
A Mathematical background

Reproducing kernel Hilbert spaces (RKHS). The proofs of all the theorems we quote here are
well-known and can be found in Chapter 2 of [39] and similar textbooks. Let H be a Hilbert space of
functions from X to R. We say that H is a reproducing kernel Hilbert space, abbreviated RKHS or
kernel space, if for every x ∈ X the linear functional f �→ f(x) is bounded. The following theorem
provides a one-to-one correspondence between kernels and kernel spaces.

Theorem 7. (i) For every kernel κ there exists a unique kernel space Hκ such that for every x ∈ X ,
κ(·,x) ∈ Hκ and for all f ∈ Hκ, f(x) = �f(·),κ(·,x)�Hκ . (ii) A Hilbert space H ⊆ RX is a
kernel space if and only if there exists a kernel κ : X × X → R such that H = Hκ.

The following theorem describes a tight connection between embeddings of X into a Hilbert space
and kernel spaces.

Theorem 8. A function κ : X×X → R is a kernel if and only if there exists a mapping Φ : X → H to
some Hilbert space for which κ(x,x�) = �Φ(x),Φ(x�)�H. In addition, the following two properties
hold,

• Hκ = {fv : v ∈ H}, where fv(x) = �v,Φ(x)�H.

• For every f ∈ Hκ, �f�Hκ
= inf{�v�H | f = fv}.

Positive definite functions. A function µ : [−1, 1] → R is positive definite (PSD) if there are
non-negative numbers b0, b1, . . . such that

∞�

i=0

bi < ∞ and ∀x ∈ [−1, 1], µ(x) =

∞�

i=0

bix
i .

The norm of µ is defined as �µ� :=
��

i bi =
�

µ(1). We say that µ is normalized if �µ� = 1

Theorem 9 (Schoenberg, [40]). A continuous function µ : [−1, 1] → R is PSD if and only if for all
d = 1, 2, . . . ,∞, the function κ : Sd−1 × Sd−1 → R defined by κ(x,x�) = µ(�x,x��) is a kernel.

The restriction to the unit sphere of many of the kernels used in machine learning applications
corresponds to positive definite functions. An example is the Gaussian kernel,

κ(x,x�) = exp

�
−�x− x��2

2σ2

�
.

Indeed, note that for unit vectors x,x� we have

κ(x,x�) = exp

�
−�x�2 + �x��2 − 2�x,x��

2σ2

�
= exp

�
−1− �x,x��

σ2

�
.

Another example is the Polynomial kernel κ(x,x�) = �x,x��d.

Hermite polynomials. The normalized Hermite polynomials is the sequence h0, h1, . . . of or-
thonormal polynomials obtained by applying the Gram-Schmidt process to the sequence 1, x, x2, . . .

w.r.t. the inner-product �f, g� = 1√
2π

�∞
−∞ f(x)g(x)e−

x2

2 dx. Recall that we define activations as
square integrable functions w.r.t. the Gaussian measure. Thus, Hermite polynomials form an orthonor-
mal basis to the space of activations. In particular, each activation σ can be uniquely described in the
basis of Hermite polynomials,

σ(x) = a0h0(x) + a1h1(x) + a2h2(x) + . . . , (2)

where the convergence holds in �2 w.r.t. the Gaussian measure. This decomposition is called the
Hermite expansion. Finally, we use the following facts (see Chapter 11 in [34] and the relevant entry
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in Wikipedia):

∀n ≥ 1, hn+1(x) =
x√
n+ 1

hn(x)−
�

n

n+ 1
hn−1(x) , (3)

∀n ≥ 1, h�
n(x) =

√
nhn−1(x) (4)

E
(X,Y )∼Nρ

hm(X)hn(Y ) =

�
ρn n = m

0 n �= m
where n,m ≥ 0, ρ ∈ [−1, 1] , (5)

hn(0) =

�
0, if n is odd
1√
n!
(−1)

n
2 (n− 1)!! if n is even

, (6)

where

n!! =





1 n ≤ 0

n · (n− 2) · · · 5 · 3 · 1 n > 0 odd
n · (n− 2) · · · 6 · 4 · 2 n > 0 even

.

B Compositional kernel spaces

We now describe the details of compositional kernel spaces. Let S be a skeleton with normalized
activations and n input nodes associated with the input’s coordinates. Throughout the rest of the
section we study the functions in HS and their norm. In particular, we show that κS is indeed a
normalized kernel. Recall that κS is defined inductively by the equation,

κv(x,x
�) = σ̂v

��
u∈in(v) κu(x,x

�)

|in(v)|

�
. (7)

The recursion (7) describes a means for generating a kernel form another kernel. Since kernels
correspond to kernel spaces, it also prescribes an operator that produces a kernel space from other
kernel spaces. If Hv is the space corresponding to v, we denote this operator by

Hv = σ̂v

�⊕u∈in(v)Hu

|in(v)|

�
. (8)

The reason for using the above notation becomes clear in the sequel. The space HS is obtained by
starting with the spaces Hv corresponding to the input nodes and propagating them according to the
structure of S , where at each node v the operation (8) is applied. Hence, to understand HS we need
to understand this operation as well as the spaces corresponding to input nodes. The latter spaces
are rather simple: for an input node v corresponding to the variable xi, we have that Hv = {fw |
∀x, fw(x) = �w,xi�} and �fw�Hv = �w�. To understand (8), it is convenient to decompose it
into two operations. The first operation, termed the direct average, is defined through the equation

κ̃v(x,x
�) =

�
u∈in(v) κu(x,x

�)

|in(v)| , and the resulting kernel space is denoted Hṽ =
⊕u∈in(v)Hu

|in(v)| . The
second operation, called the extension according to σ̂v , is defined through κv(x,x

�) = σ̂v (κ̃v(x,x
�)).

