction of f̂(r,k),
we have that ‖

∏
k′ 6=k f̃(r,k′)‖L2 = ‖

∏
k′ 6=k f

∗
(r,k′)‖L2 and thus

P

[ ∏
k′ 6=k

f̃(r,k′)
∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
∏
k′ 6=k

f̃(r,k′)

]
=

1

2

∥∥∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

∥∥∥∥2
L2

.

Here, since it holds that∥∥∥∥ ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)

∥∥∥∥
L2

≤
∑
k′ 6=k

(
‖f̃(r,k′) − f∗(r,k′)‖L2

∏
k′′<k′,k′′ 6=k

‖f̃(r,k′′)‖L2

∏
k′′>k′,k′′ 6=k

‖f∗(r,k′)‖L2

)
≤2

K−1
K

∑
k′ 6=k

‖f̃(r,k′) − f∗(r,k′)‖L2
/‖f̃(r,k′)‖L2

≤ 2Kd∞(f̂)/vmin,

we have that

P

[
f∗(r,k)

( ∏
k′ 6=k

f̃(r,k′) −
∏
k′ 6=k

f∗(r,k′)
)
g̃

]
≤ ‖f∗(r,k)‖∞‖f̃(r,k) − f

∗
(r,k)‖L2

2K2d∞(f̂)2/v2min.
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Moreover, since ‖f∗(r,k)‖∞ ≤ ‖f
∗
(r,k)‖Hr,k ≤ R̂ (Eq. (S-9)) and

∏
k′ 6=k ‖f̃(r,k′)‖L2 ≥ 1/2 gives

‖f̃(r,k) − f∗(r,k)‖L2
≤ 2‖g̃‖L2

, we have that

P

[
f∗(r,k)

( ∏
k′ 6=k

f̃(r,k) −
∏
k′ 6=k

f∗(r,k)
)
g̃

]
≤ 4R̂K2

v2min

‖g̃‖L2
d∞(f̂)2.

Lemma A.7. If {f̂(r,k)}r,k and {f∗(r,k)}r,k are µ-incoherent, then we have

‖f̂ − f∗‖2L2
≤ dKd∞(f̂)2 +

dK2

v2min

d∞(f̂)4 + d2K2µd∞(f̂)2.

Proof.

‖f̂ − f∗‖2L2
= ‖

d∑
r=1

K∑
k=1

∏
l<k

f̂(r,l)(f̂(r,k) − f∗∗(r,k))
∏
l>k

f∗∗(r,l)‖
2
L2

Let
∆f̂(r,k) :=

∏
l<k

f̂(r,l)(f̂(r,k) − f∗∗(r,k))
∏
l>k

f∗∗(r,l).

Now we set f̂(r,k) = f̄(r,k) (∀r ∈ [d], k ∈ [K − 1]), f̂(r,K) = v̄rf̄(r,K) (∀r ∈ [d]), f∗(r,k) =

f∗∗(r,k) (∀r ∈ [d], k ∈ [K − 1]), and f∗(r,K) = vrf
∗∗
(r,K) (∀r ∈ [d]). Then, it holds that, for all r ∈ [d],

∆f̂(r,k) = vr
∏
l<k

f̄(r,l)(f̄(r,k) − f∗∗(r,k))
∏
l>k

f∗∗(r,l) (∀k < K),

∆f̂(r,K) =
∏
l<K

f̄(r,l)(v̄rf̄(r,K) − vrf∗∗(r,K)).

By the definition of ∆f̂(r,k), we have that

(f̂ − f∗)2 =(

d∑
r=1

K∑
k=1

∆f̂(r,k))
2

=

d∑
r=1

 K∑
k=1

∆f̂2(r,k) +
∑
k 6=k′

∆f̂(r,k)∆f̂(r,k′)

+
∑
r 6=r′

K∑
k=1

K∑
k′=1

∆f̂(r,k)∆f̂(r′,k′).

We evaluate each term. If k < K, we have

P (∆f̂2(r,k)) = v2r‖f̄(r,k) − f∗∗(r,k)‖
2
L2
≤ d∞(f̂)2,

otherwise, we have

P (∆f̂2(r,K)) = ‖v̄rf̄(r,K) − vrf∗∗(r,K)‖
2
L2
≤
(
v̄r‖f̄(r,K) − f∗∗(r,K)‖L2

+ |v̄r − vr|‖f̄(r,K)‖L2

)2
≤ d∞(f̂)2.