The resulting kernel space is denoted Hv = σ̂v (Hṽ). We next analyze these two operations.

The direct average of kernel spaces. Let H1, . . . ,Hn be kernel spaces with kernels κ1, . . . ,κn :
X × X → R. Their direct average, denoted H = H1⊕···⊕Hn

n , is the kernel space corresponding to
the kernel κ(x,x�) = 1

n

�n
i=1 κi(x,x

�).

Lemma 10. The function κ is indeed a kernel. Furthermore, the following properties hold.

1. If H1, . . . ,Hn are normalized then so is H.

2. H =
�

f1+...+fn
n | fi ∈ Hi

�

3. �f�2H = inf

�
�f1�2

H1
+...+�fn�2

Hn

n s.t. f = f1+...+fn
n , fi ∈ Hi

�
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Proof. (outline) The fact that κ is a kernel follows directly from the definition of a kernel and the fact
that an average of PSD matrices is PSD. Also, it is straight forward to verify item 1. We now proceed
to items 2 and 3. By Theorem 8 there are Hilbert spaces G1, . . . ,Gn and mappings Φi : X → Gi such
that κi(x,x

�) = �Φi(x),Φi(x
�)�Gi

. Consider now the mapping

Ψ(x) =

�
Φ1(x)√

n
, . . . ,

Φn(x)√
n

�
.

It holds that κ(x,x�) = �Ψ(x),Ψ(x�)�. Properties 2 and 3 now follow directly form Thm. 8 applied
to Ψ.

The extension of a kernel space. Let H be a normalized kernel space with a kernel κ. Let
µ(x) =

�
i bix

i be a PSD function. As we will see shortly, a function is PSD if and only if it is
a dual of an activation function. The extension of H w.r.t. µ, denoted µ (H), is the kernel space
corresponding to the kernel κ�(x,x�) = µ(κ(x,x�)).

Lemma 11. The function κ� is indeed a kernel. Furthermore, the following properties hold.

1. µ(H) is normalized if and only if µ is.

2. µ(H) = span





�

g∈A

g | A ⊂ H, b|A| > 0



 where span(A) is the closure of the span of

A.

3. �f�µ(H) ≤ inf




�

A

�
g∈A �g�H�

b|A|
s.t. f =

�

A

�

g∈A

g, A ⊂ H





Proof. (outline) Let Φ : X → G be a mapping from X to the unit ball of a Hilbert space G such that
κ(x,x�) = �Φ(x),Φ(x�)�. Define

Ψ(x) =
��

b0,
�

b1Φ(x),
�

b2Φ(x)⊗ Φ(x),
�

b3Φ(x)⊗ Φ(x)⊗ Φ(x), . . .
�

It is not difficult to verify that �Ψ(x),Ψ(x�)� = µ(κ(x,x�)). Hence, by Thm. 8, κ� is indeed a kernel.
Verifying property 1 is a straightforward task. Properties 2 and 3 follow by applying Thm. 8 on the
mapping Ψ.

C The dual activation function

The following lemma describes a few basic properties of the dual activation. These properties follow
easily from the definition of the dual activation and equations (2), (4), and (5).

Lemma 12. The following properties of the mapping σ �→ σ̂ hold:

(a) If σ =
�

i aihi is the Hermite expansion of σ, then σ̂(ρ) =
�

i a
2
i ρ

i.

(b) For every σ, σ̂ is positive definite.

(c) Every positive definite function is a dual of some activation.

(d) The mapping σ �→ σ̂ preserves norms.

(e) The mapping σ �→ σ̂ commutes with differentiation.

(f) For a ∈ R, �aσ = a2σ̂.

(g) For every σ, σ̂ is continuous in [−1, 1] and smooth in (−1, 1).

(h) For every σ, σ̂ is non-decreasing and convex in [0, 1].

(i) For every σ, the range of σ̂ is
�
−�σ�2, �σ�2

�
.
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(j) For every σ, σ̂(0) =
�
EX∼N(0,1) σ(X)

�2
and σ̂(1) = �σ�2.

We next discuss a few examples for activations and calculate their dual activation and kernel. Note
that the dual of the exponential activation was calculated in [29] and the duals of the step and the
ReLU activations were calculated in [13]. Here, our derivations are different and may prove useful
for future calculations of duals for other activations.

The exponential activation. Consider the activation function σ(x) = Ceax where C > 0 is a
normalization constant such that �σ� = 1. The actual value of C is e−2a2

but it will not be needed
for the derivation below. From properties (e) and (f) of Lemma 12 we have that,

(σ̂)
�
= �σ� = �aσ = a2σ̂ .

The the solution of ordinary differential equation (σ̂)
�
= a2σ̂ is of the form σ̂(ρ) = b exp

�
a2ρ

�
.

Since σ̂(1) = 1 we have b = e−a2

. We therefore obtain that the dual activation function is

σ̂(ρ) = ea
2ρ−a2

= ea
2(ρ−1) .

Note that the kernel induced by σ is the RBF kernel, restricted to the d-dimensional sphere,

κσ(x,x
�) = ea

2(�x,x��−1) = e−
a2�x−x��2

2 .

The Sine activation and the Sinh kernel. Consider the activation σ(x) = sin(ax). We can write
sin(ax) = eiax−e−iax

2i . We have

σ̂(ρ) = E
(X,Y )∼Nρ

�
eiaX − e−iaX

2i

��
eiaY − e−iaY

2i

�

= −1

4
E

(X,Y )∼Nρ

�
eiaX − e−iaX

� �
eiaY − e−iaY

�

= −1

4
E

(X,Y )∼Nρ

�
eia(X+Y ) − eia(X−Y ) − eia(−X+Y ) + eia(−X−Y )

�
.

Recall that the characteristic function, E[eitX ], when X is distributed N(0, 1) is e−
1
2 t

2

. Since X+Y
and −X − Y are normal variables with expectation 0 and variance of 2 + 2ρ, it follows that,

E
(X,Y )∼Nρ

eia(X+Y ) = E
(X,Y )∼Nρ

e−ia(X+Y ) = e−
a2(2+2ρ)

2 .

Similarly, since the variance of X − Y and Y −X is 2− 2ρ, we get

E
(X,Y )∼Nρ

eia(X−Y ) = E
(X,Y )∼Nρ

eia(−X+Y ) = e−
a2(2−2ρ)

2 .

We therefore obtain that

σ̂(ρ) =
e−a2(1−ρ) − e−a2(1+ρ)

2
= e−a2

sinh(a2ρ) .

Hermite activations and polynomial kernels. From Lemma 12 it follows that the dual activation
of the Hermite polynomial hn is ĥn(ρ) = ρn. Hence, the corresponding kernel is the polynomial
kernel.

The normalized step activation. Consider the activation

σ(x) =

�√
2 x > 0

0 x ≤ 0
.

To calculate σ̂ we compute the Hermite expansion of σ. For n ≥ 0 we let

an =
1√
2π

� ∞

−∞
σ(x)hn(x)e

− x2

2 dx =
1√
π

� ∞

0

hn(x)e
− x2

2 dx .

13



Since h0(x) = 1, h1(x) = x, and h2(x) =
x2−1√

2
, we get the corresponding coefficients,

a0 = E
X∼N(0,1)

[σ(X)] =
1√
2

a1 = E
X∼N(0,1)

[σ(X)X] =
1√
2

E
X∼N(0,1)

[|X|] = 1√
π

a2 =
1√
2

E
X∼N(0,1)

[σ(X)(X2 − 1)] =
1

2
E

X∼N(0,1)
[X2 − 1] = 0 .

For n ≥ 3 we write gn(x) = hn(x)e
− x2

2 and note that

g�n(x) = [h�
n(x)− xhn(x)] e

− x2

2

=
�√

nhn−1(x)− xhn(x)
�
e−

x2

2

= −
√
n+ 1hn+1(x)e

− x2

2

= −
√
n+ 1 gn+1(x) .

Here, the second equality follows from (4) and the third form (3). We therefore get

an =
1√
π

� ∞

0

gn(x)dx

= − 1√
nπ

� ∞

0

g�n−1(x)dx

=
1√
nπ


gn−1(0)−

=0� �� �
gn−1(∞)




=
1√
nπ

hn−1(0)

=





(−1)
n−1
2 (n−2)!!√

nπ
√

(n−1)!
= (−1)

n−1
2 (n−2)!!√
πn!

if n is odd

0 if n is even
.

The second equality follows from (3) and the last equality follows from (6). Finally, from Lemma 12
we have that σ̂(ρ) =

�∞
n=0 bnρ

n where

bn =





((n−2)!!)2

πn! if n is odd
1
2 if n = 0

0 if n is even ≥ 2

.

In particular, (b0, b1, b2, b3, b4, b5, b6) =
�
1
2 ,

1
π , 0,

1
6π , 0,

3
40π , 0

�
. Note that from the Taylor expansion

of cos−1 it follows that σ̂(ρ) = 1− cos−1(ρ)
π .

The normalized ReLU activation. Consider the activation σ(x) =
√
2max(0, x). We now write

σ̂(ρ) =
�

i biρ
i. The first coefficient is

b0 =

�
E

X∼N(0,1)
σ(X)

�2

=
1

2

�
E

X∼N(0,1)
|X|

�2

=
1

π
.

To calculate the remaining coefficients we simply note that the derivative of the ReLU activation is the
step activation and the mapping σ �→ σ̂ commutes with differentiation. Hence, from the calculation
of the step activation we get,

bn =





((n−3)!!)2

πn! if n is even
1
2 if n = 1

0 if n is odd ≥ 3

.

In particular, (b0, b1, b2, b3, b4, b5, b6) =
�
1
π ,

1
2 ,

1
2π , 0,

1
24π , 0,

1
80π

�
. We see that the coefficients

corresponding to the degrees 0, 1, and 2 sum to 0.9774. The sums up to degrees 4 or 6 are 0.9907
and 0.9947 respectively. That is, we get an excellent approximation of less than 1% error with a dual
activation of degree 4.
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The collapsing tower of fully connected layers. To conclude this section we discuss the case of
very deep networks. The setting is taken for illustrative purposes but it might surface when building
networks with numerous fully connected layers. Indeed, most deep architectures that we are aware of
do not employ more than five consecutive fully connected layers.