Next we evaluate the term ∆f̂(r,k)∆f̂(r,k′) with k 6= k′. If k < k′ < K, then

P (∆f̂(r,k)∆f̂(r,k′))

≤ v2r |P [(f̄(r,k) − f∗∗(r,k))f̄(r,k)]P [f∗∗(r,k′)(f̄(r,k′) − f
∗∗
(r,k′))]|

= v2r |(1− P [f∗∗(r,k)f̄(r,k)])(P [f∗∗(r,k′)(f̄(r,k′)]− 1)| (∵ ‖f∗∗(r,k)‖L2
= ‖f̄(r,k)‖L2

= 1)

= v2r
1

4
|P [(f∗∗(r,k))

2 − 2f∗∗(r,k)f̄(r,k) + (f̄(r,k))
2]||P [2f∗∗(r,k′)f̄(r,k′) − (f∗∗(r,k′))

2 − (f̄(r,k′))
2]|

(∵ ‖f∗∗(r,k)‖L2
= ‖f̄(r,k)‖L2

= 1)
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= v2r‖f∗∗(r,k) − f̄(r,k)‖
2
L2
‖f∗∗(r,k′) − f̄(r,k′)‖

2
L2

≤ d∞(f̂)4/v2min.

On the other hand, if k < k′ = K, then, with a similar argument, we have

P (∆f̂(r,k)∆f̂(r,k′)) ≤ d∞(f̂)4/v2min.

Finally, we evaluate the term∆f̂(r,k)∆f̂(r′,k′) with r 6= r′ (k and k′ could be same). If 1 < k, k′ < K,
we have

P (∆f̂(r,k)∆f̂(r′,k))

≤vrvr′ |(P f̄(r,1)f̄(r′,1))| × ‖f̄(r,k) − f∗∗(r,k)‖L2‖f̄(r′,k′) − f∗∗(r′,k′)‖L2 ≤ µd∞(f̂)2,

else, we also have the same upper bound.

Combining these inequalities, we have that

‖f̂ − f∗‖2L2
≤ dKd∞(f̂)2 +

dK2

v2min

d∞(f̂)4 + d2K2µd∞(f̂)2.

A.3 Technical lemmas

Here we give some technical lemmas to show the main theorem (Theorem A.1) .

We denote by {σi}ni=1 the Rademacher random variable that is an i.i.d. random variable such that
σi ∈ {±1}. It is known that, for a set of measurable functions F that is separable with respect to
∞-norm, the Rademacher complexity E[supf∈F

1
n

∑n
i=1 σif(xi)] of F bounds the supremum of the

discrepancy between the empirical and population means of all functions f ∈ F (see Lemma 2.3.1 of
[8]):

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

(f(xi)− E[f ])

∣∣∣∣∣
]
≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
, (S-19)

where the expectations are taken for both {xi}ni=1 and {σi}ni=1.

The following proposition is the key in our analysis.
Proposition A.8. Let Bδ,a,b ⊂ L2(PX ) be a set such that ∀f ∈ Bδ,a,b satisfies ‖f‖L2

≤ δ, ‖f‖∞ ≤
b, and it has a complexity bound like Assumption 2 such that

ei(Bδ,a,b, L2(PX )) ≤ ai− 1
2s .

Then, there exist constants C ′s depending only on s such that

E

[
sup

f∈Bδ,a,b

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
]
≤ C ′s

(
δ1−sas√

n
∨ a

2s
1+s b

1−s
1+s n−

1
1+s

)
.

Proof. The proof is given by combining Theorem 7.16 and Corollary 7.31 of [4].

Using Proposition A.8 and the peeling device [7], we obtain the following lemma (see also [3, 5]).
Lemma A.9. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a constant Cs depending only on s, s2 and c, c2 such that for all λ > 0

E

[
sup

f(r,k)∈Hr,k:‖f(r,k)‖Hr,k≤1

| 1n
∑n
i=1 σi

∏K
k=1 f(r,k)(xi)|∏K

k=1 ‖f(r,k)‖L2
+ λ

1
2

]
≤ Cs

(
K

1+2s
2 λ−

s
2

√
n

∨ K
1+2s
1+s λ−

2s+(1−s)s2
2(1+s)

n
1

1+s

)
.