Consider a skeleton Sm consisting of m fully connected layers, each layer associated with the same
(normalized) activation σ. We would like to examine the form of the compositional kernel as the
number of layers becomes very large. Due to the repeated structure and activation we have

κSm(x,y) = αm

� �x,y�
n

�
where αm = σ̂m =

m times� �� �
σ̂ ◦ . . . ◦ σ̂ .

Hence, the limiting properties of κSm
can be understood from the limit of αm. In the case that

σ(x) = x or σ(x) = −x, σ̂ is the identity function. Therefore αm(ρ) = σ̂(ρ) = ρ for all m and κSm

is simply the linear kernel. Assume now that σ is neither the identity nor its negation. The following
claim shows that αm has a point-wise limit corresponding to a degenerate kernel.

Claim 1. There exists a constant 0 ≤ ασ ≤ 1 such that for all −1 < ρ < 1,

lim
m→∞

αm(ρ) = ασ

Before proving the claim, we note that for ρ = 1, αm(1) = 1 for all m, and therefore
limm→∞ αm(1) = 1. For ρ = −1, if σ is anti-symmetric then αm(−1) = −1 for all m,
and in particular limm→∞ αm(−1) = −1. In any other case, our argument can show that
limm→∞ αm(−1) = ασ .

Proof. Recall that σ̂(ρ) =
�∞

i=0 biρ
i where the bi’s are non-negative numbers that sum to 1. By the

assumption that σ is not the identity or its negation, b1 < 1. We first claim that there is a unique
ασ ∈ [0, 1] such that

∀x ∈ (−1,ασ) , σ̂(ρ) > ρ and ∀x ∈ (ασ, 1) , ασ < σ̂(ρ) < ρ (9)

To prove (9) it suffices to prove the following properties.

(a) σ̂(ρ) > ρ for ρ ∈ (−1, 0)

(b) σ̂ is non-decreasing and convex in [0, 1]

(c) σ̂(1) = 1

(d) the graph of σ̂ has at most a single intersection in [0, 1) with the graph of f(ρ) = ρ

If the above properties hold we can take ασ to be the intersection point or 1 if such a point does not
exist. We first show (a). For ρ ∈ (−1, 0) we have that

σ̂(ρ) = b0 +

∞�

i=1

biρ
i ≥ b0 −

∞�

i=1

bi|ρ|i > −
∞�

i=1

bi|ρ| ≥ −|ρ| = ρ .

Here, the third inequality follows form the fact that b0 ≥ 0 and for all i, −bi|ρ|i ≥ −bi|ρ|. Moreover
since b1 < 1, one of these inequalities must be strict. Properties (b) and (c) follows from Lemma 12.
Finally, to show (d), we note that the second derivative of σ̂(ρ)− ρ is

�
i≥2 i(i− 1)biρ

i−2 which is
non-negative in [0, 1). Hence, σ̂(ρ)− ρ is convex in [0, 1] and in particular intersects with the x-axis
at either 0, 1, 2 or infinitely many times in [0, 1]. As we assume that σ̂ is not the identity, we can rule
out the option of infinitely many intersections. Also, since σ̂(1) = 1, we know that there is at least
one intersection in [0, 1]. Hence, there are 1 or 2 intersections in [0, 1] and because one of them is in
ρ = 1, we conclude that there is at most one intersection in [0, 1).

Lastly, we derive the conclusion of the claim from equation (9). Fix ρ ∈ (−1, 1). Assume first that
ρ ≥ ασ. By (9), αm(ρ) is a monotonically non-increasing sequence that is lower bounded by ασ.
Hence, it has a limit ασ ≤ τ ≤ ρ < 1. Now, by the continuity of σ̂ we have

σ̂(τ) = σ̂
�

lim
m→∞

αm(ρ)
�
= lim

m→∞
σ̂(αm(ρ)) = lim

m→∞
αm+1(ρ) = τ .
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Since the only solution to σ̂(ρ) = ρ in (−1, 1) is ασ, we must have τ = ασ. We next deal with
the case that −1 < ρ < ασ. If for some m, αm(ρ) ∈ [ασ, 1), the argument for ασ ≤ ρ shows that
ασ = limm→∞ αm(ρ). If this is not the case, we have that for all m, αm(ρ) ≤ αm+1(ρ) ≤ ασ. As
in the case of ρ ≥ ασ , this can be used to show that αm(ρ) converges to ασ .

D Proofs

D.1 Well-behaved activations

The proof of our main results applies to activations that are decent, i.e. well-behaved, in a sense
defined in the sequel. We then show that C-bounded activations as well as the ReLU activation are
decent. We first need to extend the definition of the dual activation and kernel to apply to vectors in
Rd, rather than just Sd. We denote by M+ the collection of 2× 2 positive semi-define matrices and
by M++ the collection of positive definite matrices.

Definition. Let σ be an activation. Define the following,

σ̄ : M2
+ → R , σ̄(Σ) = E

(X,Y )∼N(0,Σ)
σ(X)σ(Y ) , kσ(x,y) = σ̄

�
�x�2 �x,y�
�x,y� �y�2

�
.

We underscore the following properties of the extension of a dual activation.

(a) The following equality holds,

σ̂(ρ) = σ̄

�
1 ρ
ρ 1

�

(b) The restriction of the extended kσ to the sphere agrees with the restricted definition.

(c) The extended dual activation and kernel are defined for every activation σ such that for all
a ≥ 0, x �→ σ(ax) is square integrable with respect to the Gaussian measure.

(d) For x,y ∈ Rd, if w ∈ Rd is a multivariate normal distribution with zero mean vector and
identity covariance matrix, then

kσ(x,y) = E
w
σ(�w,x�)σ(�w,y�) .

Denote

Mγ
+ :=

��
Σ11 Σ12

Σ12 Σ22

�
∈ M+ | 1− γ ≤ Σ11,Σ22 ≤ 1 + γ

�
.

Definition. A normalized activation σ is (α,β, γ)-decent for α,β, γ ≥ 0 if the following conditions
hold.

(i) The dual activation σ̄ is β-Lipschitz in Mγ
+ with respect to the ∞-norm.

(ii) If (X1, Y1), . . . , (Xr, Yr) are independent samples from N (0,Σ) for Σ ∈ Mγ
+ then

Pr

�����
�r

i=1 σ(Xi)σ(Yi)

r
− σ̄(Σ)

���� ≥ �

�
≤ 2 exp

�
− r�2

2α2

�
.

Lemma 13 (Bounded activations are decent). Let σ : R → R be a C-bounded normalized activation.
Then, σ is (C2, 2C2, γ)-decent for all γ ≥ 0.

Proof. It is enough to show that the following properties hold.

1. The (extended) dual activation σ̄ is 2C2-Lipschitz in M++ w.r.t. the ∞-norm.

2. If (X1, Y1), . . . , (Xr, Yr) are independent samples from N (0,Σ) then

Pr

�����
�r

i=1 σ(Xi)σ(Yi)

r
− σ̄(Σ)

���� ≥ �

�
≤ 2 exp

�
− r�2

2C4

�
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From the boundedness of σ it holds that |σ(X)σ(Y )| ≤ C2. Hence, the second property follows
directly from Hoeffding’s bound. We next prove the first part. Let z = (x, y) and φ(z) = σ(x)σ(y).
Note that for Σ ∈ M++ we have

σ̄(Σ) =
1

2π
�
det(Σ)

�

R2

φ(z)e−
z�Σ−1z

2 dz .

Thus we get that,

∂σ̄

∂Σ
=

1

2π

�

R2

φ(z)

�
1
2

�
det(Σ)Σ−1 − 1

2

�
det(Σ)(Σ−1zz�Σ−1)

det(Σ)

�
e−

z�Σ−1z
2 dz

=
1

2π
�

det(Σ)

�

R2

φ(z)
1

2

�
Σ−1 − Σ−1zz�Σ−1

�
e−

z�Σ−1z
2 dz

Let g(z) = e−
z�Σ−1z

2 . Then, the first and second order partial derivatives of g are
∂g

∂z
= −Σ−1ze−

z�Σ−1z
2

∂2g

∂2z
=

�
−Σ−1 + Σ−1zz�Σ−1

�
e−

z�Σ−1z
2 .

We therefore obtain that,
∂σ̄

∂Σ
= − 1

4π
�

det(Σ)

�

R2

φ
∂2g

∂2z
dz .

By the product rule we have

∂σ̄

∂Σ
= − 1

2π
�
det(Σ)

1

2

�

R2

∂2φ

∂2z
gdz = −1

2
E

(X,Y )∼N(0,Σ)

�
∂2φ

∂2z
(X,Y )

�

We conclude that σ̄ is differentiable in M++ with partial derivatives that are point-wise bounded by
C2

2 . Thus, σ̄ is 2C2-Lipschitz in M+ w.r.t. the ∞-norm.

We next show that the ReLU activation is decent.

Lemma 14 (ReLU is decent). There exists a constant αReLU ≥ 1 such that for 0 ≤ γ ≤ 1, the
normalized ReLU activation σ(x) =

√
2max(0, x) is (αReLU, 1 + o(γ), γ)-decent.

Proof. The measure concentration property follows from standard concentration bounds for sub-
exponential random variables (e.g. [43]). It remains to show that σ̄ is (1 + o(γ))-Lipschitz in Mγ

+.
We first calculate an exact expression for σ̄. The expression was already calculated in [13], yet we
give here a derivation for completeness.

Claim 2. The following equality holds for all Σ ∈ M2
+,

σ̄(Σ) =
�

Σ11Σ22 σ̂

�
Σ12√
Σ11Σ22

�
.

Proof. Let us denote

Σ̃ =

�
1 Σ12√

Σ11Σ12
Σ12√
Σ11Σ12

1

�
.

By the positive homogeneity of the ReLU activation we have

σ̄ (Σ) = E
(X,Y )∼N(0,Σ)

σ(X)σ(Y )

=
�

Σ11Σ22 E
(X,Y )∼N(0,Σ)

σ

�
X√
Σ11

�
σ

�
Y√
Σ22

�

=
�
Σ11Σ22 E

(X̃,Ỹ )∼N(0,Σ̃)
σ
�
X̃
�
σ
�
Ỹ
�

=
�

Σ11Σ22 σ̂

�
Σ12√
Σ11Σ22

�
.

17



which concludes the proof.