Proof. (Lemma A.9) LetHr,k(δ) := {f ∈ Hr,k | ‖f‖Hr,k ≤ 1, ‖f‖L2
≤ δ} and z = 21/s > 1. We

evaluate the entropy number of the set B = {
∏K
k=1 fk | fk ∈ Hr,k(δk)}. For all f ∈ B, we have
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‖f‖L2 ≤
∏K
k=1 δk because for f =

∏K
k=1 fk it holds that ‖f‖L2 =

∏K
k=1 ‖fk‖L2 . Moreover, since

‖fk‖∞ ≤ ‖fk‖Hr,k (fk ∈ Hr,k), we have ‖f‖∞ ≤ 1 for all f ∈ B. The L2(PX ) norm between
f =

∏
k fk and f ′ =

∏
k f
′
k such that ‖fk − f ′k‖L2

≤ ε̃ is upper bonded by

‖
∏
k

fk −
∏
k

f ′k‖L2
= ‖

K∑
k=1

f1 . . . fk−1(fk − f ′k)f ′k+1 . . . f
′
K‖L2

≤
K∑
k=1

‖f1‖L2
. . . ‖fk−1‖L2

‖fk − f ′k‖L2
‖f ′k+1‖L2

. . . ‖f ′K‖L2
≤ Kε̃.

Therefore, if {fk,j}Nkj=1 be the ε̃-net ofHr,k(δk) where Nk = N (ε̃,Hr,k(δk), L2(PX )), then the set
E = {f =

∏K
k=1 fk,jk | 1 ≤ jk ≤ Nk} is the Kε̃-net of B. Therefore, logN (ε̃K,B, L2(PX )) ≤

log(
∏K
k=1Nk). By the entropy condition of Hr,k, there exists c′ (depending on c and s) such

that Nk ≤ c′ε̃−2s, thus for ε = ε̃K, we have that logN (ε,B, L2(PX )) ≤
∑K
k=1 c

′(ε/K)−2s ≤
c′K1+2sε−2s. This gives that there exists C ′ depending on only s and c such that the entropy number
of B is bounded by

ei(B, L2(PX )) ≤ C ′K
1+2s
2s i−

1
2s . (S-20)

Let B(δ) := {f =
∏K
k=1 fk | ‖f‖L2

≤ δ, fk ∈ Hr,k, ‖fk‖Hr,k ≤ 1} and c̃s = K
1+2s
2s . Then

Proposition A.8, the entropy number bound (S-20) and the Infinity-Norm Assumption (Assumption
3) give that

E

[
sup

fk∈Hr,k:‖fk‖Hr,k≤1

| 1n
∑n
i=1 σi

∏K
k=1 fk|∏K

k=1 ‖fk‖L2 + λ
1
2

]

≤E

[
sup

f∈B(λ1/2)

| 1n
∑n
i=1 σif(xi)|

‖f‖L2 + λ
1
2

]

+

∞∑
i=1

E

[
sup

f∈B(ziλ1/2)\Hr,k(zi−1λ1/2)

| 1n
∑n
i=1 σif(xi)|

‖f‖L2 + λ
1
2

]

≤C ′s

λ 1−s
2 c̃ss

λ
1
2
√
n
∨ c̃

2s
1+s
s (c2λ

1−s2
2 )

1−s
1+s

n
1

1+sλ
1
2

+

∞∑
i=1

C ′s

zi(1−s)λ 1−s
2 c̃ss√

nz(i−1)λ
1
2

∨ c̃
2s

1+s
s [c2(ziλ

1
2 )1−s2 ]

1−s
1+s

n
1

1+s z(i−1)λ
1
2


≤4C ′s

 1

1− z−s
c̃ss

√
λ−s

n
+

c̃
2s

1+s
s c2

1−s
1+s

1− z−
2s+(1−s)s2

1+s

(
λ−

1
2+

(1−s2)(1−s)
2(1+s)

n
1

1+s

)
=4C ′s

(
2c̃ss

√
λ−s

n
+

2
2s+(1−s)s2
s(1+s)

2
2s+(1−s)s2
s(1+s) − 1

c̃
2s

1+s
s c2

1−s
1+s

(
λ−

2s+(1−s)s2
2(1+s)

n
1

1+s

))

≤4C ′s

(
2 +

2
2s+(1−s)s2
s(1+s)

2
2s+(1−s)s2
s(1+s) − 1

c2
1−s
1+s

)c̃ss√λ−s

n
∨

 c̃ 2s
1+s
s λ−

2s+(1−s)s2
2(1+s)

n
1

1+s

 .