For brevity, we henceforth drop the argument from σ̄(Σ) and use the abbreviation σ̄. In order to show
that σ̄ is (1 + o(γ))-Lipschitz w.r.t. the ∞-norm it is enough to show that for every Σ ∈ Mγ

+ we
have,

�∇σ̄�1 =

����
∂σ̄

∂Σ12

����+
����
∂σ̄

∂Σ11

����+
����
∂σ̄

∂Σ22

���� ≤ 1 + o(γ) . (10)

First, Note that ∂σ̄/∂Σ11 and ∂σ̄/∂Σ22 have the same sign, hence,

�∇σ̄�1 =

����
∂σ̄

∂Σ12

����+
����
∂σ̄

∂Σ11
+

∂σ̄

∂Σ22

���� .

Next we get that,

∂σ̄

∂Σ11
=

1

2

�
Σ22

Σ11
σ̂

�
Σ12√
Σ11Σ22

�
− 1

2

�
Σ22

Σ11

Σ12√
Σ11Σ22

σ̂�
�

Σ12√
Σ11Σ22

�

∂σ̄

∂Σ22
=

1

2

�
Σ11

Σ22
σ̂

�
Σ12√
Σ11Σ22

�
− 1

2

�
Σ11

Σ22

Σ12√
Σ11Σ22

σ̂�
�

Σ12√
Σ11Σ22

�

∂σ̄

∂Σ12
= σ̂�

�
Σ12√
Σ11Σ22

�
.

We therefore get that the 1-norm of ∇σ̄ is,

�∇σ̄�1 =
1

2

Σ11 + Σ22√
Σ11Σ22

����σ̂
�

Σ12√
Σ11Σ22

�
− Σ12√

Σ11Σ22

σ̂�
�

Σ12√
Σ11Σ22

�����+ σ̂�
�

Σ12√
Σ11Σ22

�
.

The gradient of 1
2
Σ11+Σ22√
Σ11Σ22

at (Σ11,Σ22) = (1, 1) is (0, 0). Therefore, from the mean value theorem

we get, 1
2
Σ11+Σ22√
Σ11Σ22

= 1 + o(γ). Furthermore, σ̂, σ̂� and Σ12√
Σ11Σ22

are bounded by 1 in absolute value.
Hence, we can write,

�∇σ̄�1 =

����σ̂
�

Σ12√
Σ11Σ22

�
− Σ12√

Σ11Σ22

σ̂�
�

Σ12√
Σ11Σ22

�����+ σ̂�
�

Σ12√
Σ11Σ22

�
+ o(γ) .

Finally, if we let t = Σ12√
Σ11Σ22

, we can further simply the expression for ∇σ̄,

�∇σ̄(Σ)�1 = |σ̂(t)− tσ̂�(t)|+ |σ̂�(t)|+ o(γ)

=

√
1− t2

π
+ 1− cos−1(t)

π
+ o(γ) .

Finally, the proof is obtained from the fact that the function f(t) =
√
1−t2

π + 1− cos−1(t)
π satisfies

0 ≤ f(t) ≤ 1 for every t ∈ [−1, 1]. Indeed, it is simple to verify that f(−1) = 0 and f(1) = 1.
Hence, it suffices to show that f � is non-negative in [−1, 1] which is indeed the case since,

f �(t) =
1

π

1− t√
1− t2

=
1

π

�
1− t

1 + t
≥ 0 .

D.2 Proofs of Thms. 3 and 4

We start by an additional theorem which serves as a simple stepping stone for proving the aforemen-
tioned main theorems.

Theorem 15. Let S be a skeleton with (α,β, γ)-decent activations, 0 < � ≤ γ, and Bd =
�d−1

i=0 βi.
Let w be a random initialization of the network N = N (S, r) with

r ≥
2α2B2

depth(S) log
�

8|S|
δ

�

�2
.

Then, for every x,y with probability of at least 1− δ, it holds that

|κw(x,y)− κS(x,y)| ≤ � .
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Before proving the theorem we show that together with Lemmas 13 and 14, Theorems 3 and 4 follow
from Theorem 15. We restate them as corollaries, prove them, and then proceed to the proof of
Theorem 15.

Corollary 16. Let S be a skeleton with C-bounded activations. Let w be a random initialization of
N = N (S, r) with

r ≥
(4C4)depth(S)+1 log

�
8|S|
δ

�

�2
.

Then, for every x,y, w.p. ≥ 1− δ,

|κw(x,y)− κS(x,y)| ≤ � .

Proof. From Lemma 13, for all γ > 0, each activation is (C2, 2C2, γ)-decent. By Theorem 15, it
suffices to show that

2
�
C2

�2



depth(S)−1�

i=0

(2C2)i




2

≤ (4C4)depth(S)+1 .

The sum of can be bounded above by,

depth(S)−1�

i=0

(2C2)i =
(2C2)depth(S) − 1

2C2 − 1
≤ (2C2)depth(S)

C2
.

Therefore, we get that,

2
�
C2

�2



depth(S)−1�

i=0

(2C2)i




2

≤ 2C4(4C4)depth(S)

C4
≤ (4C4)depth(S)+1 ,

which concludes the proof.

Corollary 17. Let S be a skeleton with ReLU activations, and w a random initialization of N (S, r)
with r ≥ c1

depth2(S) log( 8|S|
δ )

�2 . For all x,y and � ≤ min(c2,
1

depth(S) ), w.p. ≥ 1− δ,

|κw(x,y)− κS(x,y)| ≤ �

Here, c1, c2 > 0 are universal constants.

Proof. From Lemma 14, each activation is (αReLU, 1+ o(�), �)-decent. By Theorem 15, it is enough
to show that

depth(S)−1�

i=0

(1 + o(�))i = O(depth(S)) .

This claim follows from the fact that (1 + o(�))i ≤ eo(�)depth(S) as long as i ≤ depth(S). Since we
assume that � ≤ 1/depth(S), the expression is bounded by e for sufficiently small �.

We next prove Theorem 15.

Proof. (Theorem 15) For a node u ∈ S we denote by Ψu,w : X → Rr the normalized representation
of S’s sub-skeleton rooted at u. Analogously, κu,w denotes the empirical kernel of that network.
When u is the output node of S we still use Ψw and κw for Ψu,w and κu,w. Given two fixed x,y ∈ X
and a node u ∈ S , we denote

Ku
w =

�
κu,w(x,x) κu,w(x,y)
κu,w(x,y) κu,w(y,y)

�
, Ku =

�
κu(x,x) κu(x,y)
κu(x,y) κu(y,y)

�

K←u
w =

�
v∈in(u) Kv

w

|in(u)| , K←u =

�
v∈in(u) Kv

|in(u)| .
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For a matrix K ∈ M+ and a function f : M+ → R, we denote

fp(K) =



f

�
K11 K11

K11 K11

�
f(K)

f(K) f

�
K22 K22

K22 K22

�




Note that Ku = σ̄p
u(K←u). We say that a node u ∈ S , is well-initialized if

�Ku
w −Ku�∞ ≤ �

Bdepth(u)

Bdepth(S)
. (11)

Here, we use the convention that B0 = 0. It is enough to show that with probability of at least ≥ 1−δ
all nodes are well-initialized. We first note that input nodes are well-initialized by construction since
Ku

w = Ku. Next, we show that given that all incoming nodes for a certain node are well-initialized,
then w.h.p. the node is well-initialized as well.

Claim 3. Assume that all the nodes in in(u) are well-initialized. Then, the node u is well-initialized
with probability of at least 1− δ

|S| .

Proof. It is easy to verify that Ku
w is the empirical covariance matrix of r independent variables

distributed according to (σ(X),σ(Y )) where (X,Y ) ∼ N (0,K←u
w ). Given the assumption that all

nodes incoming to u are well-initialized, we have,

�K←u
w −K←u�∞ =

�����

�
v∈in(v) Kv

w

|in(v)| −
�

v∈in(v) Kv

|in(v)|

�����
∞

≤ 1

|in(v)|
�

v∈in(v)

�Kv
w −Kv�∞ (12)

≤ �
Bdepth(u)−1

Bdepth(S)
.

Further, since � ≤ γ then K←u
w ∈ Mγ

+. Using the fact that σu is (α,β, γ)-decent and that r ≥
2α2B2

depth(S) log(
8|S|
δ )

�2 , we get that w.p. of at least 1− δ
|S| ,

�Ku
w − σ̄p

u (K←u
w )�∞ ≤ �

Bdepth(S)
. (13)

Finally, using (12) and (13) along with the fact that σ̄ is β-Lipschitz, we have

�Ku
w −Ku�∞ = �Ku

w − σ̄p
u (K←u)�∞

≤ �Ku
w − σ̄p

u (K←u
w )�∞ + �σ̄p

u (K←u
w )− σ̄p

u (K←u)�∞
≤ �

Bdepth(S)
+ β �K←u

w −K←u�∞

≤ �

Bdepth(S)
+ β�

Bdepth(u)−1

Bdepth(S)
= �

Bdepth(u)

Bdepth(S)
.

We are now ready to conclude the proof. Let u1, . . . , u|S| be an ordered list of the nodes in S in
accordance to their depth, starting with the shallowest nodes, and ending with the output node. Denote
by Aq the event that u1, . . . , uq are well-initialized. We need to show that Pr(A|S|) ≥ 1− δ. We do
so using an induction on q for the inequality Pr(Aq) ≥ 1− qδ

|S| . Indeed, for q = 1, . . . , n, uq is an
input node and Pr(Aq) = 1. Thus, the base of the induction hypothesis holds. Assume that q > n.
By Claim (3) we have that Pr(Aq|Aq−1) ≥ 1− δ

|S| . Finally, from the induction hypothesis we have,

Pr(Aq) ≥ Pr(Aq|Aq−1) Pr(Aq−1) ≥
�
1− δ

|S|

��
1− (q − 1)δ

|S|

�
≥ 1− qδ

|S| .

20



D.3 Proofs of Thms. 5 and 6

Theorems 5 and 6 follow from using the following lemma combined with Theorems 3 and 4. When
we apply the lemma, we always focus on the special case where one of the kernels is constant w.p. 1.

Lemma 18. Let D be a distribution on X × Y , � : R × Y → R be an L-Lipschitz loss, δ > 0,
and κ1,κ2 : X × X → R be two independent random kernels sample from arbitrary distributions.
Assume that the following properties hold.

• For some C > 0, ∀x ∈ X , κ1(x,x),κ2(x,x) ≤ C.

• ∀x,y ∈ X , Prκ1,κ2 (|κ1(x,y)− κ2(x,y)| ≥ �) ≤ δ̃ for δ̃ < c2
�2δ

C2 log2( 1
δ )

where c2 > 0

is a universal constant.