By setting Cs ← 4C ′s

(
2 + 2

2s+(1−s)s2
s(1+s)

2
2s+(1−s)s2
s(1+s) −1

c2
1−s
1+s

)
, we obtain the assertion.

The Lemma A.9 gives the following bound.

Lemma A.10. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a constant Cs depending only on s, s2 and c, c2 such that for all λ > 0

E

[
sup

f(r,k)∈Hr,k:‖f(r,k)‖Hr,k≤1

| 1n
∑n
i=1 εi

∏K
k=1 f(r,k)(xi)|∏K

k=1 ‖f(r,k)‖L2 + λ
1
2

]
≤ CsL

(
K

1+2s
2 λ−

s
2

√
n

∨ K
1+2s
1+s λ−

2s+(1−s)s2
2(1+s)

n
1

1+s

)
.
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Proof. By applying the contraction inequality [2, Theorem 4.12] to the bound of Lemma A.9, the
assertion is proven.

Let Tr := {f − g | f =
∏K
k=1 fk, g =

∏K
k=1 gk where fk, gk ∈ Hr,k (k = 1, . . . ,K)}. Similarly

to Lemma A.9, we have the following bound.

Lemma A.11. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a constant C̃s depending only on s, s2 and c, c2 such that for all λ > 0

E

[
sup

(f,f ′)∈Tr×Tr′

| 1n
∑n
i=1 σif(xi)f

′(xi)|
‖ff ′‖L2 + λ

1
2

]
≤ C̃s

(
K

1+2s
2 λ−

s
2

√
n

∨ K
1+2s
1+s

λ
2s+(1−s)s2

2(1+s) n
1

1+s

)
.

Proof. Let B = {f(x)f ′(x) | f ∈ Tr, f ′ ∈ Tr′}. Along with the same argument with the proof of
Lemma A.9, the entropy number of B is bounded by

ei(B, L2(PX )) ≤ C̃ ′K
1+2s
2s i−

1
2s ,

where C̃ ′s is a constant depending on only s and c. Then, using the pealing device as in Lemma A.9,
we obtain the assertion.

Let the upper bound given in Lemmas A.9 and A.11 be ζn(λ):

ζn(λ) = ζn := max{Cs, C̃s}

(
K

1+2s
2 λ−

s
2

√
n

∨ K
1+2s
1+s

λ
2s+(1−s)s2

2(1+s) n
1

1+s

)
,

where Cs and C̃s are the constants appeared in each lemma respectively. Lemma A.9 and Lemma
A.11.

In addition to Lemma A.11, we obtain the following tail probability bound.

Lemma A.12. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a universal constant C > 0 such that, for any 0 < λ, it holds that

sup
f∈Tr,f ′∈Tr′

∣∣∣∣(P − Pn)

(
ff ′

‖ff ′‖L2
+ λ

1
2

)∣∣∣∣ ≤ Cζn max{1, τ}

with probability 1− exp(−τ) for all τ > 0.

Proof. We apply Talagrand’s concentration inequality [6, 1]. To apply Talagrand’s inequality, we
need to bound the L2-norm and the sup-norm of each term in the supremum in the LHS. They are
bounded as

EX

(
(f(X)f ′(X))2

(‖ff ′‖L2
+ λ

1
2 )2

)
≤ 1,

|f ′(X)f(X)|
‖ff ′‖L2

+ λ
1
2

≤ 4

λ1/2
.

Moreover, by Eq. (S-19), it holds that

E[ sup
(f,f ′)∈Tr×Tr′

|(P − Pn)(ff ′/(‖ff ′‖L2
+ λ1/2))|]

≤2E

[
sup

(f,f ′)∈Tr×Tr′

∣∣∣∣∣ 1n
n∑
i=1

σi(f(xi)f
′(xi)/(‖ff ′‖L2 + λ1/2))

∣∣∣∣∣
]
.