Then, w.p. ≥ 1 − δ over the choices of κ1,κ2, for every f1 ∈ HM
κ1

there is f2 ∈ H
√
2M

κ2
such that

LD(f2) ≤ LD(f1) +
√
�4LM .

To prove the above lemma, we state another lemma below followed by a basic measure concentration
result.

Lemma 19. Let x1, . . . ,xm ∈ Rd, w∗ ∈ Rd and � > 0. There are weights α1, . . . ,αm such that
for w :=

�m
i=1 αixi we have,

• L(w) := 1
m

�m
i=1 |�w,xi� − �w∗,xi�| ≤ �

• �
i |αi| ≤ �w∗�2

�

• �w� ≤ �w∗�

Proof. Denote M = �w∗�, C = maxi �xi�, and yi = �w∗,xi�. Suppose that we run stochastic
gradient decent on the sample {(x1, y1), . . . , (xm, ym)} w.r.t. the loss L(w), with learning rate
η = �

C2 , and with projections onto the ball of radius M . Namely, we start with w0 = 0 and at each
iteration t ≥ 1, we choose at random it ∈ [m] and perform the update,

w̃t =

�
wt−1 − ηxit �wt−1,xit� ≥ yit
wt−1 + ηxit �wt−1,xit� < yit

wt =

�
w̃t �w̃t� ≤ M
Mw̃t

�w̃t� �w̃t� > M

After T = M2C2

�2 iterations the loss in expectation would be at most � (see for instance Chapter 14
in [43]). In particular, there exists a sequence of at most M2C2

�2 gradient steps that attains a solution
w with L(w) ≤ �. Each update adds or subtracts �

C2xi from the current solution. Hence w can be
written as a weighted sum of xi’s where the sum of each coefficient is at most T �

C2 = M2

� .

Theorem 20 (Bartlett and Mendelson [8]). Let D be a distribution over X × Y , � : R × Y → R
a 1-Lipschitz loss, κ : X × X → R a kernel, and �, δ > 0. Let S = {(x1, y1), . . . , (xm, ym)} be

i.i.d. samples from D such that m ≥ c
M2 maxx∈X κ(x,x)+log( 1

δ )
�2 where c is a constant. Then, with

probability of at least 1− δ we have,

∀f ∈ HM
κ , |LD(f)− LS(f)| ≤ � .

Proof. (of Lemma 18) By rescaling �, we can assume w.l.o.g that L = 1. Let �1 =
√
�M and

S = {(x1, y1), . . . , (xm, ym)} ∼ D be i.i.d. samples which are independent of the choice of κ1,κ2.

By Theorem 20, for a large enough constant c, if m = c
CM2 log( 1

δ )
�21

= c
C log( 1

δ )
� , then w.p. ≥ 1− δ

2

over the choice of the samples we have,

∀f ∈ HM
κ1

∪H
√
2M

κ2
, |LD(f)− LS(f)| ≤ �1 (14)

21



Now, if we choose c2 = 1
2c2 then w.p. ≥ 1−m2δ̃ ≥ 1− δ

2 (over the choice of the examples and the
kernel), we have that

∀i, j ∈ [m], |κ1(xi,xj)− κ2(xi,xj)| < � . (15)
In particular, w.p. ≥ 1− δ (14) and (15) hold and therefore it suffices to prove the conclusion of the
theorem under these conditions. Indeed, let Ψ1,Ψ2 : X → H be two mapping from X to a Hilbert
space H so that κi(x,y) = �Ψi(x),Ψi(y)�. Let f1 ∈ HM

κ1
. By lemma 19 there are α1, . . . ,αm so

that for the vector w =
�m

i=1 α1Ψ1(xi) we have

1

m

m�

i=1

|�w,Ψ1(xi)� − f1(xi)| ≤ �1, �w� ≤ M , (16)

and
m�

i=1

|αi| ≤
M2

�1
. (17)

Consider the function f2 ∈ H2 defined by f2(x) =
�m

i=1 α1�Ψ2(xi),Ψ2(x)�. We note that

�f2�2Hk2
≤

�����
m�

i=1

αiΨ2(xi)

�����

2

=

m�

i,j=1

αiαjκ2(xi,xj)

≤
m�

i,j=1

αiαjκ1(xi,xj) + �

m�

i,j=1

|αiαj |

= �w�2 + �

�
m�

i=1

|αi|
�2

≤ M2 + �
M4

�21
= 2M2 .

Denote by f̃1(x) = �w,Ψ1(x)� and note that for every i ∈ [m] we have,

|f̃1(xi)− f2(xi)| =

������

m�

j=1

αj (κ1(xi,xj)− κ2(xi,xj))

������

≤ �

m�

i=1

|αi| ≤ �
M2

�1
= �1 .

Finally, we get that,

LD(f2) ≤ LS(f2) + �1

=
1

m

m�

i=1

� (f2(xi), yi) + �1

≤ 1

m

m�

i=1

�
�
f̃1(xi), yi

�
+ �1 + �1

≤ 1

m

m�

i=1

� (f1(xi), yi) + |f̃1(xi)− f1(xi)|+ 2�1

≤ 1

m

m�

i=1

� (f1(xi), yi) + 3�1

≤ LS(f1) + 3�1 ≤ LD(f1) + 4�1 ,

which concludes the proof.
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