Therefore, by Talagrand’s concentration inequality and Lemma A.10, there exists a universal constant
C > 0 such that

P

(
sup

f,f ′∈Tr×Tr′

| 1n
∑n
i=1 σif(xi)f

′(xi)|
‖ff ′‖L2 + λ

1
2

≥ C
[
2ζn +

√
τ

n
+

4λ−1/2τ

n

])
≤ e−τ ,

for all τ > 0. By the definition of ζn, the right hand side is upper bounded by 7Cζn max{1, τ}.
Then, we obtain the assertion.
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Using the same argument, the following bound also holds.
Corollary A.13. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a universal constant C̃ > 0 such that, for any 0 < λ, it holds that

max
1≤r,r′≤d

sup
f∈Tr,f ′∈Tr′

∣∣∣∣(P − Pn)

(
ff ′

‖ff ′‖L2 + λ
1
2

)∣∣∣∣ ≤ C̃ log(d)ζn max{1, τ}

with probability 1− exp(−τ) for all τ > 0.

Proof. Taking the uniform bound with respect to r, r′ of Lemma A.13. We obtain the assertion.

Let T̃r,k = {(f(r,k)−f ′(r,k))(
∏
k′ 6=k f(r,k′)−

∏
k′ 6=k f

′
(r,k′)) | f(r,k′) ∈ Hr,k, f ′(r,k′) ∈ Hr,k′ (k′ =

1, . . . ,K)}. Then by the same argument as Corollary A.13, we have the following lemma.
Lemma A.14. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a universal constant C̃ ′ > 0 such that, for any 0 < λ, it holds that

max
1≤r≤d,1≤k≤K

sup
f∈T̃r,k

∣∣∣∣∣ 1n
n∑
i=1

(
εif(xi)

‖f‖L2
+ λ

1
2

)∣∣∣∣∣ ≤ C̃ ′L log(dK)ζn max{1, τ},

max
1≤r≤d,1≤k≤K

sup
f,f ′∈T̃r,k

∣∣∣∣(P − Pn)

(
ff ′

‖ff ′‖L2
+ λ

1
2

)∣∣∣∣ ≤ C̃ ′ log(dK)ζn max{1, τ}

with probability 1− exp(−τ).

The proof is almost identical to that of Corollary A.13.

Let T ′r,k = {(f(r,k)(x) − f ′(r,k)(x))
∏K
k′ 6=k f

∗∗
(r,k′)(x) | f(r,k), f ′(r,k) ∈ Hr,k, ‖f(r,k)‖Hr,k ≤

1, ‖f ′(r,k)‖Hr,k ≤ 1}. Then Lemma A.9 gives the following bound.

Lemma A.15. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a constant C ′s depending only on s and c such that for all λ > 0

E

[
sup
f∈T ′r,k

| 1n
∑n
i=1 σif(xi)|

‖f‖L2
+ λ

1
2

]
≤ C ′s

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
.

Let

ζ ′n = C ′s

(
λ−

s
2

√
n
∨ 1

λ
1
2n

1
1+s

)
(S-21)

where C ′s is given in Lemma A.15. Note that ζ ′n is independent of K while ζn depends on it. Then,
going through the same argument as Lemmas A.10, A.12 and A.13, we obtain the following lemma.
Lemma A.16. Under the Complexity Assumption (Assumption 2) and the Infinity-Norm Assumption
(Assumption 3), there exists a universal constant C ′ such that all of the following three inequalities
are satisfied more than probability 1− exp(−τ) for all τ > 0:

max
1≤r≤d,1≤k≤K

sup
f∈T ′r,k

∣∣∣∣(P − Pn)

(
f2

‖f‖L2
+ λ

1
2

)∣∣∣∣ ≤ C ′ log(dK)ζ ′n max{1, τ},

max
1≤r≤d,1≤k≤K

sup
f∈T ′r,k

∣∣∣∣∣ 1n
n∑
i=1

(
εif(xi)

‖f‖L2 + λ
1
2

)∣∣∣∣∣ ≤ C ′L log(dK)ζ ′n max{1, τ},

max
1≤r≤d,1≤k≤K

sup
f∈Hr,k,‖f‖Hr,k≤1

∣∣∣∣(P − Pn)

(
f2

‖f‖L2
+ λ

1
2

)∣∣∣∣ ≤ C ′ log(dK)ζ ′n max{1, τ}.
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